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For brain–computer interfaces (BCIs) to be viable for long-term daily usage, they must be
able to quickly identify and adapt to signal disruptions. Furthermore, the detection and
mitigation steps need to occur automatically and without the need for user intervention
while also being computationally tractable for the low-power hardware that will be used
in a deployed BCI system. Here, we focus on disruptions that are likely to occur during
chronic use that cause some recording channels to fail but leave the remaining channels
unaffected. In these cases, the algorithm that translates recorded neural activity into
actions, the neural decoder, should seamlessly identify and adjust to the altered neural
signals with minimal inconvenience to the user. First, we introduce an adapted statistical
process control (SPC) method that automatically identifies disrupted channels so that
both decoding algorithms can be adjusted, and technicians can be alerted. Next, after
identifying corrupted channels, we demonstrate the automated and rapid removal of
channels from a neural network decoder using a masking approach that does not
change the decoding architecture, making it amenable for transfer learning. Finally, using
transfer and unsupervised learning techniques, we update the model weights to adjust
for the corrupted channels without requiring the user to collect additional calibration
data. We demonstrate with both real and simulated neural data that our approach
can maintain high-performance while simultaneously minimizing computation time and
data storage requirements. This framework is invisible to the user but can dramatically
increase BCI robustness and usability.

Keywords: brain–machine (computer interface), neuroprosthetic, deep learning – artificial neural network,
intracortical array, statistical process control

INTRODUCTION

Despite significant progress in intracortical brain computer interface (BCI) technology, there are
few examples of practical use in home environments (Collinger et al., 2013b; Murphy et al., 2016;
Oxley et al., 2020; Weiss et al., 2020; Cajigas et al., 2021). One obstacle to translation is that chronic
BCI systems are likely to encounter signal disruptions due to biological, material, and mechanical
issues that can corrupt the neural data (Barrese et al., 2013; Dunlap et al., 2020). While some
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disruptions can be catastrophic and cause complete signal loss,
disruptions often only affect a subset of BCI recording channels
(Colachis et al., 2021). When this happens performance may be
fully or partially recovered by removing the affected channels
and using only the unaffected channels. Ideally, an algorithm
could automatically detect these disruptions, flag them for
possible repair, and then reoptimize the decoder to maximize
performance using the unaffected channels. For deployed home
use systems, these steps should occur automatically and be
invisible to the user. Furthermore, the adjustments should be
computationally efficient to minimize recalibration time and data
storage needs, as they will be run on mobile systems with limited,
battery-powered hardware.

To our knowledge, no fully automated method exists to
detect the myriad possible signal disruptions that can occur
in intracortical BCI systems. To address this problem, we
have adapted statistical process control (SPC) methodology to
monitor BCI data. SPC is a quality-control framework for
inferring changes to a process over time by specifying criteria
to identify samples that deviate from the typical behavior of
the signal, referred to as “out-of-control” samples (Western
Electric Company, 1956). SPC methodology is typically applied
to manufacturing processes, but with slight modifications lends
itself very well to chronic tracking of neural data. Here we
demonstrate how it can be used to detect disrupted signals in
BCI systems. Notably this approach is independent of the neural
decoder and applicable for a broad range of BCI applications.

In controlled laboratory work, a decoder such as a support
vector machine (SVM), linear model, or Kalman filter is typically
calibrated de novo at the beginning of each session using new
calibration data collected from the user to account for expected
daily variability in the recorded signals (Hochberg et al., 2012;
Collinger et al., 2013c; Bouton et al., 2016; Sharma et al., 2016;
Ajiboye et al., 2017; Friedenberg et al., 2017; Colachis et al., 2018).
In this situation, if corrupted channels have been identified,
they can be excluded from the daily recalibrated decoder. Even
without exclusion of corrupted channels, the daily recalibration
of decoders should minimize the importance of channels whose
signals have minimal association with the user’s intended action.
Thus, typically no additional algorithmic handling of signal
disruptions is necessary with daily recalibration. However, the
collection of labeled calibration data presents a significant time
investment for BCI users, and surveys of potential users suggest
that many would not be willing to invest time to retrain
the decoder every day in a deployed system (Huggins et al.,
2011, 2015; Collinger et al., 2013a). Thus, several groups have
developed neural decoding approaches that are less reliant on
daily recalibration.

Deep learning models trained using multiple sessions of
historical data can maintain high performance while eliminating
the need to retrain the decoder from scratch each session (Sussillo
et al., 2016; Schwemmer et al., 2018; Skomrock et al., 2018;
Rodrigues et al., 2019). Additionally, decoders trained previously
can be updated using unsupervised methods that do not require
the user to collect daily calibration data (Jarosiewicz et al., 2015;
Kao et al., 2017; Schwemmer et al., 2018; Degenhart et al., 2020).
These unsupervised methods update decoder weights based on

general use data, allowing the decoder to adapt to changes in
neural dynamics over time. Importantly, all these methods are
robust to relatively small daily variations but will not necessarily
accommodate abrupt and drastic disruptions to the neural data
that can happen due to physical damage to the sensor or
recording equipment, which can cause catastrophic loss on the
affected channels.

Thus, groups have developed decoders robust to corrupted
channels without needing to retrain the decoder completely.
Sussillo et al. (2016) demonstrated a high-performing
multiplicative recurrent network (MRNN) that tolerated
the zeroing of three to five of the most informative electrodes
with only moderate performance decrements compared to
when no electrodes were lost. The algorithm could adapt to
signal perturbations due to data augmentation from perturbed
spike counts and incorporation of past neural activity into the
MRNN. Kao et al. (2017) similarly demonstrated high decoding
performance using a hysteresis neural dynamical filter (HDNF).
Performance was similar to the case of no damage when up
through approximately 10 of the most informative electrodes
were removed for the 96-electrode system, and up through
approximately 50 of the electrodes for the 192-electrode system.
The robustness of the model to lost electrodes was accredited
to its “memory” of previous states when all electrodes were
available. Although these models show some robustness to
certain types of channel loss, they lack the automated flagging
of corrupted channels which may be repairable, and they do not
remove the corrupted channels from the model. Furthermore,
these methods only test model robustness by zeroing channel
input, thus simulating “dead” channels. It is unclear whether
these methods would be robust to non-zero corrupted input
signals, such as those created by floating or shorted channels.

Additional approaches have been implemented in machine
learning literature to increase robustness of deep neural network
algorithms. One commonly used method is dropout, in which
a randomly selected subset of weights between layers is zeroed.
This approach is similar to the data augmentation approach
implemented by Sussillo et al. (2016) during training of
their MRNN, and approximates the simulated lost connections
introduced by both Sussillo et al. (2016) and Kao et al. (2017)
during decoder evaluation. Another such method is mixup
(Zhang H. et al., 2018), which is believed to reduce overfitting
by the model by augmenting the training data with linear
combinations of the existing training examples. Dropout and
mixup were designed to reduce overfitting by the model during
training by preventing overreliance on any particular input
feature. By reducing overreliance on individual input channels,
these methods should also increase robustness to damage on a
subset of channels. To our knowledge, mixup has not yet been
applied to neurological signals. Both methods will be applied in
the models explored below.

