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Abstract: Neonatal jaundice is a common condition worldwide. Failure of timely diagnosis and
treatment can lead to death or brain injury. Current diagnostic approaches include a painful and
time-consuming invasive blood test and non-invasive tests using costly transcutaneous bilirubinome-
ters. Since periodic monitoring is crucial, multiple efforts have been made to develop non-invasive
diagnostic tools using a smartphone camera. However, existing works rely either on skin or eye im-
ages using statistical or traditional machine learning methods. In this paper, we adopt a deep transfer
learning approach based on eye, skin, and fused images. We also trained well-known traditional
machine learning models, including multi-layer perceptron (MLP), support vector machine (SVM),
decision tree (DT), and random forest (RF), and compared their performance with that of the transfer
learning model. We collected our dataset using a smartphone camera. Moreover, unlike most of
the existing contributions, we report accuracy, precision, recall, f-score, and area under the curve
(AUC) for all the experiments and analyzed their significance statistically. Our results indicate that
the transfer learning model performed the best with skin images, while traditional models achieved
the best performance with eyes and fused features. Further, we found that the transfer learning
model with skin features performed comparably to the MLP model with eye features.

Keywords: jaundice; healthcare; smartphone sensor; diagnosis; machine learning; deep learning;
transfer learning; CNN; SVM; MLP

1. Introduction

The fast advancement in information technologies has a tremendous effect on health-
care. Electronic Health (eHealth) is a relatively recent interdisciplinary research area that
applies information technologies to improve healthcare processes and services. The term
first appeared in 2000 and was since then commonly used [1]. One of the critical areas in
healthcare where eHealth has been successfully applied is diagnosis, where the symptoms
are examined by a doctor to identify the illness or any other health problems. In fact,
artificial intelligence, specifically machine learning and deep learning, has contributed to
tackling multiple challenges in the diagnosis of different diseases. Since their emergence,
a wide range of research has been carried out with breakthrough results [2–5]. When
symptoms are visible, images of the infected area are collected, and computer vision and
image processing algorithms and techniques are applied to extract features that are fed to
the diagnostic models.

Neonatal jaundice is a condition that often causes neonates to have yellow skin and
eyes due to excess bilirubin. This is caused by hemoglobin breakdown, which is excreted
into the liver’s bile. The condition makes the neonate sleep more than expected and
have difficulties in breastfeeding, which affects the overall health [6]. Jaundice is usually
diagnosed in hospitals by pulling a blood sample to detect the level of bilirubin in blood.
Experienced doctors may be able to detect neonatal jaundice by the naked eye but have to

Sensors 2021, 21, 7038. https://doi.org/10.3390/s21217038 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-1837-3860
https://orcid.org/0000-0001-5941-197X
https://doi.org/10.3390/s21217038
https://doi.org/10.3390/s21217038
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21217038
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21217038?type=check_update&version=2


Sensors 2021, 21, 7038 2 of 15

perform a blood test to confirm their doubts. Since a high bilirubin level results in yellowish
coloring of the skin and eyes, analysis of images of such areas can potentially be used to
diagnose neonatal jaundice. Therefore, many efforts have been devoted to automating
the diagnosis of neonatal jaundice using different computer vision, image processing, and
machine learning techniques. Existing works have used images of two different parts of
the neonate’s body, namely the neonate’s skin and eye. For the former, researchers have
used images of a neonate’s face [7], forehead [8–11], sternum [9,10,12,13], abdomen [13,14],
or multiple body parts such as sole, palm, forehead, and arm [15], and face, arms, feet, and
middle body [16]. For the latter, researchers have used an eye’s sclera for diagnosis [17–22].
Further, the study in [23] has focused on stool samples.

Medical practitioners have long relied on the naked eye to diagnose neonatal jaundice.
Currently, the diagnosis is usually performed in hospitals and private clinics by taking a
blood sample and measuring total serum bilirubin (TSB). However, non-invasive proce-
dures that measure transcutaneous bilirubin (TcB) from the skin have emerged recently,
such as BiliCheck [24–26], JM-102 Minolta [27]. Diagnosis of jaundice can be challenging
for doctors, hence the work in [28] proposed a decision support system for unexperienced
practitioners, while the work in [29] provided a guideline to prevent hyperbilirubinemia.
Some efforts focused on comparing the accuracy of different diagnostic approaches. For
instance, authors of [30] compared a doctor’s naked eye diagnosis and medical devices, and
concluded that the former approach is not reliable. This viewpoint was also supported by
the work in [31]. However, the authors of [32] found that the clinical assessment of neonatal
jaundice by the naked eye of an experienced clinician is still a reliable diagnostic approach.

