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Background: With the emergence of competency-based training, the current evaluation scheme of surgical skills is evolving to include
newer methods of assessment and training. Artificial intelligence through machine learning algorithms can utilize extensive data sets to
analyze operator performance. This study aimed to address 3 questions: (1) Can artificial intelligence uncover novel metrics of surgical
performance? (2) Can support vector machine algorithms be trained to differentiate “senior” and “junior” participants who are executing a
virtual reality hemilaminectomy? (3) Can other algorithms achieve a good classification performance?

Methods: Participants from 4 Canadian universities were divided into 2 groups according to their training level (senior and junior) and were
asked to perform a virtual reality hemilaminectomy. The position, angle, and force application of the simulated burr and suction instru-
ments, along with tissue volumes that were removed, were recorded at 20-ms intervals. Raw data were manipulated to create metrics to
train machine learning algorithms. Five algorithms, including a support vector machine, were trained to predict whether the task was
performed by a senior or junior participant. The accuracy of each algorithm was assessed through leave-one-out cross-validation.

Results: Forty-one individuals were enrolled (22 senior and 19 junior participants). Twelve metrics related to safety of the procedure, efficiency,
motion of the tools, and coordination were selected. Following cross-validation, the support vector machine achieved a 97.6% accuracy. The other
algorithms achieved accuracy of 92.7%, 87.8%, 70.7%, and 65.9%, respectively.

Conclusions: Artificial intelligence defined novel metrics of surgical performance and outlined training levels in a virtual reality spinal
simulation procedure.

Clinical Relevance: The significance of these results lies in the potential of artificial intelligence to complement current educational
paradigms and better prepare residents for surgical procedures.
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With the shift toward competency-based curricula, surgical
educational paradigms are evolving to include new methods
of assessment and training. Whereas current assessments rely
on subjective methods, new technologies offer the potential
for more objective approaches to surgical skill evaluation1.
Simulation has become important in surgical education, with
many programs implementing courses involving animal
models, cadavers, benchtop models, and virtual reality sim-
ulators2. Virtual reality simulators provide opportunities for
repeat practice in risk-free environments and can quantify
multiple aspects of psychomotor performance during surgi-
cal procedures3. The large amount of data collected from an
individual’s technical performance during a simulated task
can be distilled into specific metrics. Metrics can be considered
standards of reference to quantitate performance, efficiency, and
progress4,5. Individual metrics often are incapable of effectively
assessing surgical expertise since many procedures involve mul-
tiple complex psychomotor skills. The requirement of efficiently
combining multiple metrics has resulted in the need to assess
systems that are capable of analyzing extensive amounts of infor-
mation from multivariate data sets.

Artificial intelligence employs machine learning algo-
rithms, giving computers the ability to identify patterns and
perform tasks without explicit programming when sufficient
data are provided6,7. Different types of machine learning
algorithms exist. Supervised algorithms, including support

vector machines, are utilized most commonly. These algo-
rithms are trained with examples of labeled data and learn
patterns associated with each label, giving them the ability to
label new data7. In surgical simulation, supervised algorithms
could be trained utilizing sets of metrics labeled as senior or
junior, thereby allowing them to classify new individuals’metrics
as senior or junior. This is referred to as 2-class learning. One-
class learning (training algorithms to identify individuals belong-
ing to 1 group [e.g., experts]) and multiclass learning (training
algorithms to classify individuals in ‡2 groups [e.g., junior resi-
dents, senior residents, and staff surgeons]) also could be em-
ployed but would require a large number of participants in each
group to adequately train the algorithms. As such, these tech-
niques have not been widely utilized to assess psychomotor skills
in this context8.