In the following, we introduce a novel, automated approach
for dealing with corrupted channels by (1) automatically
identifying problematic channels by adapting established
statistical process control (SPC) techniques, (2) inserting a
masking layer in neural network decoder architectures to
remove the problematic channels without retraining from
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scratch and, (3) unsupervised updating to reassign the weights of
the remaining channels without requiring the user to explicitly
recalibrate. Figure 1 presents an overview of the proposed system
for decoding neural signals in the presence of damaged channels,
including the interaction with the modified SPC process, channel
masking layer, and unsupervised updates. Using SPC, key
channel health metrics like impedance and channel correlations
are monitored over time, yielding baselines and tolerance bounds
for normal operating behavior. Channels within the tolerance
bounds pass through the model unaltered. If any channel
metrics exceed the tolerance bounds, the identified channels
are determined disrupted and then removed in the channel
masking layer so they cannot influence subsequent decoding
layers. Importantly, the channel layer removes channels without

changing the model architecture—this enables methods such
as transfer learning and fine-tuning to adapt the decoder in
a computationally efficient manner. Unsupervised updating
can then continually improve the model without placing any
additional burden on the user. While we demonstrate our
approach using a specific set of SPC parameters and a specific
neural network architecture, the approach is highly generalizable.
SPC methods are completely independent of the neural decoder
and can be applied wherever there is sufficient historical data
to establish a baseline and assess variability. Additionally,
the masking and unsupervised updating approaches are
flexible and agnostic to the neural network architecture. In
the following, we detail our approach and demonstrate these
methods using clinical data collected over a 5-year study with

FIGURE 1 | The proposed decoding framework for handling channel disruptions. (A) Raw voltage data and impedance measurements recorded from the implanted
electrode array will be delivered to the statistical process control algorithm, where channels with disruptions will be identified. The discovery of disruptions will cause
the input from the affected channels to be masked, or zeroed, before being sent to the decoder. This will also trigger an unsupervised update to readjust the weights
to the missing input. (B) The statistical process control algorithm to detect disrupted channels is described. The four steps in this process are (1) transforming raw
data into four array-level metrics useful for signal monitoring, (2) creating control charts for each of the metrics, (3) using the control charts to flag sessions with
potential disruptions, and (4) performing Grubb’s test to determine outlying channels on the flagged sessions. (C) The decoder framework, including a masking layer,
an LSTM with 80 hidden units, 25 convolutional filters, a fully connected layer, and finally a 5-unit layer corresponding to the output.
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an implanted Utah array BCI as well as simulated neural
signal disruptions.

MATERIALS AND METHODS

The following sections describe the data collected via a motor
imagery task presented to a human participant with an implanted
microelectrode array (MEA), the modified statistical process
control approach developed to identify disruptions in the signal
recorded from the MEA, and the models implemented to
predict the participant’s intended movements. A neural network
model incorporating the proposed channel masking layer and
unsupervised updates was compared against several control
models which are also described. All decoding and SPC analyses
were performed offline in Python 3.6 (Van Rossum and Drake,
2009). Mixed effects modeling and analysis was performed offline
in R 3.6.2 (R Core Team, 2021).

Datasets
This investigational clinical trial was approved by United States
Food and Drug Administration (FDA) under an Investigational
Device Exemption (IDE) and The Ohio State University Wexner
Medical Center Institution Review Board (Columbus, OH,
United States) and registered on ClinicalTrials.gov (Identifier
NCT01997125). Data were collected from a human participant
with CI5 AIS A tetraplegia who had been implanted with a 96-
channel Utah electrode array (Blackrock Microsystems, Inc., Salt
Lake, UT, United States) in 2014. The injury occurred 4 years
prior to implantation, and the data analyzed in the current
experiments were collected up to 5 years post-implantation. The
data analyzed for the SPC process were collected over the course
of the entire 5-year dataset. These data were obtained at the
beginning of each session while the study participant closed his
eyes and rested for 60 s.

The datasets used for channel-masking experiments
were collected over 65 sessions spanning 2.4–5 years post-
implantation, and are an extension of the experiments reported
by Schwemmer et al. (2018) and Skomrock et al. (2018). For
the channel-masking experiments, the participant performed an
imagined movement task consisting of four separate movement
cues: index finger extension, index finger flexion, wrist extension,
and wrist flexion. A rest period separated each of the cue
presentations. A single 104-s block comprised four repetitions
of each of the four different movement cues in a randomized
order, for a total of 16 cued movements. Each of the 16 cues
was presented in 2.5 s windows, separated by 4 s of rest. The
participant did not receive any real-time feedback during the
block. Two such blocks of data were collected consecutively on
each day of the experiment. Both blocks of the first 30 sessions
(collected between 771 and 1,130 days after implantation of the
MEA) served as the training data. Both blocks of the subsequent
10 sessions (collected between 1,144 and 1,234 days after
implantation) served as a validation set. The first block of the
final 35 sessions (collected between 1,241 and 1,736 days after
implantation) was used for the unsupervised updates, while the
second block was reserved as test data. Four sessions from the

training set and six sessions from the test set with known channel
disruptions (as detailed in Section “Damaged Channels Identified
by the Statistical Process Control Process”) were excluded to
isolate the effects of simulated disruptions and better quantify
the effect of the masking layer over different amounts of damage.

Signal Processing and Simulating
Disruptions
Neural signal processing was performed similarly to our previous
work (Bouton et al., 2016; Colachis et al., 2018; Schwemmer
et al., 2018; Skomrock et al., 2018; Bockbrader et al., 2019).
Neural voltages were sampled at 30 kHz with a 0.3 Hz first-
order high-pass and a 7.5 kHz third-order low-pass Butterworth
analog hardware filter. This recorded signal was processed to
calculate a single feature, mean wavelet power (MWP), for each
channel (Friedenberg et al., 2016; Zhang M. et al., 2018). To
calculate MWP, the 30-kHz data were decomposed with a ‘db4’
mother wavelet and 11 wavelet scales. Wavelet coefficients were
extracted for scales 3, 4, and 5, which span a frequency range
of 234–1,875 Hz. The wavelet coefficients were divided into
non-overlapping 100 ms windows. The temporal average of the
wavelet coefficients of each 100 ms window then was taken,
resulting in a single value per channel and per wavelet scale in
each window. Next, these averaged wavelet coefficients for each
channel were individually standardized by subtracting out the
mean and dividing by the standard deviation of each channel
over a single block of data. During the training period, each
block of data was standardized to itself, while during the testing
period, the mean and standard deviation of the first block was
used to standardize both the first and second blocks. Once the
3 × 96 = 288 features were standardized, the three averaged and
standardized coefficients for each channel were then averaged
together to calculate the MWP for each channel, resulting in 96
features, one for each channel for each 100-ms time bin. The
MWP over a sliding window of 900 ms (or nine 100 ms time
bins) was used as input to the neural network models tested
model. Cues were shifted by 800 ms relative to the MWP input for
accuracy calculations during both training and testing to account
for reaction and system lag times. The MWP with the 800 ms cue
shift was also used as input for the SVM tested, but instead of the
900 ms sliding window, a boxcar filter was used to average over
the most recent 1 s of data.