There are some available non-invasive diagnostic tools, also known as transcutaneous
bilirubinometers (TcB), such as BiliCheck [24–26], Minolta JM-102 [27]. These tools are
based on skin color detection and are only available for medical practitioners in hospitals
and not to the public. Moreover, there are a few efforts to develop mobile applications for
jaundice diagnosis based on skin features, such as BiliCam [9,12] and BiliScan [13], or eye
features, such as Biliscreen [18] and BiliCapture [20]. Authors of [33] presented issues and
challenges faced by non-invasive methods in the detection of neonatal jaundice, such as
skin type, age, and melanin.

Although a wide range of research has been carried out on non-invasive neonatal
jaundice diagnosis, no single study exists which uses fusion of both eyes and skin features.
The motivation behind this is to simulate real-life naked-eye diagnosis. It is observed that
health practitioners do not rely solely on either eye or skin during naked-eye jaundice
diagnosis. Instead, they check both areas simultaneously for further assurance. Moreover,
previous studies in this domain have not applied deep learning and transfer learning
models, despite their success in the diagnosis of different diseases [2–5]. In this work, we
seek to fill this gap. We investigated the effectiveness of transfer learning in diagnosing
neonatal jaundice using different types of features, including skin, eye, and fusion of skin
and eye. Further, we compared the performance of transfer learning with multiple machine
learning models, including multi-layer perceptron (MLP), support vector machine (SVM),
decision tree (DT), and random forest (RF), when trained on the previously mentioned
features. Unlike most of the existing contributions, the performance of the models was
reported with respect to accuracy, precision, recall, f-score, and area under the curve
(AUC). We compared the performance of the models and analyzed their significance
statistically. The dataset of healthy and jaundiced neonates was collected from King
Khalid University Hospital (KKUH) in Riyadh, Saudi Arabia using the built-in camera in a
Samsung S7 smartphone.

The rest of this paper is organized as follows: Section 2 presents the related works.
The material and methods are presented in Section 3. In Section 4, we present the results
and discussion. Finally, Section 5 concludes the work.
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2. Related Works

Neonatal jaundice is one of the most common conditions in neonates. It is caused by
excessive bilirubin in the blood, which results in yellow pigmentation in the skin, eye, or
pale stools of the neonate [6]. A wide range of efforts exist in the literature that analyze
images of neonates’ eyes, skin, or pale stool to recognize jaundice [7–23]. Further, there
exist a few efforts that do so using numerical data, such as [34–37]. In the text below, we
highlight the main efforts made in the field with a focus on skin and eye images as a source
of data. Further, we summarize the results of the most relevant works in Table 1.

Table 1. Comparison of related works with their reported results.

Ref. Feature Extraction Method Dataset Result

[7]
Face skin (mean, standard
deviation, skewness,
kurtosis, energy, entropy)

K-Nearest
Neighbours (KNN)

120 random images from
Google infant monitoring Accuracy = 90–96%

[8] Forehead skin (RGB) Linear regression model
64 images at Aalborg
University Hospital
in Denmark

Green sensitivity = 100%,
specificity = 62%
Blue sensitivity = 90%,
specificity = 60%

[9]
Sternum and forehead skin
(YCbCr and lab
color spaces)

Ensemble of five regression
algorithms (KNN, Least
angle regression (LARS),
LARS-Lasso Elastic Net,
Support vector regression
(SVR), Random forest (RF))

100 images collected from
University of Washington
Medical Center (UWMC)
and the Roosevelt Pediatric
Care Center

A linear correlation of 0.84
with TSB, with a mean error
of 2.0 mg/dL

[10] Forehead and sternum skin
(Lab color spaces) Matching

Standard set of serum
bilirubin coloration on
detection strips

Correlation = 0.93

[11]
Forehead skin (RGB and
Hue, Saturation, Intensity
(HIS) values)

Regression

113 images at Hafez and
Shoushtari hospitals in
Shiraz, Iran using a
Samsung phone

Sensitivity = 68%
Specificity = 92.3%

[12] Sternum skin (YCbCr and
lab color spaces) Regression

530 images of different
races in US including
African American,
Hispanic, and Asian
American

Sensitivity = 84.6%
Specificity = 75.1%

[13]
Sternum and abdomen
skin (Hue and
Saturation values)

