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Eco-evolutionary dynamics of microbiotas at the macroscale level are largely driven
by ecological variables. The diet and living environment of the oriental fruit fly,
Bactrocera dorsalis, diversify during development, providing a natural system to explore
convergence, divergence, and repeatability in patterns of microbiota dynamics as
a function of the host diet, phylogeny, and environment. Here, we characterized
the microbiotas of 47 B. dorsalis individuals from three distinct populations by
16S rRNA amplicon sequencing. A significant deviation was found within the
larvae, pupae, and adults of each population. Pupae were characterized by an
increased bacterial taxonomic and functional diversity. Principal components analysis
showed that the microbiotas of larvae, pupae, and adults clearly separated into
three clusters. Acetobacteraceae, Lactobacillaceae, and Enterobacteriaceae were the
predominant families in larval and adult samples, and PICRUSt analysis indicated that
phosphoglycerate mutases and transketolases were significantly enriched in larvae,
while phosphoglycerate mutases, transketolases, and proteases were significantly
enriched in adults, which may support the digestive function of the microbiotas in
larvae and adults. The abundances of Intrasporangiaceae, Dermabacteraceae (mainly
Brachybacterium) and Brevibacteriaceae (mainly Brevibacterium) were significantly
higher in pupae, and the antibiotic transport system ATP-binding protein and antibiotic
transport system permease protein pathways were significantly enriched there as well,
indicating the defensive function of microbiotas in pupae. Overall, differences in the
microbiotas of the larvae, pupae, and adults are likely to contribute to differences in
nutrient assimilation and living environments.

Keywords: Bactrocera dorsalis, development stage, microbial community, 16S rRNA, dietary, living environment

INTRODUCTION

Many microorganisms reside on the insect exoskeleton, in the gut and hemocoel, and within
insect cells (Douglas, 2015), and relationships ranging from parasitism to mutualism are built
between microorganisms and insects (Berasategui et al., 2016). These microorganisms are often
identified as symbionts of insects (Douglas, 2015). Most of the best-described associations among
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mutualisms are based on nutritional or defensive services
provided by the symbionts to their hosts. The host’s physiology
and behavior are often affected in such mutualisms, and the
adaptability of the hosts is increased (Ohkuma and Brune,
2011; Ye et al., 2014). The symbionts provide nutrients,
such as amino acids and vitamins, or digestive enzymes that
aid in the degradation of fastidious dietary polymers or in
the detoxification of noxious secondary metabolites (Douglas,
2009). The microorganisms can also protect their host against
pathogens, parasites, parasitoids, or predators by producing
toxins or antimicrobial compounds for defense (Teixeira et al.,
2008; Florez et al., 2015; Hamby and Becher, 2016). Insects can
generally employ the symbiont-produced defensive compounds
in two different manners: (i) for the protection of the host
or its offspring against antagonistic micro- or macroorganisms
or (ii) as weed killers in insect fungiculture (Kaltenpoth, 2009;
Ramadhar et al., 2014). Antimicrobial compounds produced by
the defensive symbiont are of particular importance to insects
living in enclosed, humid environments, where opportunistic
fungal or bacterial infections can develop rapidly (Douglas, 2015).
Studies have recently indicated that metabolic and adaptive
abilities allow different bacteria to occupy their host during
different host development stages and that the relationships
can be multifaceted, varying in their impact on host biology
(Lindow and Brandl, 2003; Turnbaugh et al., 2007; Knief et al.,
2012). Hosts thus often exploit beneficial symbioses to augment
their functional capabilities and to facilitate their adaptation to
novel niches (Rio et al., 2006; Ye et al., 2014; Rafael et al.,
2016).

