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Multiple conformational states in retrospective
virtual screening – homology models vs. crystal
structures: beta-2 adrenergic receptor case study
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Abstract

Background: Distinguishing active from inactive compounds is one of the crucial problems of molecular docking,
especially in the context of virtual screening experiments. The randomization of poses and the natural flexibility of
the protein make this discrimination even harder. Some of the recent approaches to post-docking analysis use an
ensemble of receptor models to mimic this naturally occurring conformational diversity. However, the optimal number
of receptor conformations is yet to be determined.
In this study, we compare the results of a retrospective screening of beta-2 adrenergic receptor ligands performed on both
the ensemble of receptor conformations extracted from ten available crystal structures and an equal number of homology
models. Additional analysis was also performed for homology models with up to 20 receptor conformations considered.

Results: The docking results were encoded into the Structural Interaction Fingerprints and were automatically analyzed by
support vector machine. The use of homology models in such virtual screening application was proved to be superior in
comparison to crystal structures. Additionally, increasing the number of receptor conformational states led to enhanced
effectiveness of active vs. inactive compounds discrimination.

Conclusions: For virtual screening purposes, the use of homology models was found to be most beneficial, even in the
presence of crystallographic data regarding the conformational space of the receptor. The results also showed that increasing
the number of receptors considered improves the effectiveness of identifying active compounds by machine learning
methods.
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Background
G protein-coupled receptors (GPCRs) constitute a
large superfamily of signaling proteins that share a
common topology of 7 transmembrane (7TM) helices
and transduce signals across the cell membrane. Be-
cause GPCRs are responsible for most of a cell’s com-
munication with its environment, their malfunctions
are associated with various disease states, mainly those
related to the central nervous system (CNS). For this
reason, GPCRs are a very important target base for
drugs [1-3].
The beta-2 adrenergic (B2AR) receptor, the subject of

this case study, is representative of the class A GPCRs
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and is involved in mediating the relaxation of smooth
muscle, glycogenolysis and glucogenesis in the liver
and regulation of the metabolism of cells in skeletal
muscle. Β2AR is also responsible for increased cardiac
output, facilitation of the release of neurotransmitters,
and regulation of various other physiological pro-
cesses [4-7]. B2AR is also one of the most studied
7TM structures; it was first crystalized in 2007 [8],
and as of November 2014, 16 crystals with a variety
of structurally and functionally unique ligands are
available via the Protein Data Bank (PDB), making
this receptor a strong base for in silico structural
studies.
Our previous study applying Machine Learning (ML)

to post-docking analysis used Structural Interaction Fin-
gerprint (SIFt) profiles created upon three different crys-
talline conformations of receptors [9,10]. It showed the
is is an Open Access article distributed under the terms of the Creative
commons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
riginal work is properly credited.
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Figure 1 Comparison of MCC values obtained in the ML-based
experiments of docking results to homology models built on
M2R and D3R template and crystal structures for discrimination
between a) actives/true inactives, b) actives/DUDs, and c)
actives/ZINC. The figure presents the MCC values obtained for
homology models of beta-2 adrenergic receptor (the best and the worst
template) and for crystal structures of this receptor in experiments
distinguishing the following class of compounds: (a) actives/true
inactives, (b) actives/DUDs and (c) actives/ZINC.
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applicability of this approach to ligand-protein com-
plexes evaluation for Virtual Screening (VS). In addition
to the issue of the applicability of crystal structures in
VS, this study also investigates the influence of the num-
ber of conformations used in per-ligand interaction pro-
files, for both crystal structures and homology models,
on retrospective screening performance. The VS setup
consisted of four groups of compounds: active, inactive,
DUD (Directory of Useful Decoys) decoys, and random
ZINC subsets; three sets of experiments were prepared
to discriminate between active and inactive compounds
from each of the decoy collections.
The support vector machine (SVM) was the classifi-

cation algorithm chosen and the VS performance was
measured with the Matthews Correlation Coefficient
(MCC).