Regression 35 images in
Chennai, India

Sternum correlation = 0.6
Abdomen correlation = 0.55

[14] Abdomen skin (YCbCr,
RGB, and lab color spaces)

KNN
SVR

80 image from Fırat
University Faculty of
Medicine, Neonatal
Department in Turkey

KNN accuracy = 85%
SVR accuracy = 75%

[15]
Soles, palm, forehead, and
arm skin (RGB + diffuse
reflectance spectra)

SVM 20 images of
Mexican infants

Sensitivity = 71.8%
Specificity = 78.8%

[16] Face, arms, feet and middle
body skin (RGB) Linear regression

196 images at Firat
university, Faculty of
Medicine using an Android
mobile phone or tablet

Accuracy = 92.5%

[17] Eye (RGB) Linear regression

110 images at University
College London Hospital
captured using a Nikon
D3200 camera

Correlation = 0.75
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Table 1. Cont.

Ref. Feature Extraction Method Dataset Result

[18] Eye (sclera blue pixels) Random forest regression
70 images of adults eyes at
University of Washington
using an iPhone SE

Sensitivity = 89.7%
Specificity = 96.8%

[19] Eye (RGB) Regression

86 images at the UCH
Neonatal Unit in London
using a Nikon
Dh3200 camera

Correlation = 0.71

[20] Eye Diazo method with
dichloroaniline (DCA)

100 images at King Khalid
Hospital at Al-Majma’ah,
Saudi Arabia and Alpine
Hospital, Gurgaon, India
using a Samsung 10

Sensitivity = 92.0%
specificity = 75.6%

[21]
Eye (PCA to extract L, a,
and b values per CIE
lab color)

Artificial neuro-fuzzy
inference system (ANFIS)

420 images of adults’ eyes
captured in fixed
conditions using a 3CDD
digital camera in aphotic
housing made up of acrylic
sheet

Accuracy = 90%

[22] Eye (RGB)

Jaundice Eye Color Index
Scleral-Conjunctival
Bilirubin ((JECI-SCB)
model and SCBxy model

51 images from the UCL
Hospital using an LG
Nexus 5X smartphone

Correlation = 0.75

[38]
Bilirubin sample strips
(homomorphic filter and
blue color intensity)

Correlation between actual
and predicted
bilirubin level

8 images of bilirubin
sample strips

Correlation coefficient
increased from magnitude
0.5261 to magnitude 0.6974
after filtering

For skin-based diagnosis, related efforts have used different parts of a neonate’s body
such as face [7], forehead [8–11,15], sternum [9,10,12,13], abdomen [13,14], or multiple
body parts such as sole, palm, and arm [15] and face, arms, feet, and middle body [16].
The authors adopted varying methods for feature extraction such as mean, standard devi-
ation, skewness, kurtosis, energy, and entropy [7], YCbCr and lab color spaces [9,12,14],
RGB [11,12,14–16], hue and saturation values [11,13], and diffuse reflection spectra fea-
tures [15]. Different machine learning models have been used for jaundice diagnosis such
as K Nearest Neighbor (KNN) [7,14], SVR/SVM [14,15], regression [11,13,16], and an en-
semble of multiple classifiers, including (KNN), least angle regression (LARS), LARS-Lasso
elastic net, support vector regression (SVR), and random forest (RF) [9,12].

A few works used images of serum bilirubin coloration on detection strips. For
instance, Saini et al. [10] used images of neonates’ forehead and sternum skin to detect
neonatal jaundice by matching them with images of serum bilirubin coloration on detection
strips. Singla et al. [38] has also used bilirubin strip images to examine the effectiveness of
homomorphic filtering on jaundice detection. In their work, the authors applied homomor-
phic filtering on the images’ computed blue color intensities. Correlation was computed
between actual and predicted bilirubin levels.

The presence of neonatal jaundice may be detected by the yellowing of the eyes’ sclera
due to the accumulation of bilirubin in the body and the insufficiency of the liver to get
it out of the body. Multiple efforts exist in the literature for detection of adults’ jaundice
using images of eyes’ sclera and a box to control eye exposure to light. For instance,
Laddi et al. [21] used a 3CDD camera and a light source covered by aphotic housing made
of acrylic paper to capture eye images which were then fed to CIE Lab color model. The
work in [18] used an iPhone SE to capture the images with two accessories, a head-worn
box, and paper glasses with colored squares for calibration. Their results showed that the
box achieved better results. For neonatal jaundice, the work in [17] used a Nikon camera to
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capture eye images, where RGB features were extracted and fed to a linear regression model
to predict TSB levels. Rizvi et al. [20] used the Diazo method with dichloroaniline (DCA)
to estimate bilirubin level using neonates’ eyes images. The authors in [19,22] captured
two versions for each image, namely with flash and no-flash images. In the latter work,
the images are used to apply the ambient subtraction technique, which proved to achieve
promising results. In this technique, the RGB values from the two versions of images are
subtracted in order to estimate the raw values without ambient illumination. A few studies,
such as [17], compared skin and eye images in diagnosing jaundice using linear regression.
Their results showed that the latter can achieve better results.