For fruit fly, the pivotal roles of microbiota have been
identified in recent years, and the factors that affected the
structure of microbiota were also investigated. For example,
the microbiotas during ontogeny of Ceratitis capitata have been
reported to be shaped by phylogenetic, metabolic, and taxonomic
diversities (Aharon et al., 2013). Some probiotics can even
improve the fitness sexual performance of the males at emergence
(Hamden et al., 2013). In Drosophila melanogaster, symbiotic
bacteria play a role in mating preference by changing the levels
of cuticular hydrocarbon sex pheromones (Sharon et al., 2010).
For Bactrocera dorsalis, many studies have identified the structure
and function of the gut microbioa. By culture-dependent and the
16S rRNA sequencing methods, the diversity of the cultivable gut
bacterial communities associated with B. dorsalis have recently
been investigated (Wang et al., 2011, 2014; Gujjar et al., 2017),
and the development and drug resistantance of B. dorsalis were
affected by the gut symbionts (Cheng et al., 2017; Khaeso et al.,
2017).

Studies have indicated that diet and environment greatly
influence the structure of microbiotas (Egert et al., 2004; Antwis
et al., 2014; Rebollar et al., 2016). Microbial communities from
the surrounding environment can even serve as reservoirs and
source pools of colonizers (Kueneman et al., 2014; Loudon et al.,
2014). B. dorsalis undergoes great changes in living environment
during its life, as eggs and larvae in fruit (it is of great possibility
to be infected by microbes for B. dorsalis larvae in the rotten
fruits), pupae (especially in the early stage of pupation) in the
ground (enclosed, humid environments, where opportunistic

fungal (especially the Metarhizium and Beauveria) can develop
rapidly (Vänninen et al., 2000) and adults on the branches of
fruit trees. In addition, larvae must feed on food with high sugar
content, the adults must feed on food with high sugar and protein
content, and pupae do not eat. And we even found the control
efficiency of Metarhizium and Beauveria to B. dorsalis in the
pupal stage is very low (data unpublished). These traits may result
in differences in the microbiotas of B. dorsalis, and B. dorsalis
may rely on multiple microbial species for fitness and provide
a unique model to investigate and compare the population
dynamics of symbionts that display varying levels of integration
with host biology. Available data on the microbiota of B. dorsalis
are unfortunately limited, which restricts understanding the
microbiota’s influence on host traits, such as diet and living
environment.

The larvae and adults of B. dorsalis must feed on large
amounts of high sugar content food, and the larvae and
pupae are exposed to environments with many pathogenic
microorganisms. We thus proposed the hypothesis that the
symbionts of B. dorsalis will change with the development stages:
in the larval and adult stages, symbionts promote the host’s
absorption of sugar, and some symbionts in the larval and pupal
stages may also generate antibiotics to enhance resistance to the
pathogens. We explored three questions in the current study. We
first examined whether differences in the living environments
between adults, larvae, and pupae of B. dorsalis are reflected
in differences in their bacterial communities, for example more
defensive bacteria in larvae and pupae. Second, as larvae and
adults must feed on high sugar content food, we tested the
hypothesis that functional gene abundances in larval and adult
microbiotas would reflect their capacities for sugar and protein
metabolism. Finally, we investigated whether functional gene
abundances in larval and pupal microbiotas reflect the resistance
to pathogens.

