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Purpose: Visual acuity, measured by resolution of optotypes on a standard eye chart,
is a critical clinical test for function of the visual system in humans. Behavioral tests in
animals can be used to estimate visual acuity. However, such tests may be limited in
the study of mutants or after synthetic vision restoration techniques. Because the total
response of the retina to a visual scene is encoded in spiking patterns of retinal ganglion
cells, it should be possible to estimate visual acuity in vitro from the retina by analyzing
retinal ganglion cell output in response to test stimuli.

Methods:We created a method, EyeCandy, that combines a visual stimulus-generating
engine with analysis of multielectrode array retinal recordings via a machine learning
approach tomeasuremurine retinal acuity in vitro. Visual stimuli included static checker-
boards, drifting gratings, and letter optotypes.

Results: In retinas from wild-type C57Bl/6 mice, retinal acuity measurement for a drift-
ing grating was 0.4 cycles per degree. In contrast, retinas from adult rd1mice with outer
retinal degeneration showed no detectable acuity. A comparison of acuities among
different regions of the retina revealed substantial variation, with the inferior–nasal
quadrant havinghighest RA. Letter classification accuracy of a projected Early Treatment
Diabetic Retinopathy eye chart reached 99% accuracy for logMAR 3.0 letters. EyeCandy
measured a restored RA of 0.05 and 0.08 cycles per degree for static and dynamic stimuli
respectively from the retina of the rd1mouse treatedwith the azobenzene photoswitch
BENAQ.

Conclusions:Machine learning may be used to estimate retinal acuity.

Translational Relevance: The use of ex vivo retinal acuity measurement may allow
determination of effects of mutations, drugs, injury, or other manipulations on retinal
visual function.

Introduction

In humans, visual acuity is tested clinically by
asking the subject to read high-contrast, standardized
optotype letters subtending smaller angles of resolu-
tion until the individual can no longer correctly identify
individual letters. Visual acuity testing is the corner-
stone of the clinical evaluation of visual function
and has been used as a primary end point in many
pharmacological and surgical clinical trials. Visual

acuity testing in animals is inferential and is performed
with behavioral tests such as optokinetic reflex testing
or learned associative tests such as forced choice
maze navigation.1,2 Optokinetic testing is limited to a
specific stimulus, simulating a rotating drum. Acuity
to static stimuli cannot be estimated by this technique.
The forced choice testing requires repeated training
of animals in an associative learning task. Animals
vary in their ability to learn this association; in
many paradigms, untrainable animals are omitted from
trials.3 All visual acuity testing methods in mice require
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intact motor function and normal central nervous
system function, which can create significant limita-
tions. For example,mutations resulting in neurologic or
muscular deficits along with retinal dysfunction cannot
be studied. Studying the effects of agents that influ-
ence vision and alertness simultaneously may not be
possible. Similarly, studying short-term vision restora-
tion (e.g., with small molecule photoswitches) in which
the duration of action of the agent is shorter than the
period required for associative learning, may be impos-
sible.

Visual processing is initiated by a highly organized
neural network within the retina. Incident light is
focused by cornea and lens, and captured by a
high density array of photoreceptive cells (rods and
cones), which feed information forward through neural
retinal processing layers (horizontal, bipolar, and
amacrine) via synaptic and gap junction connections,
to ultimately drive action potentials in a small and
diverse set of retinal ganglion cells (RGCs).4 All visual
information in a scene is thus encoded in the time-
series of spikes from this set of neurons. Early inves-
tigations of the neural code employed by ganglion cells
in transmitting visual information found that statistical
analysis of RGC spike trains could predict the presence
or absence of light presentation.5,6 Warland et al.7
showed that both an artificial neural network trained
by back-propagation to match spike trains with stimuli
and an optimized linear filter on action potentials were
able to decipher visual information from a population
of salamander RGCs. More recently, Bayesian decod-
ing has been used to determine visual performance
of in vitro retinas tested via multielectrode arrays.8–10
Such estimates may be considered measurement of
“retinal acuity"; the term visual acuity is reserved for
performance of the fully intact visual system (including
central nervous system function). Previous approaches
either established a theoretical upper bound on retinal
acuity by extrapolating decoding performance from a
few cells to an estimated RGC density or measured
a coarse lower bound for retinal acuity significantly
below animal VA performance. The advent and rapid
advances in machine learning (ML) tools has led to
their application in vision research,11 and raises the
possibility that ML could be used to serve as surrogate
for central nervous system function in determination
of retinal acuity. To date, however, a comprehensive
platform that arranges customizable stimuli and data
processing for analysis via ML for the purpose of in
vitro acuity measurement has not been developed.

Here we describe the EyeCandy platform for the
automated assessment of retinal acuity. The platform
consists of two major components: a web-based
projected image stimulation engine, and a paired analy-

sis package. The stimulation engine is run through a
digital projector and optical system to present a defined
series of high-resolution visual stimuli to the retina
in vitro. Multielectrode array (MEA) recording data
of RGC firing are collected and analyzed via a ML
approach, in which the computer learns the RGC firing
patterns associated with specific presented patterns,
and then is tested on novel presentations of similar
stimuli. The error rate of the ML is a measure of the
information content present in the RGC train and,
thus, puts a lower limit to retinal acuity. We demon-
strate the usefulness of this system in assessing visual
potential of the mouse retina in several paradigms that
are challenging for in vivo visual acuity assessment.