Several methods have been adopted in the literature for data collection. A smart-
phone camera has been used successfully to capture images of jaundiced and healthy
neonates, such as in [8,9,11,12,15,16,18,20,22,38,39]. In contrast, the work in [8] tested sev-
eral methods, including a direct camera method, a yellowish-green gelatin filter method,
and a dermatoscope method, to determine whether a smartphone camera can be used
as a screening tool for jaundice. The authors concluded that only the latter method is
effective for jaundice detection. Further, the studies in [9,11–14] used a calibration card
for the purpose of color balancing, while the studies in [7,38] did not. In [39], the authors
proposed a novel white balancing method with a dynamic threshold for adjusting different
color temperatures without the use of a calibration card. The works in [10,38] collected
serum bilirubin coloration on stripes. The authors of the work in [18] collected images of
the eyes using two different methods, namely closed box and colored glasses, while in [21],
they collected the data using only closed box to capture eye images.

As previously mentioned, there are some existing medical devices that measure
transcutaneous bilirubin from the skin, such as BiliCheck [24–26], Minolta JM-102 [27],
and also some efforts to develop smartphone applications based on skin images, such as
BiliCam [9,12] and BiliScan [13], and eyes images, such as Biliscreen [18], BiliCapture [20],
and neoSCB [22]. A considerable amount of literature has been published on how the
performance of these non-invasive bilirubin detection tools compares [24,30,40–42]. For
example, the work in [30] presented a comparison between JM103, BiliCheck, and BiliCam.
The results showed that BiliCam can detect the bilirubin level with high sensitivity and in
less time. The study in [24] compared BiliCheck and the Minolta bilirubin meter. The results
showed that the correlations between TSB and TCB measurements of the two devices were
high. In contrast, the study in [40] compared BiliCheck and Minolta JM-102. The results
showed that the accuracy of the former was not affected by the color of the skin, while the
other jaundice meter was affected. Similarly, the work in [41] compared Minolta JM-102 and
BiliCheck. Their results showed that Minolta JM-102 performed the best on the sternum,
while BiliCheck performed better on the forehead than the sternum.

Much of the current literature on neonatal jaundice diagnosis pays particular attention
to non-invasive tools based on either eye [17–22] or skin [7–10,12–15,38] images. A few
efforts exist that compare between the two sources of data, such as [17]. However, no
attention has been paid to the combination of skin and eye features to diagnose jaundice.
Further, very little is known about the application of deep transfer learning models in
this domain. This work seeks to fill this gap by examining the efficacy of both traditional
machine learning models and transfer learning using skin, eye, and fused features.

3. Material and Methods

An illustration of our method is shown in Figure 1. In the subsections below, we
explain each step in further detail.
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consent to participate in the study. Following [20], our inclusion criteria included gesta-
tion age between 35 and 42 weeks, neonate’s age between 0 and 5 days, neonate’s weight 
ranged from 2.00 to 4.35 kg, and lastly, the neonate had to be completely in a quiet state. 
Exclusion criteria, similar to [13,20], included neonates already in the neonatal intensive 
care unit, those treated by phototherapy, gestational age less than 35 weeks, or weight less 
than 2 kg. A total of a hundred neonates in King Khalid University Hospital (KKUH) in 
Riyadh, Saudi Arabia were accepted to the study between May 2019 and September 2019. 

Our procedure for collecting the dataset was as follows: We used a Samsung Galaxy 
S7 mobile phone’s built-in camera to collect the data. We made sure that the neonate was 
awake in order to capture his/her eyes’ sclera. We placed a calibration card [9] (see Figure 
2) on the neonate’s chest. Then, we took a picture or recorded a video of the neonate’s full 
face including the calibration card under unconstrained conditions of illumination and 
background. In order to establish a ground truth for the neonates’ jaundice condition, the 
neonates’ TCB level was measured and recorded by an accompanying nurse using the JM-
103 jaundice meter device [27]. After collecting the dataset, a pediatrician at KKUH used 
the TCB measurements to label neonates as either healthy or jaundiced. A neonate with a 
TCB level of 204 or above was considered jaundiced, and healthy otherwise. 