MATERIALS AND METHODS

Rearing and Collection of B. dorsalis
The lab population of B. dorsalis was collected from a carambola
(Averrhoa carambola) orchard (N 23◦ 06′ 53.09′′, E 113◦ 24′
51.29′′) in Guangzhou, Guangdong Province in April 2008 and
was reared as previously described (Cheng et al., 2017). Briefly,
the flies were reared under the following conditions: 25 ± 1◦C;
16:8 h light:dark cycle; 70–80% relative humidity (RH). The
flies were reared with artificial diets which were treated with
high pressure sterilization. Larvae, pupae, and adults of two
wild populations were also collected from the cities Huizhou
(HZ population) (N 23◦ 25′ 56.00′′, E 114◦, 28′ 16.61′′) and
Nansha (NS population) (N 22◦ 42′ 25.81′′, E 113◦ 33′ 6.30′′)
of Guangdong Province in June 2017. For wild populations,
carambolas with larvae were collected and take into the lab.
Then pupation and eclosion processes went on in the sterile
sands. Seventeen samples were collected for the lab population
(six larvae, six pupae, and five adults); 15 samples were collected
for the HZ and NS population (five larvae, five pupae, and five
adults). Each sample consists of one individual.
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Bacterial Community Characterization
All samples (Whole individuals) were selected and then washed
with sterile water. The washed samples were transferred
to centrifuge tubes containing DNA extraction buffer (with
lysozyme) and grinded with a homogenizer. Then total DNA of
the samples was extracted using a DNA extraction kit (Tiangen,
Beijing, China) following the manufacturer’s instructions. After
the DNA of the samples was prepared, qPCR was used to estimate
the bacteria absolute content of the samples with the universal
bacterial 16S rRNA primers. A standard curve for qPCR was
generated by amplifying the 16S rDNA of the Arthrobacter sp.
isolated from the pupa of B. dorsalis. Approximately 465 bp
of the V3–V4 region of the bacterial 16S rDNA gene was
amplified by PCR according to a standard protocol. The following
primers were used: F, 5′-CCTACGGGNGGCWGCAG-3′ and
R, 5′-GGACTACHVGGGTATCTAAT-3′. The primers contained
the A and B adapters for 454 Life Sciences pyrosequencing and
a unique 12-bp error-correcting Golay barcode, which allowed
multiplexing of samples in a single run. Each sample was
analyzed in a total reaction volume of 25 µL that contained
2.5 µL of Takara 10× Ex Taq buffer, 1.5 µL of Mg2+

(25 mM), 2 µL of dNTP (2.5 mM), 0.25 µL of Takara Ex
Taq (2.5 U/µL), 0.5 µL of each primer (10 µM), 16.75 µL
of ddH2O, and 1 µL of template. The PCR amplifications
were performed with a 2-min incubation at 95◦C followed
by 30 cycles of 94◦C for 30 s, 57◦C for 30 s and 72◦C for
30 s, and a final 5-min extension at 72◦C. The PCR products
were purified using QIAGEN MinElute PCR Purification
Kit (QIAGEN, Hilden, Germany) to remove unincorporated
primers and nucleotides. A microspectrophotometer ND-1000
(NanoDrop Technologies, Wilmington, DE, United States) was
used to measure the concentration of the purified DNA. The
purified DNA was sequenced using an Illumina sequencing kit
and an Illumina MiSeq sequencer (Illumina, San Diego, CA,
United States).

Paired Illumina reads were merged in QIIME (Caporaso
et al., 2010). After the high-quality reads were obtained, the
data were filtered to remove low-complexity sequences (such as
poly-A sequences) and sequences with ambiguous nucleotides,
and the operational taxonomic units (OTUs) were picked using
USEARCH (Edgar, 2010). The number of OTUs was calculated
with mothur software (Schloss et al., 2009) at 97% similarity.
An RDP classifier (Huse et al., 2010) was used with naïve Bayes
settings for species annotation; the confidence threshold was set
to 0.5. Using the species annotations and the read numbers of
the OTUs, we generated OTU abundance profiles for all samples.
OTUs with an abundance <0.005% of the total data set were
removed as an additional level of quality filtering (Bokulich et al.,
2013; Navas-Molina et al., 2013).

Diversity Analyses
Alpha diversity and Shannon rarefaction curves were calculated
for all samples in mothur to investigate the species richness of
the samples (v.1.34.0) (Schloss et al., 2009). Bray–Curtis and
unweighted UniFrac distance matrices were used to calculate the
beta diversity and were visualized with principal components
analysis (PCA). To determine whether bacterial communities

differed among host species, we conducted a shared and unique
OTU analysis on the basis of an OTU table generated by
QIIME. We used the unweighted pair group method with
arithmetic mean (UPGMA), a hierarchical clustering method
based on the arithmetic mean, to determine clustering patterns
across host species. The UPGMA was used on Bray–Curtis
distances of mean OTU relative abundances at the family
level. The UPGMA, Bray–Curtis calculations and resulting
heatmap were completed using the vegan package (Oksanen
et al., 2015) in the R statistical package. Putative microbiota
functions were predicted by annotating pathways of OTUs
against the KEGG database using PICRUSt (Langille et al.,
2013).