Results and discussion
Crystal structures vs. homology models
Because the number of crystal templates used for hom-
ology models construction would affect the clarity of
the presented results, the comparison of homology
models and crystal structures is shown for the tem-
plates providing the best (M2R) and the worst (D3R)
results (in terms of the discrimination between actives
and true inactives) – Figure 1; the outcomes for the
remaining templates are available in the Additional files
section (Additional file 1: Figure S1). The use of vast
numbers of templates for homology modeling follows
the protocols used in previously published data and en-
sures maximum VS performance [11]. Due to a limited
number of available crystal structures, the maximum
number of receptor conformations in this comparison
is restricted to 10 (starting from 3).
The results of retrospective VS (Figure 1) show that

homology model-based screening significantly outper-
forms experiments conducted for the collection of crys-
tal structures, with MCC improvement of 0.4 for the
best set of conformations. In addition, all types of classi-
fication experiments (actives/true inactives, actives/
DUDs, and actives/ZINC cmds) confirm this depend-
ency. The MCC spreads for different templates were of
little significance: variation between the best and the
worst performing template ranged from 0.1 for actives/
true inactives experiments to less than 0.05 for the other
two VS scenarios.
For homology models, MCC values obtained for actives/

true inactives discrimination were the lowest (~0.5 – 0.55).
However, for actives/DUDs and actives/ZINC cmds classi-
fications, MCC values exceeded 0.8, with a slight prefer-
ence towards actives/ZINC experiments.
On the other hand, studies performed for crystal

structures resulted in MCC of 0.2 for actives/true inac-
tives (this best result was obtained for the SIFt profile
composed of 8 receptor conformations), 0.47 for ac-
tives/DUDs (6 conformations) and 0.55 for actives/
ZINC (9 conformations).
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The obtained results show that the conformational
flexibility provided by homology models allows for better
accommodation of diverse ligands and therefore better
screening performance in this interaction-centric type of
experiments. Because crystal structures are limited in
terms of chemical space of co-crystalized ligands, they are
not yet able to provide a sufficient conformational land-
scape for efficient identification of active compounds.

Influence of the number of considered conformations on
screening performance for homology models
Due to the substantial amount of data, a detailed analysis
was conducted only for the best performing set of SVM
parameters, in terms of MCC value, and also for the best
and the worst template only (M2R and D3R, respectively);
full datasets are included within the Additional files
(Additional file 2: Figure S2). The MCC values related
to different numbers of considered conformations are
presented in Figure 2.
In addition, differential graphs illustrating MCC change

after including subsequent models (adding one-by-one-
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Figure 2 MCC values obtained for various numbers of models include
for a) actives/true inactives, b) actives/DUDs, and c) actives/ZINC disc
numbers of models included in the SIFt profile for homology models con
a) actives/true inactives, b) actives/DUDs, c) actives/ZINC cmds discrimina
the AUROC value was added to the profile.
from 3 to 20 forming at the end 20-models-based profile)
were prepared (Figure 3, Additional file 3: Figure S3). In
each case, the addition of the model that was characterized
by the highest area under the ROC curve (AUROC) at the
stage of models evaluation was highlighted – in Figure 2 by
red frame, in Figure 3 by the application of brighter colour.
The general outcome emerging from the results (Figure 2;

Figure 3) aligns with the results obtained for the compari-
son of crystal structures with homology models. An
increased number of conformations included in a SIFt pro-
file leads to an improvement of VS performance, however,
for some isolated cases, the contribution of subsequent
models may be negative. The number of models providing
the highest MCC was 20 in the majority of cases (as shown
in Table 1), and the worst performing set of conformations
was 3 for all but two sets of models. The improvement of
MCC was not linear; however, its values were noticeably
lower for a low number of conformations considered.
MCC fluctuations occurring in the actives/true inac-

tives classification stage of the experiment were the
highest out of all three scenarios. This scenario also had
 the profile

 the profile

 the profile

template

template

template

d in the SIFt profile for models built on M2R and D3R templates
rimination. The figure presents the MCC values obtained for various
structed on M2R and D3R templates in the form of the heat map for
tion. Red frames indicate the step when the best model in terms of
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Figure 3 Difference in MCC caused by the inclusion of additional receptors in the profile for a) actives/true inactives, b) actives/DUDs,
c) actives/ZINC cmds discrimination. The figure presents the changes in MCC obtained after the inclusion of additional receptors in the SIFt
profile for homology models constructed on M2R and D3R templates. The introduction of the best model in terms of the AUROC values is
indicated by lighter colour.
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several situations where additional considered conforma-
tions lowered the screening performance. On the other
hand, filtering actives against DUD and random ZINC
decoys led to a clear dependency between MCC and the
number of models: the higher the number of models in-
cluded in the profile, the higher the MCC values.
The impact of receptors bearing the highest AUROC
values during the model selection step (conformation 4
and 19 for D3R and M2R templates, respectively) proves
that the performance of individual homology models has
little influence on the obtained results and, in some
cases (conformation 19 based on M2R in screening