To test the efficacy of the masking layer, channel damage was
artificially simulated in the test data. Channels were ordered by
their mutual information with the cues, and the 1, 5, 10, 15,
20, 30, and 50 channels with the highest mutual information
were artificially corrupted to represent scenarios of mild to
severe disruption that would present significant challenges to
the decoder. Performance was also tested with no simulated
corruption as a control condition to establish baseline decoder
performance under ideal conditions. The sklearn package
(Pedregosa et al., 2011) in Python was used to calculate mutual
information between cues and channels. This package calculates
mutual information in accordance with the method proposed by
Ross (2014). The simulated corruption was based on true damage
observed in the MEA, namely three electrically floating channels
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caused by Pedestal/MEA damage as discussed briefly in section
“Pedestal and/or Microelectrode Array Damage Identified by
Minimum Average Absolute Correlation” below and in more
detail in Colachis et al. (2021). We simulated a corrupted
channel as a linear combination of the raw 30 kHz signals from
each of the three floating channels during a representative test
session using randomly generated weights. These three channels’
signals were combined in order to create examples that were
characteristic of floating channels but still variable between
simulations. For each of the selected top channels on each session
of the test set, an artificially corrupted channel was simulated
and MWP values from the simulated data replaced the true
uncorrupted MWP values. Further, to account for the variability
in model performance from different random initializations
of neural network parameters and different simulations of
corruption, each model was trained and tested using ten
different random seeds.

Statistical Process Control Approach to
Identifying Damaged Channels
Central to SPC methodology is the production of control charts,
for which a numerical summary of the data is plotted over time
alongside control limits that are set a predetermined number of
standard deviations away from the mean of the charted statistic.
For example, X-charts display the means of successive samples
and are useful for monitoring shifts in the data over time. S-charts
display the standard deviations of successive samples and are
useful for detecting extreme differences among the observations
in a sample. Samples are classified as “out-of-control” if they
meet certain pre-specified out-of-control conditions, for example
if an individual point exceeds the control limits or if a run of
successive points exceeds a more permissive limit. See Western
Electric Company (1956) for details on different types of out-
of-control conditions that are commonly used. We adapted
classical SPC techniques to accommodate expected changes in
neural data over time and used them to automatically detect
and identify problematic channels as described below. This
process requires no active input from the user; the data analyzed
for this process is collected during rest periods or during
impedance testing.

The disruption-identification process is comprised of three
general steps: (1) transformation of the raw neural data into
array-level metrics appropriate for SPC, (2) flagging of sessions
with out-of-control signals via SPC, and (3) identification of
individual problematic channels using the Grubbs outlier test
when the array-metrics are deemed out-of-control. These steps
are described further below.

Transformation of Raw Neural Data Into Array-Level
Metrics
Four primary metrics based on both channel impedances and
voltage recordings were calculated and monitored to detect signal
disruptions. These metrics were selected based on their perceived
association with possible types of biological, mechanical, and
material damage to the MEA (see Dunlap et al., 2020) and
their common usage in BCI applications. We note that the SPC
approach could be used to monitor any number of other BCI

metrics, although we believe the four presented here should be
sufficient to identify most significant disruptions.

(1) The impedance of each channel was measured at 1 kHz
using a 10 nA peak-to-peak sinusoidal current by the
Blackrock Impedance Tester at the beginning of each
experimental session, recording the average impedance for
each channel and day.
Disruptions in the impedance data might reflect breaks in
the conductor pathways or instances when the channels
short to ground.

The remaining metrics were based on voltage recordings.
Electrostatic discharge artifacts in the voltage data were detected
using a peak prominence of 125 µV and a maximum peak
width of 10 samples and replaced with a linear interpolation to
reduce edge effects during filtering prior to their use in the SPC
process. These artifact detection parameters were chosen based
on experimentation and to avoid replacement of neural spikes.
The voltage for channel i with electrostatic discharge artifacts
removed is represented by v in the equations below.

(2) Vrange was calculated as the difference between the
maximum and minimum voltages recorded for each
channel after a 250 Hz fourth-order high-pass Butterworth
filter had been applied as described in Equation 1 below.
This calculation differs from the standard calculation of
peak-to-peak voltage, which aims to measure the quality of
the action potential by taking the difference between the
maximum and minimum voltages at threshold crossings
rather than over the whole signal as is done for the Vrange
calculation. Here Butterworthr,f represents the response
of a Butterworth filter of order r and passing frequencies
above f,

Vrangei = max
(
Butterworth4,250 (vi)

)
−min (Butterworth4,250 (vi)) (1)

Vrange is expected to detect connector disruptions and
sources of abnormal artifacts such as floating channels.

Finally, the voltage recordings were also used to calculate
96 × 96 matrix of pairwise correlations between channel
voltages. These matrices were used to generate the two final
metrics described below. The absolute value of all correlations
was used in the calculation of the correlation-based metrics
because the magnitude rather than the direction of the
association is of interest.

(3) The maximum absolute value of all pairwise correlations
between all channels i and j was determined for each day as
described in Equation 2.

Maximum absolute correlation = max
i6=j

(
|cor(vi, vj)|

)
(2)

When two channels are electrically shorted, one channel’s
signal will essentially be copied onto another, and
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their signals thus are expected to be abnormally
highly correlated.

(4) The minimum average absolute correlation over all
channels was also calculated for each day as described in
Equation 3. For each channel, the mean absolute value of all
pairwise correlations between the voltages of the channel
of interest and each of the 95 other channels was taken.
The minimum of these 96 channel-wise averages was then
selected for each day.

Minimum average absolute correlation

= min
i∈[1,96]

(
1

95

∑96

j=1,i6=j
|cor

(
vi, vj

)
|

)
(3)

All channels are situated in a small area of the brain,
and record signals that overlap to some degree. Therefore,
when channels no longer adequately detect neural signals
due to damage, we expect a corresponding decrease in
correlation with the other channels.

The above list of metrics is not meant to be exhaustive, and
additional metrics can be included in the SPC framework to
reveal other types of disruptions to the recorded neural signal.
However, as we will show, we believe these four metrics to be
sufficient for identifying many common disruptions.

Flagging of Sessions With Abnormal Signals via
Control Charts Based on the Metrics Calculated
Control charts were produced for each of the four metrics above
to identify sessions with abnormal signal behavior. The control
limits for standard control charts depend on the mean and
standard deviation of the control data, and the sample size for
each time point. In this application these values can change at
every time point. To avoid charts with varying control limits,
individual values were standardized and adjusted. At each time
point the overall mean (X) and within-day standard deviation
(σw) were calculated for the control data and each observation
at the given timepoint was standardized by subtracting X and
then dividing by σw. The average range between consecutive
timepoints in the standardized control data (R) was calculated.
Control limits for typical individual X charts are Target±
2.66×R. The target for the standardized values is 0 which
means that the control limits for the daily value divided by
R are constant, ±2.66. Similarly for the S-charts, the within-
day standard deviation of the standardized values is calculated
and adjusted. The control limits for these values are ±3.00.
This approach was adapted from the method described by
Bothe (1990). The Type I error rate for each control chart, the
probability that a given datapoint appears out-of-control when
the result is in fact due to random variation, is approximately
0.27% for the two-sided charts and approximately 0.13% for the
one-sided charts. These values can be tuned to balance sensitivity
and specificity appropriately such that the limits can be increased
if lower Type I error rates are desired and decreased to lessen
the risk of Type II error or if the system is failing to identify
known disruptions. For the development of this method, the
selection of the control limits was guided by identification of
known disruptions in the data.