Figure 1. Illustration of the method. Forehead skin and eyes’ sclera regions are detected and segmented from the
preprocessed images. The segmented skin, sclera, or skin and sclera images are then passed to (1) transfer learning using
a pretrained VGG-16 model for feature extraction and classification and (2) traditional learning to extract RGB, YCbCr,
Lab color space, and HSV color space features and then to multi-layer perceptron (MLP), support vector machine (SVM),
Decision tree (DT), and random forest (RF) for classification.

3.1. Dataset

The study has been approved by King Saud University institutional review board
(IRB) research project No. E-19-3871. Parents of all study neonates gave informed written
consent to participate in the study. Following [20], our inclusion criteria included gestation
age between 35 and 42 weeks, neonate’s age between 0 and 5 days, neonate’s weight ranged
from 2.00 to 4.35 kg, and lastly, the neonate had to be completely in a quiet state. Exclusion
criteria, similar to [13,20], included neonates already in the neonatal intensive care unit,
those treated by phototherapy, gestational age less than 35 weeks, or weight less than 2 kg.
A total of a hundred neonates in King Khalid University Hospital (KKUH) in Riyadh, Saudi
Arabia were accepted to the study between May 2019 and September 2019.

Our procedure for collecting the dataset was as follows: We used a Samsung Galaxy S7
mobile phone’s built-in camera to collect the data. We made sure that the neonate was
awake in order to capture his/her eyes’ sclera. We placed a calibration card [9] (see Figure 2)
on the neonate’s chest. Then, we took a picture or recorded a video of the neonate’s full
face including the calibration card under unconstrained conditions of illumination and
background. In order to establish a ground truth for the neonates’ jaundice condition, the
neonates’ TCB level was measured and recorded by an accompanying nurse using the
JM-103 jaundice meter device [27]. After collecting the dataset, a pediatrician at KKUH
used the TCB measurements to label neonates as either healthy or jaundiced. A neonate
with a TCB level of 204 or above was considered jaundiced, and healthy otherwise.
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Figure 2. Color calibration card.

The collected dataset consisted of 62 male and 38 female neonates, where 67% of them
were healthy and 33% were jaundiced. The average neonates’ gestation age was 38 weeks,
and the average age was 1 day. The average TCB level was 231 Mmol/M. During feature
extraction, we had to eliminate 32 images, since the face recognition algorithm could not
recognize the neonates’ faces due to presence of the mother’s hand or pacifier in the image.
This left the dataset with 68 samples. Table 2 highlights the dataset characteristics.

Table 2. Dataset characteristics.

Characteristic Value

Dataset size (images) 68
Gender (images)

Male 44
Female 24

Gestation age (weeks)
Max. 42
Avg. 38
Min. 35

Age (days)
Max. 5
Avg. 1
Min. 1

TCB level (Mmol/M)
Max. 280
Avg. 135
Min. 0

Weight (kg)
Max. 4
Avg. 3
Min. 2

Class (images)
Healthy 44
Jaundiced 24

3.2. Preprocessing

In order to overcome varying lighting conditions in the collected images, similarly
to [9,12–14,17,18], color balancing [43] was applied to all images using the calibration card.
First, the location of the card was detected by using a mask on the phone’s screen to align
the card with the mask. Then, the white color patch on the card was identified by counting
the number of steps. Next, color balancing (also known as white balancing) was applied by
using the observed RGB values of the white color patch to adjust the RGB values of the
image using Equation (1) below: R

G
B

 =

 255/R′w 0 0
0 255/G′w 0
0 0 255/B′w

 R′

G′

B′

 (1)
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where R, G, and B are the color balanced red, green, and blue components of a pixel in the
image, and R′, G′, and B′ are the red, green, and blue components of the image before color
balancing, respectively, and R′w, G′w, B′w are the average colors of the white patch on the
color calibration card [43].

3.3. ROI Detection and Segmentation

The first step to extract features from neonates’ eyes and forehead skin was to detect
and segment the regions of interest, i.e., eyes’ sclera and forehead skin. For this, Dlib
OpenCV Face Landmark Detection [44], which is a pretrained detector for face landmarks,
was used.