Statistical Analysis
The differences between treatments were compared by a one-
way analysis of variance (ANOVA), followed by Tukey’s test
for multiple comparisons. The differences were considered
significant at the P < 0.05 level. The data were analyzed using
SPSS software. Analysis of similarity (ANOSIM) for the bacterial
community of B. dorsalis across developmental stages were done
with PRIMER 7.0.

RESULTS

Symbionts Content Quantification and
Sequencing Data of 16S rRNA
Absolute content of the symbionts in flies were identified
with qPCR, the results showed the symbionts content in each
individual was about 106 CFU and there is no difference for
the absolute content of the symbionts in different development
stage (lab: F2,14 = 0.126, P = 0.883; Huizhou: F2,12 = 0.717,
P = 0.508; and Nansha: F2,12 = 1.768, P = 0.212) (Supplementary
Figure S1). After the sequencing data were subjected to
demultiplexing, quality filtering and chimera removal, 50082–
57433 reads were retained for the 17 lab population samples,
50176–57172 reads were obtained for the 15 YC samples,
and 50037–56599 reads were obtained for the 15 NS samples
(Supplementary Table S1). Shannon rarefaction curves for all
samples showed a plateau stage, indicating adequate sampling
of 16S rRNA sequences for all the samples (Supplementary
Figure S2).

Differences in Larval, Pupal, and Adult
Bacterial Communities
Significantly more OTUs were generated in the pupal samples of
the three populations (lab: F2,14 = 30.387, P < 0.001; Huizhou:
F2,12 = 5.746, P = 0.018; and Nansha: F2,12 = 5.116, P = 0.025)
(Supplementary Figure S3). The ACE value and the Shannon
and Simpson indices indicated that pupae exhibited the greatest
species richness and that the richness of adults and larvae did not
significantly differ (Supplementary Table S2). A major trend is
clearly seen during development stages: the bacterial diversities
of all populations were closest, on average, during the feeding
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stage (larvae and adults), while pupae in complex environments
showed greater bacterial diversity (P < 0.01).

Larvae and adults were significantly enriched in Proteobacteria
at the phylum level more than pupae (for larvae: a cumulative
relative abundance above 60, 44.3, and 91.9% in larvae for the
lab, Huizhou and Nansha populations, respectively, P < 0.01;
and for adults: a cumulative relative abundance above 57.82,
54.32, and 92.12% for the lab, Huizhou and Nansha populations,
respectively, P < 0.01). Actinobacteria had a cumulative relative

abundance in pupae above 20.54, 26.01, and 19.23% for the lab,
Huizhou and Nansha populations, respectively (Figure 1).

The abundance of the dominant OTUs in each stage was
compared with that in the other two stages (Figure 2 and
Supplementary Data Sheet S1).

For lab population, the most abundant OTUs (average
relative abundance ± SD between replicates) in larvae
were Acetobacteraceae (Acetobacter sp.) (54.62 ± 8.47),
Lactobacillaceae (Lactobacillus brevis) (24.49 ± 3.88),

FIGURE 1 | Taxonomic compositions of microbiotas at the phylum level. Bars show proportions of taxa per individual as averaged across conspecifics and
estimated from the rarefied OTU table. ‘Others’ group shows all phyla with relative abundance below 1% over the total number of reads. Lab population (L: larvae, P:
pupae, A: adults); Huizhou population (HZ-L: larvae, HZ-P: pupae, HZ-A: adults); and Nansha population (NS-L: larvae, NS-P: pupae, NS-A: adults).