Table 1 The optimal and the worst number of models included in the SIFt profiles in terms of classification effectiveness

Template Actives vs. true inactives Actives vs. DUD Actives vs. ZINC

Optimal number
of receptors

The number of
receptors with min
MCC

Optimal number
of receptors

The number of
receptors with min
MCC

Optimal number
of receptors

The number of
receptors with min
MCC

5-HT1BR 20 4 18 4 8 3

5-HT2BR 18 3 18 3 19 3

A2AR 19 3 20 3 20 3

Beta1R 17 10 20 6 20 3

CXCR4R 10 4 15 3 19 6

D3R 20 3 20 3 15 3

H1R 20 5 20 3 20 4

M2R 20 3 20 3 20 3

M3R 20 3 20 3 18 3

Crystal
structures

8 3 6 3 9 3
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against ZINC subset – Figure 2c), can even lower VS
performance.
Although the MCC changes induced by including new

conformations to the ligand profiles seem to be negligible,
the cumulative effect for VS experiments leads to a signifi-
cant improvement of screening performance by up to 20%
(Additional file 4: Figure S4). Interestingly, the absolute
values of MCC difference oscillated at approximately 0.1,
regardless of the scheme of the experiment.

Influence of the number of considered conformations on
screening performance for crystal structures
The results show that the experiments using multiple
crystalline conformations are significantly more prone to
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Figure 4 Changes in MCC after the inclusion of additional crystals in
the addition of subsequent crystals to the profile (adding one-by-one- from
where docking was performed to crystal structures of beta-2 adrenergic re
screening performance fluctuations (Figure 4). The amp-
litude of these fluctuations ranges from a 0.3 improve-
ment to a 0.4 decrease in terms of MCC value. This
variation of the results obtained for crystal structures is
connected with the specificity of the individual crystal-
lized with the proteins. The drop in MCC, observed
after adding the last two conformations (3P0G [12] and
3PDS [13]), is a consequence of the crystals being agon-
ist bound. The conformation of an activated GPCR
results in limited ligand accessible volume, significantly
reducing the quality of docking results. Following this
lead, the influence of activation state of the crystal tem-
plate on classification efficiency was also examined for
beta-2 homology models constructed on activated and
8 9 10

in the profile

act_vs_trueinact

act vs DUD

act_vs_ZINC

the profile. The figure presents the changes in MCC values caused by
3 to 10 forming at the end 10-crystals-based profile) in experiments

ceptor.



Table 2 Crystal structures used as templates for homology
modeling of beta-2 adrenergic receptor

Template PDB ID Resolution [Å]

5-HT1BR 4IAR [23] 2.70

5-HT2BR 4IB4 [24] 2.70

A2AR 3QAK [25] 2.71

Beta1R 2Y00 [26] 2.50

CXCR4R 3OE0 [27] 2.90

D3R 3PBL [28] 2.89

H1R 3RZE [29] 3.10

M2R 3UON [30] 3.00

M3R 4DAJ [31] 3.40
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deactivated M2R template. The direction of changes
when adding subsequent SIFts to the profile was pre-
served but the results were slightly (~2-3%) better for
models constructed on deactivated template (Additional
file 5: Figure S5).

Conclusions
In this study we compared the performance of the collec-
tion of crystal structures with corresponding sets of hom-
ology models in retrospective VS experiments designed to
consider multiple conformations of a target receptor. The
results demonstrated that the bundle of homology models
significantly outperformed the crystalline-based approach
in terms of MCC, which agrees with results from previous
reports [14]. The main reason behind this difference in
screening effectiveness is the limited conformational
space of the crystal structures, which is a consequence
of adaptation to the co-crystalized ligands, thus biasing
the conformation of the complex. Shallow conform-
ational landscapes of the crystal structures of the recep-
tors are also caused by low structural diversity of the
crystalline ligands, limiting the possible spatial orien-
tations of residues.
The second component of this research investigated