The detector can define face features by predicting the position of 68 points in the face
to determine face landmarks such as eyes, nose, mouth, forehead, eyebrows (see Figure 3).
For forehead segmentation, we focused on the area twenty pixels above the points in the
range [18, 25] to avoid the eyebrows, and we counted 120 pixels above to be the height of
the area [45]. To determine the sclera of left eye, we focused on points in the range [42, 47],
while for the right eye, we used the area in the range [36, 41].
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3.4. Transfer Learning

Deep transfer learning was used by adopting a VGG-16 model, which is a standard
convolutional neural network (CNN) pretrained on the huge ImageNet dataset [46], hence
its weights have already been optimized on a different task. In this work, the pretrained
VGG-16 model was trained to diagnose neonatal jaundice using our small dataset. Transfer
learning can accelerate training time since weights are not randomly initialized, and
therefore eliminates the need for large datasets. As shown in Figure 4, the VGG-16 model
has two main parts, namely the feature extractor and the classifier.

3.4.1. Feature Extraction

The feature extractor has an input layer of fixed size 224 × 224 RGB images, followed
by thirteen convolutional layers, with a rectified linear unit activation function and five
max-pool layers. The output of the feature extractor is deep-learned features of dimension
7 × 7 × 512.

3.4.2. Classification

For the classifier part, the last fully connected layer of VGG-16 was removed, and the
last maximum pooling layer in the feature extractor was connected to a global average
pooling to convert the image features from a 7 × 7 × 512 vector to a 1 × 1 × 512 vector.
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Then, three dense layers with two dropout layers with 0.5 probability were added to avoid
overfitting. Lastly, a Softmax function was used in the final layer.
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3.5. Traditional Machine Learning

In this work, four well-known machine learning models were used, namely MLP,
SVM, DT, and RF. Below, a brief explanation of the feature extraction and classification
models is provided.

3.5.1. Feature Extraction

Features were extracted from the segmentations of the neonate’s sclera and skin.
Inspired by previous studies, such as [9,10,14], we extracted color features, RGB color
space, then colormap transferred them to other color spaces such as YCbCr, Lab color space,
and HSV color space. Then, the mean for color channel for each region was calculated,
which resulted in 12 forehead skin features, 12 left eye features, and 12 right eye features,
giving a total of 36 features.

3.5.2. Classification

MLP is the classical type of neural networks with feed-forward neurons. Each neuron
is a perceptron, which can take any number of inputs and produce a binary output. MLP
consists of multiple fully connected layers, including input, output, and one or more
hidden layers.

SVM is a robust well-known supervised learning model. The main goal of SVM is
to find the optimal hyperplane that separates n-dimensional data into two classes. The
optimal hyperplane is the one that maximizes the margin between the two classes of data.
The margin represents the distance between the closest data points from each class to
the hyperplane, which are called support vectors. When data is nonlinearly separable,
SVM uses a kernel function to map the data into a higher dimension space, where it
becomes linearly separable. The main parameters of SVM are C, the kernel function, and
Gamma. The parameter C is used for regularization, while the kernel function determines
the shape of the hyperplane, such as linear, RBF, and polynomial kernel. The Gamma
hyper-parameter is set only with a Gaussian RBF kernel.

DT is a tree-structured learning algorithm which consists of two types of nodes,
test/attribute nodes and class nodes. The former are internal nodes in the tree with two or
more branches representing answers to the test, while the latter are leaf nodes. The root
node is the most significant attribute based on a splitting metric such as information gain
and GainRatio. Each test node partitions the data instances into two or more partitions
according to the outcome of the test. This process is repeated until all instances in a partition
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belong to the same class. There are multiple DT algorithms such as ID3, C4.5, C5.0, and
CART. In this work, we used an optimized version of CART implemented in Scikit-learn.

RF is an ensemble learning method that is used for both classification and regression.
RF builds multiple DTs using bagging, i.e., bootstrap aggregation, where each DT is trained
on a random subset of the data (bootstrap samples). The final output of the model is
the aggregation of the DTs outputs using majority voting for classification or average for
regression. Advantages of RF model is that it is diverse, stable, and immune to curse
of dimensionality.