The purpose of this study was to evaluate the potential
of artificial intelligence as an assessment tool in virtual
reality spine surgery simulation. We aimed to provide a
preliminary proof of concept that could act to introduce
artificial intelligence as a mechanism to objectively assess
surgical skill level. We addressed 3 questions in this inves-
tigation: (1) Can artificial intelligence uncover novel met-
rics of surgical performance that differentiate between 2
groups of different training levels? (2) Can support vector
machine algorithms be trained to recognize whether an
individual executing a virtual reality hemilaminectomy is

Fig. 1

Figs. 1-A, 1-B, and 1-C Demonstration of the NeuroVR platform. Fig. 1-A An individual performing the virtual hemilaminectomy scenario. Fig. 1-B Virtual

tissues include L2, L3, and L4 vertebrae, interspinous ligaments, surrounding muscles, ligamentum flavum, intervertebral discs, and dura. Fig. 1-C The

participant must hold the burr in his or her dominant hand and the suction instrument in the nondominant hand.
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of senior or junior level? (3) Can other algorithms achieve a
good classification performance (accuracy >75%)?

Materials and Methods
Spine surgeons, spine fellows, orthopaedic and neurosur-
gery residents, and medical students from 4 Canadian uni-
versities were recruited. Because this investigation aimed to
provide an initial proof of concept of the utility of machine
learning as an assessment tool, we employed simple 2-class
learning algorithms. Thus, 2 groups of different expertise
level had to be defined a priori. Participants were divided
into senior (postgraduate year [PGY]-4 and above) and
junior (PGY-3 and below) groups because our group of
surgeons considered that the simulated procedure required
basic burr and suction instrument-handling skills that
should be acquired by the fourth year of orthopaedic and
neurosurgery training.

All participants signed a consent form that was
approved byMcGill University Health Centre Research Board

before entering the study. The NeuroVR neurosurgical sim-
ulator (CAE Healthcare) virtual reality platform, which
incorporates a microscopic view and haptic feedback, was
employed to perform a left L3 hemilaminectomy9. This plat-
form includes numerous simulated surgical scenarios that
have been studied extensively10-13. As demonstrated in
Video 1, the virtual hemilaminectomy required participants
to remove the L3 lamina with a simulated burr in their dom-
inant hand while controlling bleeding with a simulated suc-
tion instrument in their nondominant hand (Figs. 1-A, 1-B,
and 1-C). Participants were given verbal and written instruc-
tions to remove the L3 lamina without damaging surround-
ing tissues. Subjects had 5 minutes to complete the task
because this amount of time was found to be adequate in
preliminary studies. Each participant performed the task
once without prior practice. Individuals participated in the
trial at a single time point without follow-up. The trial was
conducted in an experimental setting that was void of
distractions.

Fig. 2

A framework for integrating artificial intelligence in virtual reality surgical simulation. The virtual reality surgical simulation section involves raw data

acquisition from the simulator. Machine learning methodology is followed by performing metric extraction, normalization, and selection. The selected

metrics are fed to a collection of machine learning algorithms, and an iterative process of parameter adjustment is followed to optimize classification

accuracy. This step uses cross-validation techniques to assess classification accuracy. Once the optimal algorithm and parameters are identified, a single

model is trained using all of the data. This model can then be used for generalizability testing on new subjects.

TABLE I Description of the Mechanisms of the 5 Employed Machine Learning Algorithms

Machine Learning Algorithm Mechanism*

Support vector machine Uses a hyperplane to separate data in ‡2 groups and maximizes the distance between the closest points
from both groups and the hyperplane

Linear discriminant analysis Projects multidimensional data (many metrics) on a single dimension to maximize the distance between
the means of the groups and minimize the variance within each group

k-nearest neighbors Uses distance functions such as the Euclidean distance to determine the closest neighbors to a point. A
parameter (k) corresponds with the number of neighbors considered. The class of a participant is
determined on the basis of its relationship with the nearest participants in a multidimensional space

Naive Bayes Classifies participants on the basis of probabilities that the chosen metrics belong to experts or novice
surgeons. It assumes that all of the chosen metrics are independent from each other

Decision tree Classifies individuals by building a series of nodes whereby subjects are divided according to the value of
a certain metric. The algorithm finds the optimal values to divide subjects in classes

*The mechanism of every algorithm is discussed further in the literature7,17-21.
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Artificial intelligencemethodology was applied through a
series of steps, including raw data acquisition, metric extrac-
tion, metric normalization, metric selection, machine learning
algorithms, and model selection (Fig. 2). These methods follow
guidelines to utilize machine learning algorithms to assess sur-
gical expertise in simulation that previously had been estab-
lished by our group14.