FIGURE 2 | Unweighted pair group method with arithmetic mean (UPGMA) and heatmap of bacterial families with relative abundances across different samples.
Rows are bacterial families. Columns are samples. Colors indicate taxa with a higher (red) or lower (green) relative abundance in each sample. Taxonomic units in
red, green and blue have significantly higher abundances in larvae, adults and pupae, respectively. Lab population (L: larvae, P: pupae, A: adults); Huizhou
population (HZ-L: larvae, HZ-P: pupae, HZ-A: adults); and Nansha population (NS-L: larvae, NS-P: pupae, NS-A: adults).
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FIGURE 3 | Principal components analysis (PCA) of bacterial communities (genus level) according to development stages of the three populations (lab, Huizhou and
Nansha populations). Taxonomic (OTU) clustering based on unweighted UniFrac distances. Lab population (L: larvae, P: pupae, A: adults); Huizhou population
(HZ-L: larvae, HZ-P: pupae, HZ-A: adults); and Nansha population (NS-L: larvae, NS-P: pupae, NS-A: adults).

Enterobacteriaceae (4.94 ± 2.2) and Acetobacteraceae
(Gluconobacter sp.) (4.77 ± 0.88); in pupae, the most
abundant OTUs were Micrococcaceae (12.15 ± 8.54),
Intrasporangiaceae (7.03 ± 4.97), Brevibacteriaceae (mainly
Brevibacterium) (6.51 ± 6.28), and Dermabacteraceae (mainly
Brachybacterium) (5.36 ± 3.01); in adults the most abundant
OTU was Enterobacteriaceae (84.74 ± 18.11) (Figure 2 and
Supplementary Data Sheet S1).

For Huizhou population, the most abundant OTUs in
larvae were Acetobacteraceae (Acetobacter sp.) (20.25 ± 3.11)
and Lactobacillaceae (Lactobacillus brevis) (10.08 ± 3.48); the
most abundant OTUs in pupae belonged to Intrasporangiaceae
(10.79 ± 1.53), Dermabacteraceae (mainly Brachybacterium)
(4.03 ± 2.22), and Brevibacteriaceae (mainly Brevibacterium)
(1.63 ± 0.97); and the most abundant OTU in adults was
Enterobacteriaceae (26.96 ± 9.52) (Figure 2 and Supplementary
Data Sheet S1).

For Nansha population, the most abundant OTUs in larvae
were Acetobacteraceae (Acetobacter sp.) (54.04 ± 10.66); in
pupae, the most abundant OTUs were Intrasporangiaceae
(14.72 ± 1.65), Dermabacteraceae (mainly Brachybacterium)
(2.36 ± 0.83), and Brevibacteriaceae (mainly Brevibacterium)
(1.23 ± 0.67); and the most abundant OTU in adults was
Enterobacteriaceae (18.89 ± 7.08) (Figure 2 and Supplementary
Data Sheet S1).

In conclusion, we found Acetobacteraceae (Acetobacter sp.)
was the most abundant OTU in larvae of the three populations;
Intrasporangiaceae, Dermabacteraceae (mainly Brachybac-
terium), and Brevibacteriaceae (mainly Brevibacterium) were
the most abundant OTUs in pupa of the three populations;
Enterobacteriaceae was the most abundant OTU in adult of the
three populations (Figure 2 and Supplementary Data Sheet S1).

Bacterial communities of larvae, pupae, and adults showed
a clear pattern of specialization based on unweighted UniFrac
distances with OTUs annotated at the genus level (PCA,
Figure 3), indicating the specialization of larvae, pupae, and
adults in hosting OTUs unique to each stage. PCA was also
used to compare the similarity in the microbial community
compositions of all samples of the three populations. Larvae,
pupae, and adults each formed a distinct cluster among all

FIGURE 4 | Bray–Curtis distances-based PCA of all samples of the three
populations (lab, Huizhou and Nansha populations). Lab population (L: larvae,
P: pupae, A: adults); Huizhou population (HZ-L: larvae, HZ-P: pupae, HZ-A:
adults); and Nansha population (NS-L: larvae, NS-P: pupae, NS-A: adults).