Classical SPC methodology assumes that in the absence
of a disruption, data follow a Gaussian distribution with
a constant mean and variance. However, these assumptions
were not initially met for the metrics produced. For example,
channel impedances were found to decay with decreasing
variance over time, approximately following an exponential
decay model with stable variance over the log of time. Similar
properties were observed for Vrange. When this occurs, it is
common to transform the data to better meet the assumptions
required for SPC. Therefore, exponential decay models were
fit to impedance and Vrange metrics. Correlations between
channels increased slowly over time, and thus logarithmic
growth models were fit to the correlation-based metrics. Model
residuals were used to construct control charts. To simplify
interpretation, all control charts were standardized. That is,
the control limits are kept constant for the duration of the
study, and the datapoints are scaled accordingly. Specific
details on the construction of control charts for each metric
are given below.

(1) Both X- and S-charts were constructed using the residual
differences between the observed log-impedances and the
predictions from the exponential decay model. To further
allow for natural drifts in the neural signal over time, only
the last 50 in-control observations were used to generate
the impedance control charts.

(2) Both X- and S-charts were constructed for the Vrange
exponential decay model residuals. In contrast to the
impedance control charts, all in-control observations were
used to generate the Vrange charts.

(3) The X-chart was constructed for the logarithmic growth
model fit to maximum absolute correlations. All in-control
observations were used to construct the chart. To avoid
flagging channels that were only moderately correlated
and therefore not representative of electrical shorting, only
those absolute correlations that were both above the upper
control limit and greater than 0.90 were flagged as out-of-
control.

(4) The X-chart was constructed for the logarithmic growth
model fit to minimum average absolute correlations. All
in-control observations were used to construct the chart.
Note that no S-charts were constructed for the
correlation-based control charts because only one
maximum/minimum average absolute correlation is
available for each day.

By design, we expect that some out-of-control signals will be
false-positives. Treating all out-of-control signals as of indicative
of sensor damage could therefore lead to an overly sensitive
classification of damage, such that many channels that are
functioning appropriately may be excluded from the model.
Thus, our out-of-control condition was set such that only cases
where one of the monitored metrics was outside of control limits
for two or more consecutive sessions were selected for further
investigation. The minimum amount of time that a metric must
be out of control before being flagged for further investigation
can be adjusted based on balancing tolerance for false positives
and the cost of delayed identification. The use of two sessions as
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the required minimum for the current dataset seemed to reliably
identify the known disruptions in the MEA while minimizing
false positive alarms.

Identification of Individual Problematic Channels
Using the Grubbs Test When the Array-Metrics
Exceed the Control Limits
Our SPC approach flags problematic sessions based on array-
level metrics. Thus, once a day has been flagged, the problematic
channels still needed to be identified. To identify which channels
were disrupted, the Grubbs test for outliers (Grubbs, 1950) was
performed across all channels and for each control metric on each
session flagged by the control charts. A significance level of 0.01
was used. The Grubbs test assesses whether the largest absolute
deviation from the session mean across is significantly higher or
lower than expected for each channel based on the assumption of
normally distributed data. For each session, if the flagged channel
is identified as an outlier, the channel is removed from the
dataset and the test is performed again on the next most outlying
channel. This process is repeated until no new outliers are found.
Only channels that both were classified as outliers by Grubb’s
test and occurred on sessions flagged on the control charts for
two or more consecutive sessions were deemed “corrupted” and
would be subjected to remediation. The same channels must be
identified on both sessions to be considered outliers.

We emphasize that the SPC approach provides a framework
for quantifying and flagging abnormal signal behavior. The
specific values and transformations described above can be easily
customized to comply with the needs and allowable risks of future
systems while using the same SPC framework.

Decoder Architecture and Training
Deep Neural Network Decoders
The deep neural network decoder introduced in Schwemmer
et al. (2018) and summarized in Figure 1C was used as the base
decoder. The unsupervised updating procedure also introduced
by Schwemmer et al. (2018) was used to allow the neural network
to adapt to changes in neural output over time without requiring
explicit retraining or collection of new labeled training data from
the user. This procedure is related to semi-supervised learning,
where the models own predictions can serve as pseudo-labels to
augment the training dataset (Rosenberg et al., 2005). During
the unsupervised updating paradigm, for a given day of test
data, the model from the previous day was used to predict the
movement cues for the first block of data. These predictions were
concatenated with the previous ten training or updating blocks
and used as pseudo-labels to update the model weights. This
differs slightly from the procedure used by Schwemmer et al.
(2018), where all the training data and pseudo-labels generated
up through the test day were concatenated and used for the
update procedure.

Additional data augmentation and regularization techniques
were also implemented to improve generalizability of the model.
The mixup algorithm (Zhang H. et al., 2018), which creates
additional synthetic training data using linear combinations
of the training features and cues, was applied during model-
fitting. Data augmentation using mixup is thought to reduce

overfitting and increase robustness of the model. Dropout of a
randomly selected 50% of the forward connection weights in
each layer was also implemented during each epoch to further
prevent overfitting to the training data. To remain consistent with
the architecture used by Schwemmer et al. (2018), the default
pytorch LSTM was modified to apply dropout to the recurrent
connections of the network as well as to the forward connections.
The recurrent dropout percentage was set to 25% for all models.

Categorical cross-entropy loss was used during the initial
training period when true cue labels were available. However,
to compensate for the uncertainty in the true cue labels during
the use of the unsupervised updates, the bi-tempered logistic
loss function was used during the update period (Amid et al.,
2019). Temperature parameters t1 = 0.7 and t2 = 1.3 were
used, leading to a non-convex function that produces bounded,
heavy-tailed losses. This loss function offers more flexibility than
the modified cross-entropy function (Reed et al., 2014) which
was used by Schwemmer et al. (2018) for the unsupervised
updating procedure. The new loss function was chosen based
on experimentation suggesting it led to improved performance,
possibly due to a lower sensitivity to outliers (Amid et al., 2019).

The 1cycle policy (Smith, 2018) was used during training
to promote model convergence in a relatively small number of
epochs via methodical selection of the following model fitting
hyperparameters: learning-rate, momentum, weight decay and
batch size. This is a well-established approach to for selecting
neural network hyperparameters that is becoming standard in
deep learning applications (Howard and Gugger, 2020). An early
stopping criterion was also applied to determine the number
of epochs that should be used for performing both the initial
training and the unsupervised updates. If the decoder validation
accuracy did not change by more than 0.01 for two epochs,
the update process was halted. These techniques both promoted
efficiency in training and helped to standardize comparisons
in training time.