Raw Data Acquisition
The position, angle, and force of both simulated instruments,
along with the removed volume of all simulated tissues, were
captured at 20-ms intervals and were exported to a file.

Metric Extraction
A metric is an input that is used to train a machine learning
algorithm to predict whether a participant belongs to the senior
or junior group. The accuracy of an algorithm can be defined as the
number of good predictions out of the total number of predictions
made. To obtain the best accuracy and to reduce computational
cost, metrics given to algorithms must be carefully processed15.

The raw variables provided by the NeuroVR can be com-
bined to generate more complex metrics. For instance, by com-
bining tooltip position and time, velocity can be assessed. A
series of functions was developed to extract metrics from the
raw data using MATLAB R2018a (MathWorks). Metrics were
divided into 4 categories, including safety, efficiency, coordi-
nation, and motion4,13. Since metrics of varying scales were
generated, data normalization was performed with z-scores.

Metric Selection
Metric selection is an important step in machine learning that
attempts to find the combination of metrics that most accurately
differentiates between the 2 groups16. This step is vital to prevent
the algorithm from receiving irrelevant input, thereby avoiding

the training of algorithms that are too closely “fitted” to a specific
data set and tend to generalize poorly to new subjects17.

In this study, metric selection was performed in 2 parts.
First, to capture metrics that are clinically relevant, 2 spine sur-
geons selected metrics that they felt could differentiate between
the 2 groups through a questionnaire (Appendix A). Second, since
these metrics may not all adequately discriminate between the 2
groups in this scenario, a backward selection algorithm from
PRtools (http://prtools.org/) was employed. This backward algo-
rithm started with all of the metrics chosen by spine surgeons and
removed them sequentially while iteratively training a machine
learning algorithm and testing its accuracy using 10-fold cross-

TABLE II Distribution of the Studied Sample Population in
Regard to Training Level and Specialty*

Training Level
Orthopaedic
Surgery (no.)

Neurosurgery
(no.)

Total
(no.)

Spine surgeons 1 5 6

Spine fellows 2 1 3

PGY-6 N/A 2 2

PGY-5 3 1 4

PGY-4 3 4 7

Total senior 8 8 22

PGY-3 1 1 2

PGY-2 3 2 5

PGY-1 2 2 4

Medical students N/A N/A 8

Total junior 6 5 19

*N/A = not applicable, and PGY = postgraduate year.

TABLE III Number of Laminectomy Cases in Which Each
Resident Assisted*

Participant Level
Number of Laminectomy Cases in

Which the Resident Assisted

Junior orthopaedics

PGY-1† 0

PGY-1† 0

PGY-2† 3

PGY-2† 6

PGY-2† N/A

PGY-3† 25

Median 3

Junior neurosurgery

PGY-1† 3

PGY-1† 15

PGY-2† N/A

PGY-2† N/A

PGY-3† 3

Median 3

Senior orthopaedics

PGY-4† 4

PGY-4† 3

PGY-4† 20

PGY-5† 50

PGY-5† 10

PGY-5† N/A

Median 20

Senior neurosurgery

PGY-4‡ 50

PGY-4‡ 60

PGY-4‡ 80

PGY-4‡ 100

PGY-5‡ 75

PGY-6† 30

PGY-6† 40

Median 60

*PGY = postgraduate year, andN/A= not applicable.†University A.
‡University B.
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validation16. The backward algorithm stopped when a combina-
tion of metrics provided the highest accuracy of classifying senior
individuals as senior and junior individuals as junior. Metrics that
were not selected were not further analyzed.