samples, and these three clusters were separated from each
other (Figure 4). The clustering pattern among samples was not
influenced by the sampling population, as samples from the three
populations clustered together, with the exception that results
from pupal samples formed two different clusters. Moreover,
ANOSIM results indicated that there were significant differences
in the bacterial community of B. dorsalis across developmental
stages (lab: R = 0.998, P = 0.001; Huizhou: R = 0.745, P = 0.001;
and Nansha: R = 0.951, P = 0.001).

Functional Prediction of Larval, Pupal,
and Adult Microbiotas
We addressed whether increased OTU diversity confers the host
with a higher functional diversity. We predicted 4364, 4590, and
4308 level 3 KEGG Orthology (KO) groups in the predicted
metagenomes of the lab, Huizhou and Nansha populations,
respectively (PICRUSt analysis, Supplementary Data Sheet S2).
The pattern of functional diversity largely followed the trend in
taxonomic diversity: pupae displayed greater bacterial taxonomic
and functional diversity than larvae and adults (lab: R2 = 0.587,
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FIGURE 5 | Pearson relationship analysis of KO number and OTU number. Lab population (L: larvae, P: pupae, A: adults); Huizhou population (HZ-L: larvae, HZ-P:
pupae, HZ-A: adults); and Nansha population (NS-L: larvae, NS-P: pupae, NS-A: adults).

FIGURE 6 | Principal components analysis of functional diversity according to development stages of the three populations (lab, Huizhou and Nansha populations).
Lab population (L: larvae, P: pupae, A: adults); Huizhou population (HZ-L: larvae, HZ-P: pupae, HZ-A: adults); and Nansha population (NS-L: larvae, NS-P: pupae,
NS-A: adults).

P < 0.01; Huizhou: R2 = 0.678, P = 0.005; and Nansha:
R2 = 0.3987, P = 0.012; Pearson relationship, Figure 5). The
microbial community clusters of larvae, pupae, and adults
were significantly separated at both the OTU and KO levels
(Figures 3, 6), indicating a strong development effect.

PICRUSt analysis predicted that phosphoglycerate mutase
was significantly more abundant in larvae and adults than in
pupae (lab population: F2,14 = 81.873, P < 0.01; Huizhou:
F2,12 = 25.055, P < 0.01; and Nansha: F2,12 = 307.792, P < 0.01;
Figure 7A). Phosphoglycerate mutase is a key enzyme in glucose
metabolism and involved in converting 3-phosphoglyceric acid
into 2-phosphoglyceric acid. Significantly greater number of
OTUs were annotated for “antibiotic transport system ATP-
binding proteins” and “antibiotic transport system permease
proteins” in pupae (for antibiotic transport system ATP-binding
proteins, lab population: F2,14 = 37.387, P < 0.01; Huizhou:
F2,12 = 32.737, P < 0.01; and Nansha: F2,12 = 37.762, P < 0.01;
for antibiotic transport system permease proteins, lab population:
F2,14 = 33.668, P < 0.01; Huizhou: F2,12 = 52.155, P < 0.01;
and Nansha: F2,12 = 89.963, P < 0.01; Figures 7B,C). And
significantly greater number of OTUs were annotated for
transketolase, which is involved in the pentose phosphate
pathway, in adults (lab population: F2,14 = 67.256, P < 0.01;
Huizhou: F2,12 = 16.496, P < 0.01; and Nansha: F2,12 = 35.811,
P < 0.01; Figure 7D). Moreover, a significantly greater number
of OTUs were annotated with the protease involved in the protein
metabolism pathway in adults, which may indicate a function in
protein metabolism (lab population: F2,14 = 140.849, P < 0.01;
Huizhou: F2,12 = 69.395, P < 0.01; and Nansha: F2,12 = 78.369,
P < 0.01; Figure 7E).