the effect of increasing the number of considered con-
formations. The conclusion emerging from all schemes
of experiments (screening active compounds against
truly inactive, DUD, and ZINC decoys) is that high
coverage of the conformational space of the receptor
models leads to more effective screening. A probable
reason behind this observation is that the inclusion of
more conformations into a docking protocol neglects
the fluctuations of docking poses and provides a more
coherent binding mode for a given ligand, therefore
enabling a clearer discrimination between active and
inactive compounds. Extending the population of con-
formations would most likely increase the MCC up to
the limit defined by the number of compounds that were
not docked into any receptor model, yet the increasing
computational cost of such tests may render the results
not worth the effort. Although there is no actual boundary
for the number of conformations to include, the results
shown here prove that three models/crystals leave suffi-
cient space to improve VS performance.

Methods
To maintain the coherence of the ligand data, the com-
pounds of known activity (divided into sets ‘actives’ and
Table 3 Number of compounds used for the preevaluation of

Group of compounds All Numb

Actives 271 81

Inactives 324 97
‘true inactives’) were extracted using a strict protocol. All
structures with verified activity towards the B2AR were se-
lected from the ChEMBL database [15]. Only those com-
pounds whose activity was quantified in Ki or IC50 (with
the assumption that Ki = IC50/2) and that were tested on
human cloned, rat cloned, or native receptors were taken
into account. A compound was considered active when the
Ki value assigned to it was lower than 100 nM, and the
compound was considered inactive when this activity par-
ameter was higher than 1000 nM. The compounds were
clustered with Canvas [16], and the number of clusters was
set to approximately 30% of the total number of com-
pounds from a particular group. Cluster centroids were
used for the primary evaluation of homology models. In
addition, two sets of decoy compounds were generated,
one following the DUD methodology [17] and one random
subset of the ZINC database [18]. Both of the decoy collec-
tions contained 2000 compounds; DUDs were randomly
picked to narrow the count of the set.
The homology models of the B2AR were constructed.

Nine crystal templates were used for this purpose: sero-
tonin receptors 5-HT1B and 5-HT2B, adenosine receptor
A2A, adrenergic receptor beta-1, chemokine receptor
CXCR4, dopamine receptor D3, histamine receptor H1,
and muscarinic receptors M2 and M3 (Table 2). The se-
quence alignment was performed manually and only for
the transmembrane helices. Loops were not modelled. For
each template, 20 models were generated with Modeller
9v13 software [19] and were evaluated by AUROC in
the docking of cluster centroids from actives and true
inactives sets (Table 3). Additional homology models
were also prepared in the same manner for deactivated
M2R structure (4MQS).
homology models

er of clusters Number of centroids after Ligprep

103

173



Table 4 Compound counts for retrospective screening scenarios

Group of compounds Total number of compounds Number of compounds after Ligprep

actives 271 550

Inactives 324 601

DUDs 2000 2526

ZINC 2000 2557
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The three dimensional structures of the compounds,
along with protonation states and atom types, were
assigned with LigPrep software [20]. For some compounds,
several protonation states were generated what increased
the initial number of instances. The docking was performed
with GLIDE 5.0, with the number of output poses limited
to one for both homology models (Table 4), and a collec-
tion of B2AR crystal structures (Table 5).
After this initial models evaluation, all compounds from a

particular group of molecules (actives, true inactives, DUDs,
and ZINC) were docked into the constructed homology
models and crystal structures. Ligand-receptor complexes
received from the docking procedure were represented by
the Structural Interaction Fingerprint [9] which have a type
of a binary string that describes the interaction of a ligand
with each of the amino acids of the protein; the string is
divided into nine-bit chunks that refer to particular amino
acid residues. The type of interactions that are taken into ac-
count include the presence of any interaction, an interaction
with the main chain, an interaction with a side chain, a polar
interaction, a hydrophobic interaction, a hydrogen bond
acceptor, a hydrogen bond donor, an aromatic interaction,
and a charged bond.
For each compound that had at least one pose in a popu-

lation of receptor conformations, the SIFt profile was calcu-
lated. On each position in the string, the values were
averaged over all models/crystal structures for the given con-
formational landscape considered (per ligand SIFt profile).
The number of receptor conformations used in the experi-
ments ranged from 3 to 20 (10 for the crystal structures).
Table 5 Crystal structures of beta-2 adrenergic receptor
used in the study

PDB ID Resolution [Å]