Table 1 summarizes the decoder training details in terms of
the datasets used, disruptions simulated, and fitting techniques
applied. The model was coded and trained in python 3.7.3 using
pytorch 1.1.0 module (Adam et al., 2019) with the fastai 1.0.57
framework (Howard and Gugger, 2020).

Support Vector Machine
For comparison, we also fit a daily-retrained SVM with non-
linear Gaussian radial basis function kernels with a γ parameter
value of 0.005. This value was selected based on previous
experiments (Bouton et al., 2016; Sharma et al., 2016). The sci-
kit learn toolbox (version 0.22; Pedregosa et al., 2011) in Python
was used to train the SVM. Channel masking was not applied
to the SVM. Rather, damaged channels were omitted from the
input manually to imitate current practices and as a best-case
representation of daily retraining.

Channel Masking Layer
The channel masking layer is initialized as an identity layer with
no added bias. It is inserted as a non-trainable first layer in the
neural network architecture and its output is fed directly into
the neural network decoder. The weights along the diagonal will
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TABLE 1 | Dataset used for all experiments and training parameters common for
all DNN models.

Neural feature: Mean wavelet power (MWP)

Number of blocks for test period: 30 blocks

Number of blocks for initial training: 60 blocks

Number of blocks for unsupervised
updating:

11 blocks (10 historical + 1 current)

Number of epochs: Determined by early stopping (patience = 2,
accuracy delta = 0.01, evaluation
blocks = 20)

Data augmentation: Mixup during update loop

Dropout: 0.50 Forward Layers
0.25 Recurrent Layers

Loss function: Categorical Cross-Entropy Loss during initial
training, BiTempered Loss during
unsupervised updates

Channels corrupted: The [0, 1, 5, 10, 15, 20, 30, 50] most
important channels

Simulated corruptions: Random linear combinations of floating
channel data

Damage introduced: First day of test period

be set to either 1, to pass input from “healthy” channels on to
the decoder, or to 0, to exclude damaged channels to the model.
The determination of which channels to exclude could be done
manually, or the outliers identified by the SPC algorithm could
be used to determine which weights get set to zero on a given day.
If no weights are set to zero, the masking layer remains an identity
layer and has no effect on the decoder.

Decoding Approaches in the Presence of
Damaged Channels
Four different methods of adjusting to damaged channels were
compared. These methods included:

(1) The unsupervised neural network model (uNN) based on
Schwemmer et al. (2018) trained using all channel inputs
over the training period and given unsupervised updates
for each test session with no explicit adjustments made
to accommodate the damaged channels (uNN-NOMASK).
This model was tested as a baseline condition.

(2) The uNN framework trained using all channel inputs
over the training period and given unsupervised updates
on each test session with the masking layer inserted
immediately prior to the decoder architecture to zero
out the corrupted channels (uNN-MASK). The decoder
architecture was identical to that of the uNN-NOMASK
except for the addition of the masking layer.

(3) The uNN model retrained from scratch from the beginning
of the training period and given unsupervised updates on
each test session with the damaged channels removed from
the dataset (uNN-RETRAIN). The decoder architecture
was identical to that of the uNN-NOMASK except the
initial layer was modified to accommodate the reduced
number of channels. For example, in the case where the
top 10 most important channels were artificially corrupted,
the model would take an 86 × 9 dimensional array as its

input instead of the regular 96 × 9 array. This method is
the most intensive of those tested in terms of data storage
requirements and retraining time.

(4) A SVM trained from scratch using only labeled data from
the first block on the day of the test and with the damaged
channels removed from the dataset (SVM-REMOVE). The
inputs to the SVM model are identical to those to the uNN
models, with the exception that a 96× 1 array representing
a boxcar-filtered average 1 s of data is fed to the model
at each time point instead of the 96 × 9 time series array
that is used for the uNN models. This model is trained as
an additional baseline, as it is similar to approaches used
in current laboratory-based systems (Fernández-Delgado
et al., 2014; Bouton et al., 2016; Sharma et al., 2016;
Colachis et al., 2018).

To assess the effect of unsupervised updates, the uNN-MASK
and uNN-RETRAIN approaches were also tested both without
updates applied and with supervised updates using ground-
truth labeled data.

Definition of Key Metrics
Two quantitative metrics referred to as accuracy and success were
used to assess the decoder performance. Accuracy measures the
ability of the decoder to match cued movements at a specific
time and represents the standard machine learning classification
definition of accuracy, while success measures predictive ability
over the full cued movement period and approximates how
an observer might score each cue as a binary success or a
failure. Specifically, accuracy was calculated as the percentage of
time bins for which the decoder prediction matched the cued
movement or rest after the cues had been shifted by 800 ms to
account for lags in reaction time. The success rate was calculated
as the percentage of cues where the correct movement was
predicted during the cue window and sustained for at least
1 s of the 2.5 s cued movement period. Correct predictions
did not need to be consecutive to count as a success, and the
predicted movement was allowed to extend into the following
rest period for up to 0.9 s. Unlike for accuracy calculations,
prediction of rest periods was not factored into the calculation
of success rates.

Concretely, the accuracy for a 104-s block would be the
percentage of the 1,040 100-ms time bins for which the decoder
prediction matched the cue and the success rate would be
the percentage of the 16 cued movements that were predicted
correctly for at least one (non-consecutive) second.

Quantitative and Statistical Analysis
To test for differences between modeling approaches, mixed
effects models were fit separately to the accuracies and successes
calculated over each test session. They included fixed effects
of the number of channels affected, decoder type, and the
interaction between number of channels and decoder type, and
a random effect of random seed. All effects were modeled
as categorical variables. The Holm method of adjustment for
multiple comparisons was used to maintain a family-wise error
rate of 0.05 over all stated comparisons between models and
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numbers of channels affected within a performance metric
(Holm, 1979).

The computational requirements to train each neural network
model were quantified as the number of equal-sized batches
necessary to satisfy an early stopping criterion, such that the
training and update processes were halted if the validation
accuracy did not improve by more than 0.01 for two epochs. The
data storage requirements are measured as the number of blocks
required to train and update the model.

RESULTS

The following sections discuss results from the modified SPC
process applied over the 5-year dataset and from the channel
masking experiments with simulated disruptions. The SPC
results compare known disruptions that were manually identified
over the course of the study to the automatic detection of
disruptions by our SPC algorithm. Then, the channel masking
simulation results compare decoder performance and associated
computational requirements across the various approaches for
addressing disrupted channels.

Damaged Channels Identified by
Statistical Process Control
Our statistical process control method was able to clearly identify
several real-world disruptions due to various types of failures

in the signal collection chain. Control charts were constructed
for the impedance, Vrange, maximum absolute correlation, and
minimum average absolute correlation metrics over the study
period, and 148 sessions were flagged as out-of-control (Figure 2,
out-of-control sessions highlighted in red). After applying the
Grubbs test, 100 instances of outlying channels were identified
from these out-of-control signals and so were classified as
disruptions by the modified SPC approach. Of these 100
suspected disruptions over the 387 sessions examined (with 96
channels tested each day, for a total of over 37,000 channels
examined), 79 were associated with known instances of damage.
The ability of SPC to correctly identify these known disruptions
helps to generate confidence that the method can detect the
disruptions it was designed to detect. In the following, we note
three examples of out-of-control observations identified by SPC
with clear links to known disruptions in electrode array channels.
A detailed discussion of observed disruptions to the neural signal
for the duration of this study is available by Colachis et al. (2021).