DISCUSSION

Although studies on fly microbiotas have been reported (Aharon
et al., 2013; Aksoy et al., 2014; Augustinos et al., 2015;
Michael et al., 2016; Cheng et al., 2017; Yong et al., 2017b;
Zhao et al., 2017), little is known about the microbial community
differences during different development stages, and the former
studies mainly focused on the gut microbiotas of the flies (Aksoy
et al., 2014; Augustinos et al., 2015; Michael et al., 2016; Cheng
et al., 2017; Zhao et al., 2017). The number of OTUs observed
in the larvae, pupae, and adults of B. dorsalis in this study is
greater than those reported in other fly gut samples (Figure 1),
suggesting that the function of the microbial community in
B. dorsalis must be analyzed in detail. Actually microbiomes
associated with B. dorsalis have been reported in earlier studies.
For example, Andongma et al. (2015) have reported that the
dominance of Firmicutes in adult stages and Proteobacteria in
immature stages (Andongma et al., 2015); Wang et al. (2011)
and Yong et al. (2017b) revealed Proteobacteria (specifically
Gammaproteobacteria) to be predominant in the male adults of
B. dorsalis (Wang et al., 2011; Yong et al., 2017b). In our study
Proteobacteria was the dominant phylum in larvae and adults,
which is consistent with previous studies (Aksoy et al., 2014;
Yong et al., 2017b); however, Actinobacteria were mainly found
in pupae, which may indicate that the pupal microbiota has a
different function. Although Andongma et al. (2015) investigated
symbiotic bacterial populations across life stages of B. dorsalis,
many fewer OTUs were identified in their study; moreover,
fewer Actinobacteria were not identified in pupa in their study
(Andongma et al., 2015). The DNA extraction method may
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FIGURE 7 | Comparison of predicted KEGG ortholog counts. Means ± SEMs labeled with different letters are significantly different. OTU numbers annotated for
phosphoglycerate mutase (A), antibiotic transport system ATP-binding proteins (B), antibiotic transport system permease proteins (C), transketolase (D), and
protease (E).

be the key reason for differences between their study and the
current study. DNA is difficult to extract from Actinobacteria
without lysozyme digestion because of its special cell wall (Zhang
et al., 2013). Andongma et al. (2015) did not digest the sample
with lysozyme, possibly causing the absence of Actinobacteria
contributions. Moreover, they used pupae without puparium,
which may explain the lack of Actinobacteria since bacteria of this
order are often located in specific regions of the surface of insect
hosts (Kaltenpoth, 2009). The greater sequencing depth in our
study might also explain the greater number of identified OTUs
since we obtained many more reads than Andongma reported.
Actually other study has also identified Actinobacteria (Yong
et al., 2017b).

Insects show remarkable adaptations to exploit diverse
nutritional resources; these adaptations are due to the wide
diversity of digestive enzymes produced by the insects themselves
as well as the metabolic capabilities of symbiotic microorganisms

that overcome the host’s nutritional limitations (Berasategui et al.,
2016). The high abundance of Proteobacteria observed in larvae
and adults likely supports their importance in sugar metabolism.
Acetobacteraceae, Lactobacillaceae, and Enterobacteriaceae were
the most dominant families within this phylum that were
observed in all larval and adult samples and have been
reported to function in sugar metabolism (Kersters et al.,
2006; Lambert et al., 2011; Yong et al., 2017a). However, we
found that Acetobacteraceae and Lactobacillaceae were the most
dominant families in larvae, while Enterobacteriaceae was the
most dominant family in adults. This result may suggest that
the digestion process may differ in larvae and adults, resulting
in changes in the microbiota composition. Unlike the larvae,
the adults must also feed on a high-protein diet, and protein
in their diet can even influence the mating behavior of flies
(Shelly and Kennelly, 2002; Shelly et al., 2005). An important
family that is associated with most fruit flies is Enterobacteriaceae;
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members of this group play very important roles in courtship and
reproduction (Ben Ami et al., 2010). We also found that pathways
involved in protein metabolism were significantly enriched in
microbiotas in adults. These results indicate that microbiotas may
also be involved in digesting protein in food. More evidence is
needed to prove whether members of Enterobacteriaceae also
play a role in protein digestion to influence the courtship and
reproduction of B. dorsalis. Newell et al. (2014) also reported
that some Acetobacteraceae species in the gut of Drosophila
were involved in oxidative stress detoxification and encoded an
efflux pump (Newell et al., 2014). Researches have suspected that
Lactobacillaceae and Enterobacteriaceae contribute to digestion
and protection against parasites and pathogens in insect gut
(Billiet et al., 2017; Smith et al., unpublished). We thus need
detailed investigation of the specific bacteria of B. dorsalis by pure
culture methods.