2RH1 2.40

3D4S 2.80

3NY8 2.84

3NY9 2.84

3NYA 3.16

3KJ6 3.40

2R4R 3.40

2R4S 3.40

3P0G 3.50

3PDS 3.50
The per ligand SIFt profiles were input for machine
learning experiments conducted with the use of the
WEKA package [21]. The task of the ML algorithm was
to distinguish active from inactive or decoy compounds.
Support vector machines algorithm [22] was used as a
classification method with linear function as a kernel.
This model was developed by Vapnik [22] with a core
concept of seeking the hyperplane separating the binary-
labeled data with the maximum possible margin. This
can be written as the following optimization problem:

minimize
w;b

1
2
∥w∥2 þ C

XN

i

ξ i

subject to yi 〈w; xi〉−bð Þ ≥ 1 − ξ i − var αið Þξi;i ¼ 1;… ;N

with w being the normal vector to the hyperplane and yi
being the class to which the particular example is assigned
(in case of binary labeled data, yi ∈ {− 1, + 1}). C is the
parameter that controls the tradeoff between the correct
classification and large margin.
However, in real applications, the data are not usually

linearly separable, and the application of the kernel trick is

required. In our paper, the linear kernel ( K xi;xj
� � ¼

〈xi; xj〉 ¼
Xd

l¼1

xilxjl for d-dimensional feature space)

was applied.
The original optimization problem is transformed to

the dual form with the use of Lagrange’s multipliers αi:

maximize
α

XN

i¼1

αi −
1
2

XN

i; j

aiajyiyjK xi;xj
� �

subject to 0 ≤ αi ≤ C; i ¼ 1;…;N

XN

i¼1

αiyi ¼ 0

αi represents weights that are assigned to particular
example xi from the training data, and in the dual form, C
constitutes the upper bound of αi values.
The optimization of C values was performed (the fol-

lowing C values were checked: 0.01; 0.1; 1; 10; 100; 1 000;
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10 000). The experiments were carried out in a 10-fold
cross-validation mode.
The effectiveness of machine learning methods was

measured with MCC being a balanced measure for
such kind of experiments and expressed by the follow-
ing formula:

MCC ¼ TP⋅TN−FP⋅FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FPð Þ⋅ TP þ FNð Þ⋅ TN þ FPð Þ⋅ TN þ FNð Þp

where:

TP – number of true positives,
TN – number of true negatives,
FP – number of false positives
FN – number of false negatives

Additional files

Additional file 1: Figure S1. Comparison of MCC values obtained in
the ML-based experiments for homology models and crystal structures
for discrimination between a) actives/true inactives, b) actives/DUDs, and c)
actives/ZINC. The figure presents the MCC values obtained for homology
models of beta-2 adrenergic receptor (constructed on various templates)
and for crystal structures of this receptor in experiments distinguishing the
following class of compounds: (a) actives/true inactives, (b) actives/DUDs
and (c) actives/ZINC.

Additional file 2: Figure S2. MCC values obtained for various numbers
of models included in the SIFt profile for models built on various
templates for a) actives/true inactives, b) actives/DUDs, and c) actives/
ZINC discrimination. The figure presents the MCC values obtained for
various numbers of models included in the SIFt profile for homology
models constructed on various templates in the form of the heat map
for a) actives/true inactives, b) actives/DUDs, c) actives/ZINC cmds
discrimination.

Additional file 3: Figure S3. Difference in MCC caused by the inclusion
of additional receptors in the profile for a) actives/true inactives, b)
actives/DUDs, and c) actives/ZINC cmds discrimination. The figure
presents the changes in MCC obtained after the inclusion of additional
receptors in the SIFt profile for homology models.

Additional file 4: Figure S4. Difference between the highest and the
lowest MCC obtained for SIFt profiles construction for various numbers of
conformations. The figure presents the scale of MCC changes associated
with varying number of model conformations in the form of differences
between the highest and the lowest. MCC values obtained for a given
template/crystal structure.

Additional file 5: Figure S5. Comparison of the actives/true inactives
classification efficiency for beta-2 homology models constructed on
activated and deactivated M2R template. The figure presents the differences
between the results for beta-2 homology models that were constructed on
crystal structure of the receptor with agonist (activated template) and on
crystal structure in which the receptor was bound to antagonist (deactivated
structure).
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