3.6. Evaluation

For evaluation, five-fold cross validation was used to train and test both transfer
and traditional machine learning models. In addition, the positive class in the extracted
structured dataset was oversampled using the Synthetic Minority Oversampling Technique
(SMOTE) for the traditional machine learning models, while data augmentation was
applied on the original image dataset for the deep transfer learning model in order to
obtain balanced data. The performance of the models was evaluated using accuracy,
precision, recall, F1 score, and the AUC score. Further, the k-fold cross-validated paired
t-test [47] was applied in order to assess the statistical significance between two models A
and B according to Equation (2) below.

t =
p
√

k√
∑k

i=1(pi−p)
2

k−1

(2)

where k is the number of folds, pi is the difference between the model performances in
the ith iteration pi = pi

A − pi
B, and p computes the average difference between the model

performances p = 1
k ∑k

i=1 pi.

4. Results and Discussion

In this section, we present the experimental results for traditional and transfer machine
learning models with respect to several performance metrics. The results presented with
three types of features including skin, eye, and fusion of features. Each reported result is
the average of five-fold cross validation. The parameters of the methods were instantiated
based on the empirical experiments and by following the recommendations from the
literature. We show parameter values used for the models in Table 3. t-tests were used to
analyze and compare the performances of different combinations of features and classifiers.

Table 3. Classification models parameter values.

Classification Model Parameters Values

MLP

Loss = binary_crossentropy
optimizer = Adam

epochs = 50
batch_size = 32

layers = 2
Hidden layers = 200

Relu
softmax

Dropout = 0.5

SVM
Kernel = RBF

C = 1000
Gamma = 0.7
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Table 3. Cont.

Classification Model Parameters Values

DT

Criterion = gini
Splitter = best

Max_depth = None
min_samples_split = 2
min_samples_leaf = 1

min_weight_fraction_leaf = 0.0
max_features = None
random_state = None

max_leaf_nodes = None
min_impurity_decrease = 0.0

min_impurity_split = 0
class_weight = none

ccp_alpha = 0.0

RF

n_estimators = 100
criterion = gini

max_depth = none
min_samples_split = 2
min_samples_leaf = 1

min_weight_fraction_leaf = 0.0
max_features = “auto”

max_leaf_nodes = None
min_impurity_decrease = 0.0
min_impurity_split = None

bootstrap = True
oob_score = False

n_jobs = None
random_state = None

verbose = 0
warm_start = False

class_weight = None
ccp_alpha = 0.0

max_samples = None

CNN

batch_size = 100
epochs = 500

momentum = 0.8
SGD Optimizer

The performance of the transfer learning model and traditional models, namely MLP,
SVM, DT, and RF, is presented in Tables 4 and 5, respectively, with respect to accuracy,
precision, recall, F1 score, and AUC. In medical diagnosis problems, the main goal is to
minimize false negative error, which is measured using recall. The first set of results for
the transfer learning model are shown in Table 4. Interestingly, and in contrast to previous
studies such as [17], the transfer learning model achieved the best performance with skin
features rather than eye features. t-test showed that the performance of the model with skin
features had significantly improved over eye features at p < 0.05 with respect to accuracy,
recall, F1 score, and AUC (p = 0.04 for all performance measures), while no significant
performance improvement was observed with respect to precision. When comparing the
performance of the model with skin features and fused features, there were significant
differences with respect to recall and AUC with p = 0.04, and no significant differences in
performance with respect to accuracy, precision, and F1 score.
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Table 4. Performance evaluation of the transfer learning model with different types of features.

Features Accuracy Precision Recall F1 Score AUC

Skin 86.83% 84.49% 81.05% 82.12% 81.05%
Eye 79.03% 75.28% 69.67% 70.73% 69.67%

Fusion 79.95% 79.76% 71.25% 72.12% 71.25%

Table 5. Performance evaluation of traditional machine learning models with different types of features.

Features Classifier Accuracy Precision Recall F1 Score AUC

Skin

MLP 66.02% 66.26% 65.64% 64.47% 65.64%
SVM 65.95% 69.42% 65.95% 64.60% 67.50%
DT 62.35% 61.35% 61.18% 61.40% 60.89%
RF 64.77% 72.54% 64.77% 61.50% 60.04%

Avg. 64.77% 67.39% 64.39% 62.99% 63.52%

Eye

MLP 79.61% 80.62% 79.04% 78.84% 79.04%
SVM 74.97% 75.97% 74.97% 74.70% 75.96%
DT 62.35% 64.37% 62.22% 59.70% 60.25%
RF 77.19% 77.58% 77.19% 77.10% 81.06%