Insect-associated microbes are just beginning to be exploited
as promising sources of novel bioactive compounds (Dettner,
2011). Microbial symbionts providing chemical defense for the
host against predators, parasites, parasitoids, and pathogens
occur in several insect taxa, including beetles (Kellner, 2002),
psyllids (Nakabachi et al., 2013), planthoppers (Fredenhagen
et al., 1987), and solitary wasps (Kaltenpoth et al., 2005;
Kaltenpoth, 2009; Kaltenpoth and Engl, 2014). The high
abundance of Actinobacteria observed in the pupae of B. dorsalis
support their importance in producing compounds with
antimicrobial activity. Actinobacteria are known to be important
sources suited as defensive symbionts of insects (Kaltenpoth,
2009). The number of OTUs in pupae that represent antibiotic
transport system ATP-binding and antibiotic transport system
permease proteins is significantly greater than that in larvae
and adults, which strongly supports the defensive function of
Actinobacteria in the pupae of B. dorsalis. Actinobacteria are
particularly common and widespread in soil (Goodfellow and
Williams, 1983) and are therefore regularly encountered by
insects living in soil. The pupae of B. dorsalis consistently
remained in soil until emergence. Kaltenpoth (2009) stated
that three key factors probably contribute to the role of
Actinobacteria as defensive exosymbionts in insects: (i) their
ability to utilize a wide variety of carbon sources and to
generally subsist on low levels of resources; (ii) the capacity
of some taxa to form spores and thereby survive inhospitable
conditions in the soil; and (iii) their ability to produce
secondary metabolites with antibiotic properties (Goodfellow
and Williams, 1983). The evolution of symbiotic interactions
between Actinobacteria and insects might have been initiated
by commensal or facultative entomopathogenic Actinobacteria
that exploited the low amounts of compounds present on the
cuticle or in the excretions of soil-dwelling insects. Once the
bacteria became associated with an insect, antibiotic substances
produced for the microbes’ own protection might have also
become beneficial for the host insect (Kaltenpoth, 2009). The
specific inhabitation of Intrasporangiaceae, Dermabacteraceae,
and Brevibacteriaceae in pupae in our study may indicate
their defensive function. The defensive function of bacteria in
Brevibacteriaceae has been previously revealed by pure culture
methods, and researchers have identified the relevant bacteria

and antibacterial compound (Ryser et al., 1994; Maisnierpatin
and Richard, 1995). Brachybacterium of Dermabacteraceae were
also identified to express strong antimicrobial activity (Liu et al.,
2011). Pupae can therefore be used in future studies as a source
from which Actinomycetes with antimicrobial activity can be
isolated.

CONCLUSION

The larvae, pupae, and adults of B. dorsalis were observed
to harbor distinct microbial flora. We performed a detailed
investigation of the microbial flora of B. dorsalis that
provides a basis for future research. Further studies to
investigate the microbial composition may provide a
comprehensive understanding of the differences in diet and
physiological behavior among B. dorsalis. Moreover, host-
specific microbial species, for example, those from the phylum
Actinobacteria, can be used to develop potential compounds
with antimicrobial activity that have potential value for human
application.
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