Pedestal Pad Damage Identified by Maximum
Absolute Correlation
Electrodes 78 and 87 had been shorted together by a scrap
electrode pad that had fallen loose while the patient cable was
being connected to the electrode array pedestal near day 871.
This electrical short was detected on the X-chart for maximum
absolute channel correlation of our SPC process for 7 out of the
10 sessions between days 871 and 906 after implantation, when

FIGURE 2 | The control charts produced for each of the four array-level metrics monitored by the statistical process control-based algorithm. Both X and S-charts
were produced for impedance and voltage range, while only X-charts were produced for the correlation metrics. Dotted red lines represent control limits. The red
points indicate metrics flagged for having been out-of-control for at least two consecutive sessions. The green regions represent periods of known damage. (A)
Impedance X-chart. (B) Impedance S-chart. (C) V range X-chart. (D) V range S-chart. (E) Maximum absolute correlation X-chart. (F) Minimum average absolute
correlation X-chart.
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abnormally high and out-of-control correlations were observed
for these two channels (see Figure 2E, region i). The electrical
short effectively duplicated the signals across two channels and
therefore the subtle effect was only apparent by observing the
abnormally high correlation between the two channels. The
correlation of these channels returned to being in-control after
repairs of the system were made.

Front-End Amplifier Pin Bend Identified by
Impedance S-Chart
A front-end amplifier pin on the system had been bent near
day 1,283, likely due to repeated connections and disconnections
of the patient cable, which caused disruptions in Channel 1 of
the MEA. This disruption was detected by our SPC process as
out-of-control observations (between approximately 4 and 15
standard deviations about the mean) on the impedance S-chart
(see Figures 1, 2B, region ii) and subsequent identification of
Channel 1 as an outlier by the Grubbs test for all seven sessions
between days 1,283 and 1,316. Channel 1 had also been identified
as an outlier for three of the seven sessions on the Vrange X-
chart. After repair of the damaged pin, the Channel 1 impedances
returned to in-control values.

Pedestal and/or Microelectrode Array Damage
Identified by Minimum Average Absolute Correlation
Channels 85, 93, and 96 are believed have become electrically
floating from day 1,742 onward, likely due to material
degradation to the pedestal and/or MEA from long-term use.
These floating channels record surrounding noise rather than
neural activity, which manifests in the data as abnormally low
correlations with surrounding non-floating channels and high
correlations amongst the floating channels. Consequently, both
the S-chart for Vrange and the X-chart for minimum average
channel correlations all had out-of-control observations from
day 1,742 after MEA implantation onward (see Figures 1, 2F,
region iii). Channels 85, 93, and 96 were identified as outliers
for minimum average absolute correlation by the Grubb’s test
during this period. Of the 25 sessions after day 1,742 disruptions
were identified in Channel 85 for 21 sessions, Channel 93 for 19
sessions, and Channel 96 for 22 sessions. The floating channels
cannot be repaired without surgical intervention.

The modified SPC approach presented here was able to
successfully identify three known occurrences of damage to the
MEA channels. The control charts for each of the four monitored
metrics flagged at least one of these cases of disruption, providing
evidence that each of impedance, voltage, and channel voltage
correlations is informative for detecting disruptions that may
occur in implanted Utah arrays.

Model Performance With Simulated
Damage
The following sections compare the effectiveness of the tested
approaches in addressing increasing amounts of simulated
damage. Accuracy and success of each of the four models are
presented (see Figure 3) as well as their retraining time burden
(Figure 4). Note that an accuracy of 61.5% is equivalent to the
decoder predicting rest for all cues.

uNN-NOMASK and Support Vector Machine
Performance Degrade With Increasing Amounts of
Damage
We first compare performance of the uNN with no explicit
handling of damaged channels (uNN-NOMASK) to the daily-
retrained SVM (SVM-REMOVE) that removes the damaged
channels from the input. The uNN-based decoders (which were
all equivalent when no corruption was introduced) achieved
superior performance to the SVM in the baseline scenario when
no channels were disrupted. With no simulated damage, the
uNN decoders achieved a mean accuracy of 89.87 ±6.97%
(mean±standard deviation) and a success rate of 90.97 ±15.61%
over the test period. The SVM-REMOVE achieved a lower mean
accuracy of 83.20±6.23% and a success rate of 77.90±6.23%.

The low relative performance of the SVM-REMOVE
continued through the disruption of the 10 most important
channels, such that it was the poorest-performing model
in these cases. The performance of the uNN-NOMASK
decreased drastically after 15 or more channels were affected,
however, and fell far below the performance of the other
models. The performance of the uNN-NOMASK was near or
below chance levels when 15 or more of the most important
channels are affected.

The uNN-NOMASK required an average of 63 batches for the
daily unsupervised updating procedure regardless of the amount
of simulated damage introduced. A total of 31 blocks of data were
used, 11 of which were used for the daily update procedure and
20 for the validation dataset. The daily-retrained SVM would only
require one block of data stored at a time and can be trained in
fraction of the time of a deep learning model, but importantly,
would require the user to actively spend time each day collecting
labeled data which is not required for the uNN models.

These results demonstrate that a uNN approach is superior to
the SVM approach in most use cases when no or minimal array
damage is present, both in terms of accuracy and in terms of
the computational and time burdens on the user. When greater
amounts of damage are present in the array, additional means of
addressing the damage are necessary for the uNN to be viable.

Masking Allows uNN to Maintain High Performance
Despite Damage
Both uNN-based models that explicitly handle the corrupted
channels maintained high performance through a considerable
amount of corruption introduced to the neural signal. Unlike
for the uNN-NOMASK and SVM-REMOVE, mean accuracies
remained above 85% and mean success rates remained above 80%
for both the uNN-RETRAIN and the uNN-MASK for corruption
of up to the 20 most important channels.

When 10 or more channels were disrupted, masking the
corrupted channels significantly improved accuracy [increase of
3.75 ±3.07%, t(8639) = −7.51, p < 0.0001 for 10 channels
disrupted] and success [increase of 4.36±7.20%, t(8639) =−3.28,
p = 0.0195 for 10 channels disrupted] when compared to
the no masking. The benefit from channel masking was
massive when damage was simulated in 20 channels (mean
difference in accuracy: 28.75±6.67%; mean difference in success:
73.89±19.72%).
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FIGURE 3 | The performance of the decoders with increasing numbers of channels affected by corruption. Simulated damaged was introduced on the first day of
the test set. The uNN-NOMASK, uNN-MASK, and uNN-RETRAIN were tested over 10 different random initializations, while only one SVM was tested for each day
and number of channels affected. (A) The accuracy over the 1.4-year test period. (B) The mean accuracy across 100-ms time bins as a function of the number of
channels dropped. Error bars represent 95% confidence intervals. (C) The success rate over for each 2.5 s cue over the 1.4-year test period. (D) The mean success
rate across 100-ms time bins as a function of the number of channels dropped. Error bars represent 95% confidence intervals.