Avg. 73.53% 74.64% 73.36% 72.59% 74.08%

Fusion

MLP 77.62% 78.66% 77.62% 77.71% 77.41%
SVM 76.41% 76.44% 76.41% 75.80% 82.01%
DT 67.19% 70.65% 67.19% 69.8% 70.17%
RF 72.75% 73.89% 72.75% 72.10% 78.86%

Avg. 73.49% 74.91% 73.49% 73.85% 77.11%

Our findings suggest that skin features are preferable with transfer learning since
they improve the diagnosis performance of the model significantly with respect to most
measures. These findings are in contrast to a widely perceived sense that eye features are
better than skin features for jaundice diagnosis, such as in [17]. However, conclusions of
previous studies were based on using statistical methods or traditional machine learning
methods, rather than deep transfer learning. In this study, it was found that the set of
the best features varied between traditional and transfer learning models. Consequently,
conclusions made for traditional machine learning methods cannot be generalized for
transfer learning models. Since the transfer learning model with skin features either
exceeded or performed comparably to the model with fused features depending on the
considered performance metric, it can be implied that fusing eye features with skin features
for jaundice diagnosis using transfer learning did not contribute to improving performance,
and hence can be disregarded.

The results of traditional learning models presented in Table 5 reveal several observa-
tions. First, we can see that, on average, the best diagnosis was achieved using the fused
features. Overall, the recall of the models improved significantly with the fused features
compared to that with the skin features at p < 0.05 (p = 0.0004). However, no significant
difference in recall was achieved compared to that of eye features with p = 0.47. Similar
performance trends were observed with respect to accuracy, precision, F1 score, and AUC.

Taken together, our results suggest that traditional machine learning models trained
on eye features performed significantly better than when trained on skin features, which
mirrors findings of previous studies [17]. Further, the results show that traditional machine
learning models with eye features had comparable performance to those with fused features.
This indicates that images of neonate skin had no significant contribution to improving
diagnosis of neonatal jaundice when fused to eye images to train traditional machine
learning models. Hence, when eye images are available, skin images can be overlooked as
a source of data for diagnosing jaundice.

Table 4 also shows that MLP with eye features had the best jaundice diagnosis per-
formance, followed by RF, SVM, and, lastly, DT. However, the t-test found no significant
difference in recall performance between the former and RF and SVM at p < 0.05, with
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p = 0.34 and p = 0.2, respectively, while the diagnosis recall dropped significantly with DT
with p = 0.02. Further statistical tests revealed that the same performance trends for the
models were observed with respect to accuracy, precision, F1 score, and AUC. As for the
fused features, it can be seen in Table 4 that MLP outperformed all other models, followed
by SVM, RF, and, lastly, DT. However, statistical tests showed no significant performance
difference between the models with respect to all performance measures.

These results imply that, among traditional machine learning models, MLP, SVM, and
RF were the best jaundice diagnostic models. Further, they showed that although fusing
skin features with eye features does not improve performance, it can make choosing a
model for jaundice diagnosis a less important factor. The reason is that they improved the
performance of the least performing model, i.e., DT, to make it perform comparably to
other good models.

On comparing the best transfer learning performance, i.e., with skin features in Table 4,
with the traditional machine learning model of best performance, namely MLP, SVM, and
RF with eye features in Table 5, we can see that the former outperformed the latter with
respect to all performance measures. However, t-test results showed that no significant
difference was achieved between the performance of transfer learning and MLP with
respect to all metrics, while a significant improvement was observed for transfer learning
over SVM and DT with respect to accuracy with p = 0.02 and p = 0.04, respectively. This
shows that using the right features for traditional learning models can make them compete
with deep transfer model in some domains. However, as stated previously, the set of best
features may vary between traditional and transfer learning models.

5. Conclusions

The goal of this work was to investigate the effectiveness of transfer learning in
diagnosing neonatal jaundice using different types of features, namely skin, eye, and fusion
of skin and eyes features. Moreover, the work aimed to compare transfer learning with
traditional machine learning models, including multi-layer perceptron (MLP), support
vector machine (SVM), decision tree (DT), and random forest (RF), when trained on the
previously mentioned features. Our results showed that the transfer learning model
performed the best with skin features, while traditional machine learning models achieved
the best performance with eye features. For the traditional models, MLP, SVM, and RF
models performed comparably with eye features and significantly better than the DT model.
However, when using the fused features, all four models had similar performance. Further,
the transfer learning model with skin features performed comparably to the MLP model
with eye features. This showed that using the right features for traditional learning models
could make them compete with a deep transfer model in some domains. Nonetheless, the
right set of features may vary between traditional and transfer learning models.
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