Machine Learning Algorithms
Support vector machines are suited for small sample size and
multivariate data that are necessary for global evaluation of sur-
gical skill, thereby making them a prime candidate for virtual
reality surgical simulation7,17,18. Furthermore, their decision-

making process is describable. In a manner similar to the coeffi-
cients in a linear logistic regression, these algorithms attribute a
weight to each metric and make their classification on the basis of
an equation that considers every metric and its respective weight.
This is interesting from an educational perspective because it
could help juniors to understand what they need to improve to
achieve the senior level. These factors led us to focus on this
algorithm. Four other algorithms (k-nearest neighbors, linear
discriminant analysis, naive Bayes, and decision tree) were also
trained to assess whether the selected metrics could achieve a
similar accuracy with diverse classification methods. The mech-
anism of each algorithm is explained in Table I. Additional infor-
mation is available in the literature7,17-21.

Because our sample size was relatively limited, leave-one-
out cross-validation was employed to train and test the algo-
rithms19. Leave-one-out cross-validation trains the algorithm
with all but 1 of the participants, and subsequently tests the
trained algorithm on the 1 participant who was left out of the
training set. This process is repeated with every participant;

TABLE IV Initial Metrics Selected by 2 Spine Surgeons

Safety

Mean force applied on ligamentum flavum

Maximum force applied on ligamentum flavum

Mean force applied on dura

Maximum force applied on dura

Volume of ligamentum flavum removed

Number of times dura was touched with an active burr

Minimum and maximum position of the burr in the cephalad-
caudad axis while removing L3

Minimum and maximum position of the burr in the medial-lateral
axis while removing L3

Efficiency

Position of the burr when the first removal of L3 occurs

Idle time (amount of time no force is applied by any tool on any
structure)

Total tip path length of the burr (sum of every change in position)

Total tip path length of the suction (sum of every change in
position)

Amount of time spent removing L3/total time to completion

Time to completion

Coordination

Volume removed while simultaneously using the suction and the
burr

Mean velocity of the suction while simultaneously using the burr

Number of times structures are touched with suction while using
the burr

Amount of time spent while simultaneously using the suction
and the burr

Mean distance between the tip of the burr and the tip of the suction

Motion of the tools

Variance of angles of the burr when removing L3

Consistency of movements (distance between 2 acceleration
peaks for the burr when removing L3 in 3 different axes)

Consistency of movements (distance between 2 acceleration
peaks for the suction instrument when removing L3 in 3 different
axes)

Mean acceleration of the burr over the whole procedure in 3
different axes

Mean acceleration of the suction over the whole procedure in 3
different axes

Mean velocity of the burr when removing ligamentum flavum

Maximum velocity of the burr when removing ligamentum flavum

TABLE V Final Metrics Selected by Metric Selection Algorithm

Metric
Senior/Junior

Ratio

Safety

Maximum force applied on dura 0.56

Efficiency

Amount of time spent removing L3/total
time to completion

0.96

Coordination

Amount of time spent while using
suction and burr at the same time

1.73

Number of times structures are touched
with suction while using the burr

2.18

Motion of the tools

Distance between 2 acceleration peaks
for the burr in the cephalad-caudad axis
when removing L3 (consistency of
movements of the burr)

1.48

Distance between 2 acceleration peaks
for the suction in the medial-lateral axis
when removing L3 (consistency of
movements of the suction)

0.99

Mean acceleration of the burr in the
anterior-posterior axis

0.61

Mean acceleration of the burr in the
medial-lateral axis

0.73

Mean acceleration of the suction in the
medial-lateral axis

0.46

Mean velocity of the burr when removing
ligamentum flavum

1.16

Maximum velocity of the burr when
removing ligamentum flavum

0.87

Variance of the pitch angle of the burr
when removing L3

0.34
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hence, in our case, the process was repeated 41 times. Because
algorithms are built according to various parameters, these
were adjusted in an iterative manner to optimize classification
accuracy.