Minimal additional data is required to adjust the uNN with the
channel masking layer in place, as the uNN-MASK only utilizes
data used in the daily unsupervised updating procedure. The
computational times for the uNN-MASK and uNN-NOMASK
are simply those needed for the unsupervised updates according
to the early stopping criterion. The uNN MASK required more
batches to update than the uNN-NOMASK due to the increased
need to recalculate weights as more channels are masked. The
uNN-MASK required nearly three times as many batches as the

uNN-NOMASK to update when 50 channels were affected, but
otherwise required fewer than twice as many batches.

uNN-RETRAIN Provides Marginal Improvements Over
Masking
For all cases in which simulated damage was introduced into
the data, the uNN-RETRAIN attained accuracies and successes
that were superior to or not statistically different from all
other models. The high relative performance of this model is
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FIGURE 4 | (A) The mean accuracy for the three uNN decoders, replotted from Figure 3B with x-axis ticks realigned to match (B). (B) The computational
requirements of the uNN decoders as measured by the number of batches required for training after disruptions are introduced. When zero channels are affected, no
masking or retraining takes place, and the model would only receive unsupervised updates. The number of batches required is according to an early stopping
criterion and is averaged over each of the 10 random initializations applied. Error bars represent 95% confidence intervals. (C) The number of batches required as a
function of decoder accuracy.

unsurprising, as it supplies the decoder with the largest amount of
labeled data for use in adapting to the loss of the affected channels.

However, retraining the uNN from scratch only yields
statistically better accuracy and success compared to masking in
instances of greater damage, when 30 or 50 of the 96 channels

are affected. When 30 channels are affected, the accuracy benefit
for the uNN-RETRAIN over the uNN-MASK is 2.14±5.04%
[t(8639) = −4.28, p = 0.0003] and the success benefit is
16.29 ±19.02% [t(8639) = −12.26, p < 0.0001]. When 50
channels were disrupted, the average benefits in accuracy and
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success obtained by retraining from scratch over masking were
4.69 ±3.96% and 24.55 ±17.03%, respectively. Despite these
benefits, performance was still relatively poor for the uNN-
RETRAIN with the 30 or 50 most important channels disrupted,
when accuracies were at most 80.06% (8.6%) and success rates
were at most 72.99% (22.48%).

Retraining the model from scratch while omitting the
damaged channels comes at the cost of processing time, as it can
take between approximately 4 (for 50 channels removed) and 10
(for one channel removed) times longer on average than simply
performing the unsupervised update after masking. In contrast
to the 31 blocks used to implement the uNN-MASK, a total
of 81 blocks were used to retrain the model from scratch. This
included all 60 blocks of the labeled data from the training period
in addition to the 20 blocks of validation data. As the test period
continued, 11 blocks used for daily updates were also added to
the data stored.

Unsupervised Updates Are Essential to Masking
Performance
The intended purpose of unsupervised updating is to allow
the algorithm to adapt to gradual changes in the neural
signal over time. However, the updating process is also
critical for the success of the channel masking procedure.
The maximum masking benefit for a model that did not
receive unsupervised updates was only 15.2 ±5.00% in accuracy
and 44.61 ±17.11% in success, which occurred when 15
corrupted channels were masked. In contrast, when unsupervised
updating was performed the accuracy and success increase by
23.57 ±5.68% and 58.19 ±17.78%, respectively, for 15 channels
affected. The model that masked corrupted channels also
performed statistically significantly worse than the model that
was retrained from scratch when updates were not performed
for either model after only 10 channels were affected [accuracy:
2.17 ±2.44%, t(8639) = −3.78, p = 0.0006; success: 4.86 ±9.44%,
t(8639) = −3.52, p = 0.0017], compared to 30 channels
affected when updates are performed. The unsupervised updating
procedure therefore is necessary to readjust the weights after
the most important channels have been omitted, and thus
those which the decoder had likely been most reliant on for
information, had been dropped.

DISCUSSION

Neural sensors are vulnerable to damage over time (Barrese
et al., 2013; Dunlap et al., 2020; Colachis et al., 2021),
and this vulnerability will increase as BCIs become used
in more unpredictable environments outside the laboratory.
Identifying and adapting to these disruptions will thus be
essential in a deployed BCI system. Here, we present a three-
staged approach to maintaining high deep neural network
performance in the presence of acute array damage with minimal
computational requirements and no required user intervention.
This approach includes (1) a statistical process control-
based methodology for automatically identifying channels with
disrupted signals, (2) a masking layer preceding the network

architecture to remove input from the disrupted channels
without retraining from scratch, and (3) an unsupervised
updating procedure to adjust model weights to the missing
information without explicit recalibration. The implementation
is described here for a 96-channel Utah array, but the
system can be easily extended for use with other MEAs
or even other types of physiological signals, such as EMG,
ECoG, or EEG data.

Traditional statistical process control techniques were adapted
to identify several outlying signals that may correspond to
damage to the neural sensor itself or to downstream components.
The benefits of this automated damage-identification algorithm
are twofold. First, the SPC procedure can alert the user
or technician when a potential issue occurs, expediting
repairs and triggering algorithmic adjustments. This benefit
exists independently of how well the decoder adapts to
the damaged channels. Second, automated identification of
problematic channels enables automated compensation in the
decoding algorithms, with the methods introduced here as
one example. The SPC procedure may also be extended
for multiple sensor arrays. Individual channel metrics like
impedance would follow the same SPC approach as a single
array whereas metrics that incorporate data from more than
one channel like correlations could optionally be calculated
across multiple arrays. Additionally, metrics that specifically
compare signal quality between multiple arrays could be added
to the procedure.

The conventional approach to addressing disrupted array
signals is to retrain the decoder from scratch with the
damaged channels removed. However, this approach requires
significant time from the participant to collect new training data
followed by computation time to retrain the decoder model
before the decoder is usable. Furthermore, if the decoder uses
historical data, that data needs to be stored and accessible for
retraining the model. Our approach substantially lowers both
the computational and storage burden compared to entirely
retraining the model. The time and data storage requirements
for the SPC approach to detect disrupted electrode signals are
negligible. This scheme only requires that up to two values (one
corresponding to each the X−- and potentially the S-charts)
be stored for each of the four metrics per day. The approach
shown here only requires a small amount of rest data collected
each day and only a few simple calculations. However, a similar
approach could be used for more frequent checks during daily
use of the system to identify disruptions closer to their time
of occurrence. The SPC approach could also be modified in
future use cases to monitor and identify disruptions during active
use of the decoder.

Once identified, masking of channels with simulated
disruption effectively preserved the high performance of the
decoder in the presence of moderate amounts of damage. The
overall success rate of the uNN-MASK is only a few percentage
points lower than in the case of no damage when up to fifteen
of the most important channels in the sensor are masked.
Even when 20 of the most important channels are masked, the
uNN-MASK success rates remain above 80%. This is a lower
success rate compared to the model’s typical performance but
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would still satisfy approximately three quarters of potential BCI
users with spinal cord injury surveyed (Huggins et al., 2015).
Without masking, the model successfully responds to cues less
than a third of the time when 15 channels are corrupted. When
damage was simulated in 20 channels, the uNN-NOMASK was
no better than chance.