Metric Analysis
To analyze the performance of senior and junior participants,
the ratio of the average metric score for senior and junior par-
ticipants (the fold difference) was calculated for each metric.

Results
Twenty-two senior participants (6 spine surgeons, 3 spine fellows,
and 13 senior residents) and 19 junior participants (11 junior
residents and 8medical students) were recruited. The distribution
of the participants’ training level and specialty is presented in
Table II. The number of laminectomy cases inwhich each resident
assisted is outlined in Table III. Forty-one metrics were generated.
Of these, 36 metrics were selected by spine surgeons and are
presented in Table IV. The backward algorithm identified 12 final
metrics, which are listed in Table V. Eight metrics relate to motion
of the tools, and 4 relate to safety, efficiency, and coordination.
The maximum force applied on dura is lower in the senior group
(fold difference: 0.56). The amount of time spent while simulta-
neously using the burr and suction instruments was higher for
senior participants (fold difference: 1.73). The senior participants
touched adjacent structures more with their suction instrument
while removing L3 with the burr (fold difference: 2.18). The ratio
of the amount of time spent removing L3 to the total time of the
procedure was similar in both groups (fold difference: 0.96).
Finally, senior participants displayed slower deceleration overall,
showed higher delays between 2 consecutive accelerations while
removing L3, and exhibited less variance in the pitch angle of the
burr when they removed L3.

Using leave-one-out cross-validation, 5 algorithms were
assessed. The support vector machine achieved the highest
accuracy, at 97.6%. The k-nearest neighbors, linear discrimi-

nant analysis, decision tree, and naive Bayes had 92.7, 87.8,
70.7, and 65.9% accuracy, respectively (Fig. 3).

A confusion matrix was produced for the support vec-
tor machine algorithm (Fig. 4). Only 1 junior surgeon was
misclassified.

Discussion
Machine learning algorithms have defined novel metrics of
surgical performance in a virtual reality spinal task. This ad-
dresses our first research question.

The 4 areas of surgical skill that had been identified were
represented in the 12 metrics that were selected. From a safety
perspective, the senior group restricted the force applied on the
dura. This is an important metric to teach, considering that
applying high forces on the dura may increase the risk of dural
tear. The senior participants also used their tools simultaneously
more often than the junior participants. This shows the impor-
tance of the acquisition of bimanual skills in spine surgery. Fur-
thermore, the senior participants displayed less angle variance
with the burr when removing L3 and higher delays between 2
acceleration peaks, which provides new insights on the consis-
tency of their movements. These results support that surgical skill
is multifaceted and may benefit from teaching based on metrics
that embody different aspects of surgical performance.

An automated feedback system was created with these
metrics. Future participants will be able to see their scores on
each of the metrics, as well as a global classification of the
surgical training level (junior or senior). In addition, they will
individually be guided to improve their skills through video-
based and auditory feedback, which attempts to mimic current
training in the operating room whereby surgeons explain what
to improve and demonstrate how to do it.

Fig. 3

The support vector machine (SVM) achieved the highest accuracy, at

97.6%, with use of leave-one-out cross-validation. The k-nearest neighbors

(kNN) reachedanaccuracyof 92.7%. The linear discriminant analysis (LDA)

achieved an accuracy of 87.8%. The decision tree had a 70.7% accuracy.

The naive Bayes reached the lowest accuracy, at 65.9%.

Fig. 4

Using leave-one-out cross-validation, the support vectormachine classified

senior participants with a sensitivity of 100% and junior participants with a

specificity of 94.7%. The obtained positive predictive value (PPV) was

95.7%, and the negative predictive value (NPV) was 100%. The algorithm

achieved an overall classification accuracy of 97.6%.
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We addressed the second research question by training a
support vector machine algorithm with 12 metrics to classify
senior and junior participants performing a virtual reality spine
procedure. The advantage of applying machine learning to our
multivariate data set is that it provides a more objective and
holistic assessment of psychomotor performance.

As a support vector criterion was employed to select met-
rics, the final metrics were likely best performed with support
vector machine algorithms. To evaluate the ability of thesemetrics
to differentiate training level, other algorithms were trained with
the same metrics. Two other algorithms (the k-nearest neighbors
and the linear discriminant analysis) displayed accuracies of
>75%, thereby addressing the third outlined research question.

The subject who was misclassified by the support vector
machine algorithm was a PGY-2. Although we cannot be certain
that this misclassification is attributed to a higher set of skills, we
analyzed this individual’s metrics to understand this result. This
individual applied less force on the dura, spent more time using
both tools simultaneously, and displayed more consistency with
the burr (less variance in pitch angle and larger distance between 2
acceleration peaks) than other juniors. These results suggest that
this individual’s performance was more consistent with the
expected performance of the senior group.

Participants were from multiple institutions and 2 special-
ties (neurosurgery and orthopaedics), making these data more
representative of different training paradigms. Incorporating res-
idents from both specialties allows the platform to have the poten-
tial to improve the standardization of spine training. However,
this study was only an initial step to incorporate these technolo-
gies in residency training. It acts only as a proof of concept, and
generalizability testing in a new population is required to ensure
that the algorithm is not overfitted and to evaluate the platform’s
potential in training. This algorithm was trained according to
residency training levels without explicit knowledge of surgical
skill and has yet to be tested on an independent data set. Thus, it
cannot be used to certify the proficiency of residents prior to
independent practice, nor can it assess surgical skill level with
certainty, but it may help with psychomotor skills acquisition.

There are limitations to employing machine learning
in this simulated procedure. First, simulated burr and suc-
tion instruments are not representative of the many instru-
ments and bimanual psychomotor skills that are employed
during spine operations. Second, the visual and haptic com-
plexities of the simulated procedure, the task duration, and
the need to use a microscopic view may not adequately dis-
criminate operator performance. More complex and realistic
scenarios involving use of multiple instruments are currently
being studied to address these issues. Third, although participants
were asked to remove only the lamina, the lamina was not seg-
mented separately from the spinous process and the facets. There-
fore, the volume of lamina that was removed could not be
determined. The new spine scenarios that are being developed
are designed to segment all of the surrounding structures.

Defining participants’ surgical skill level is difficult22,23.
The number of surgical cases in which residents assist is often
biased when reported by residents and may not reflect the skills

acquired throughout their residency24. It was implied that senior
residents had acquired the basic skills of using burr and suction
instruments. Since spine training varies from 1 program to
another and PGY-4 is a pivotal year in terms of surgical skill
acquisition, efforts were made to understand whether the PGY-
4 individuals should be included in the senior group. Thus, the
study was repeated without incorporating the PGY-4 participants.
The support vector machine algorithm achieved a 100% accuracy
with 10 metrics, 6 of which are part of the 12 final metrics that
have been described above. This is consistent with the concept that
the psychomotor skills of PGY-4 participants in this study were
more aligned with the senior group. However, assessment tools,
such as the Objective Structured Assessment of Technical Skill, to
evaluate residents’ skills a priori may help to provide a better
division of groups in the future25. Furthermore, if large numbers
of spine surgeons are recruited, 1-class learning could be used to
train algorithms to recognize expert performances and assess par-
ticipants according to expert standards. This could provide amore
robust evaluation of trainees’ technical skill level.

To our knowledge, this is the first investigation employing
machine learning to assess surgical expertise in a virtual reality
spine procedure. Methods outlined in this study could be applied
to any surgical simulation scenario provided that data on an indi-
vidual’s performance are collected. As virtual reality simulation
becomes more realistic and more widely utilized, algorithms will
becomemore robust. One could envision that once algorithms are
rigorously validated to recognize expert surgeons, surgical accred-
itation bodies could employ these techniques to ensure theirmem-
bers’ technical competency. The significance of this study lies in the
potential of combining virtual reality simulation and artificial intel-
ligence to provide safer training and objective assessment of sur-
gical skills, which could lead to improved patient care.
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