Importantly, it is also observed that the benefit obtained
from channel masking is immediate, such that performance
of the uNN-MASK is near the performance of the uNN-
RETRAIN on the first day after the channel masking is used.
Benefit from the masking layer is the most critical within the
period immediately after neural signal disruptions are discovered
because many cases of damage would ideally be repaired quickly
after detection. Interestingly, even when labeled data is used
to update the model in a supervised fashion for the first
several days after damage is detected, performance is higher
with channel masking turned on versus left off. This further
highlights the benefits of explicitly masking damaged channels,
as corrupted channels may not always flatline, but instead could
have widely varying values that may cause issues for many
decoders (Colachis et al., 2021).

The above results also add to the evidence that our
unsupervised updating approach for neural networks has
significant benefits for sustaining the robust performance
requirements of BCI users while maintaining a light
computational footprint that is compatible with the low-
power devices that will deploy these algorithms. The benefit
attained by masking substantially increased when masking was
accompanied by unsupervised updates to readjust model weights.
Furthermore, after damage is repaired, the previously masked
channels will need to be reintroduced back into the model.
The reintroduction is as simple as changing the weights in the
identity layer for the relevant channels from 0 to 1. However,
the decoder will have adjusted its weights to ignore input from
the previously masked channels. Therefore, the unsupervised
updating procedure will again be critical for readjusting the
weights to reincorporate the repaired channels.

By leveraging previously learned weights that already encode
much of the necessary information for decoding, we have
shown that we can efficiently compensate for the disruption
without compromising performance. Furthermore, Kao et al.
(2017) argued that the past behavior of the neural signal may
beneficially inform predictions even when the neurons recorded
in previous data are no longer active. The performance of their
hysteresis neural dynamical filter (HNDF) that incorporated
neural dynamics from historical data with more neurons available
was greater than that the performance of the NDF that was
trained only on data from the day of the test. The model
and architecture used in the current study are distinct from
the HDNF filters used (Kao et al., 2017), but the uNN
weights are informed by 2 years of historical data prior to
the test period.

Additional robustness to changes in the neural signal was also
incorporated during the training stage through the use of dropout
and mixup. Dropout simulates loss of a random set of connection
weights in each layer in order to regularize the model and prevent
over-reliance on a given set of connections and is commonly used
in neural network training. Mixup, which augments the training

dataset by generating linear combinations of training examples, is
a newer technique and we believe this is the first time it has been
used in neural decoding. However, the poor performance of the
uNN-NOMASK for more than 10 channels affected shows that
these training strategies alone are not sufficient to maintain high
performance of the BCI.

Adjustments to the model weights to accommodate the
masked channels occur implicitly through the daily unsupervised
updating that already takes place in the uNN model, and thus
entail minimal computational requirements on top of the regular
start-up procedure. Deep neural networks with unsupervised
updates can perform well over time with a fraction of the
training sessions used here (Schwemmer et al., 2018), which
would result in more similar computational requirements for the
retraining and masking approaches. However, considering the
near-equivalence of the uNN-RETRAIN and the uNN-MASK
when damage was simulated in up to 20 of the most important
channels, the performance benefits from retraining are expected
to be minimal when the decoder is retrained with only a small
number of trials. Furthermore, the entire process of identifying
and masking disrupted channels requires no explicit input from
either the user or a technician and is thus aligned with user
preferences that no intervention is required after the initial
training period (Huggins et al., 2011, 2015; Collinger et al.,
2013a).

Limitations
The SPC procedure was designed to detect known disruptions
in the specific Utah array under study. The settings chosen
for the proposed SPC algorithm therefore may overfit to the
instances of damage observed, and may need to be adapted for
optimal performance on a new system. The general framework
involving collecting rest data, creating features from this data,
transforming the features to fit normal distribution and constant
variance assumptions, setting control limits, and performing
Grubbs tests for outliers is applicable across all types of electrode
arrays. However, details such as the optimal features chosen,
transformations applied, number of past sessions to include when
fitting models, the control limits, allowable number of out-of-
control sessions, and significance level of the outlier test choices
were made to tune the SPC algorithm to detect the types of
disruptions that the current system was susceptible to, and thus
which might reasonably be expected in similar systems. These
details may therefore change based on the recording modality and
preferred tradeoffs between false positives and false negatives in
disruption detection.

A limitation of the SPC procedure is the tradeoff between
the time to identify a damaged channel and the specificity of
the detection process. In the proposed system, a channel must
be classified as an outlier for two sessions in a row before it
is considered corrupted and further action is taken, which may
correspond to several days of damage. While rest data can be
collected and the SPC procedure run several times a day in a real-
world scenario to reduce the time to detect disruptions, the BCI
user may still be performing sub-optimally for some time before
the channel masking is activated. Furthermore, if the BCI under
the proposed scheme performs unsupervised updates using
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disrupted data during this time, performance decrements may
result even after the channel damage is addressed. Alternatively,
examining the input data for outlying channels after just one
instance of an out-of-control metric may lead to misclassification
and therefore masking of healthy channels. The experiments
discussed above were run under ideal conditions, where the
simulated damage was perfectly “detected” and addressed as
soon as it occurred. However, the tradeoff between the time to
detect a defective channel and possible information loss from
masking healthy channels will need to be considered for a
real-world scenario where damaged channels must be detected
for an actively used system.

An important caveat of the proposed system to identify and
correct for array damage is that it is only appropriate for acutely
occurring damage that has lasting effects on the signal. Because
the SPC procedure incorporates a waiting period before enough
data is collected to trigger the channel masking and subsequent
weight update, significant changes to the time scale of the
detection process would be required for the system to address
transient changes that may resolve themselves within minutes
or hours (for example, see Dunlap et al., 2020; Colachis et al.,
2021). Further, gradual decays in the neural signal may not lead to
identification of outlying sessions or channels that would trigger
the masking mechanism. Additional algorithmic strategies, such
as the proposed unsupervised updating scheme, the use of robust
features, dropout, and data augmentation are better suited to
address slow changes in the neural signal over time.

CONCLUSION

In BCIs that are viable for long-term daily usage, the
decoders must be able to adapt to moderate channel
disruptions without requiring immediate intervention from
a technician. Furthermore, the solution to the disruptions
should be compatible with limitations imposed in a take-
home environment, including limited available data storage and
hardware, minimal available retraining time, and the strong
preference of users to not regularly collect new training data.
Decoder models following an unsupervised updating schedule
have been shown to be robust to damage to the most important
channels in the electrode array, provided that the affected
electrodes are explicitly identified. A modified set of statistical
process control techniques can automatically identify electrodes
affected by various types of acute disruptions with minimal
computation and data storage. Following the identification, a
masking layer prior to the full decoder architecture can remove
input from damaged channels and unsupervised updates can
be used to adjust decoder weights accordingly. This allows the
decoder to maintain performance comparable to if the decoder
were retrained from scratch, but with fewer data storage and
retraining time requirements. By incorporating techniques to

increase BCI decoder robustness to expected variability and
abnormal signal disruptions, we can facilitate the long-term daily
use of such systems.
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