Methods

Animals

Adult C57BL/6J (wt) and C3H/HeJ (Pde6brd1/
Pde6brd1, referred to herein as rd1) mice between 4
and 12 months old (Jackson laboratory, Bar Harbor,
ME) were used in this study. Both male and female
mice were incorporated into studies randomly. All
animals were treated in accordance with the ARVO
Statement for the Use of Animals in Ophthalmic
and Vision Research and all animal experiments were
conducted following approved protocols by the institu-
tional animal care and use committee at the University
of Washington. All parameters were tested across at
least four retinas. Figure panels represent experiments
on individual retinas.

MEA Recordings

Euthanasia of all mice was performed using
CO2. Eyes were enucleated quickly and placed into
room temperature artificial cerebrospinal fluid (ACSF)
under a dim red light. ACSF solution contained
125 mM NaCl, 2.5 mM KCl, 1.25 mM NaH2PO4,
1 mM MgCl2, 2 mM CaCl2, 26 mM NaHCO3, and
20 mM D-glucose and aerated with 95% O2/5% CO2.
Isolated retinas, one-half sections separated between
superior and inferior, were placed whole-mount with
retinal quadrant-specific sections, RGC layer facing
down, onto a 60-channel MEA spanning approxi-
mately 2.56mm2 (60MEA200/30iR-Ti,Multi Channel
Systems, Reutlingen, Germany) and recorded on a
MEA 1060-inv-BC system. Retinas were kept at 34°C
and continuously perfused with ACSF at 3 mL/min
and allowed to settle and recover for 1 hour before
recordings. Processing of extracellular spikes was
performed using Offline Sorter V3 (Plexon, Dallas,
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TX); Butterworth-filtered raw signals were high-pass
filtered at 330 Hz and digitized at 20 kHz with a spike
threshold setting of 5 SD for each channel. Spike detec-
tion occurred using raw signal amplitude thresholds
using standard deviations from mean of peak heights
histogram with sigmas at –3.80; unsorted waveforms
were excluded from further analyses. Spike sorting was
achieved using the Automatic Sorting feature with the
T-Dist E-M sorting method with a D.O.F multiplier of
15, sorted in two-dimensional space.

Drug Treatments

DNQX (50 μM) and AP5 (25 μM) (Tocris
Biosciences, Bristol, UK) in ACSF were administered
under continuous perfusion 1 hour before and during
visual stimulation. Washout procedures consisted of
1 hour perfusion with ACSF. BENAQ (100 μM) with
a final concentration of 10% cyclodextrin (Reagent
World, Irvine, CA) was administered for 1 hour under
perfusion before light stimulation testing.

Stimulator

A Digital Light Projector (DLP) LightCrafter 4500
(Texas Instruments, Dallas, TX) coupled to a custom
optical, two-lens system capable of 6 cycles per degree
(cpd) resolution focused light stimulation onto the
retina from below (i.e., presenting to the ganglion cell
side of the retina, consistent with normal vision). The
system provided 1280 × 800 pixels of spatiotemporally
patterned stimulation over the area of the MEA with
a refresh rate of 60 Hz and control of brightness and
simultaneous RGB LED operation. The DLP projec-
tor was outfitted with three independently controlled
RGBLEDs with a recordedmaximum emission at 617,
509 and 455 nm for red, green, and blue, respectively,
with an average half-width of ±30 nm. For all wt and
BENAQ-treated experiments, regardless of isolated
or compound use of LEDs, a total photon flux of
approximately 5 × 1010, approximately 3.5 × 1013 and
5.5 × 1016 photons/cm2*s at 500 nm, respectively, was
used as measured for each maximal emission regard-
less of stimulus color. For white light stimulations,
equivalent photon flux per LED was used at photopic
light levels. Total quantal catch for the MW- and UV-
opsin, respectively was calculated as 1.7 and 5.5 × 10−5

R*/cone/s.12

Stimuli

Unless noted otherwise each experimental stimu-
lus lasted 1 second and was preceded by 1 second of
darkness. All were followed by a uniform draw of 1.0

to 1.5 second seconds of darkness to limit adaptation.
For monitoring the integrity of the retina, each record-
ing began with 1 second of darkness, a 1-second full-
field flash, and 1.0 to 1.5 seconds of darkness. These
stimuli were repeated every 5 minutes.

In a single recording, we used either (1) a checker-
board protocol, where the positive stimuli displayed a
checkerboard pattern where the color of each square
swapped at 0.5 seconds for contrast trials and adjusted
accordingly for testing stimulus duration on accuracy
predictions. For these experiments, stimuli lasted for
the tested duration, from 0.1 to 1.0 second, for original
pattern and additionally for the negative, nonpattern
inversion, or positive, pattern inverted checkerboard.
The negative stimuli maintained a static pattern for the
entire 1 second, or (2) a drifting square grating proto-
col, where the positive stimuli moved up and right for
1 second and the negative stimuli moved down and left
for 1 second. Both checkerboards and gratings were
oriented at 45° to match the diamond pixel arrange-
ment of the digital micromirror device.

In a standard recording, 25 examples of each class
for each of 6 resolutions for each of 7 stimulus condi-
tions (i.e., contrast) were displayed for a total of 2100
stimuli presented over approximately 2 hours. Regular
periods of rest for up to 30 minutes were included in
the protocols to allow chromophore regeneration. All
wt retinal recordings were performed with the retinal
pigment epithelium intact. The stimuli were presented
in random order for each run.

For the Early Treatment Diabetic Retinopathy
(ETDRS) letter experiments, a similar protocol was
used wherein each stimulus came from 1 of 11 classes
(blank, C, D, H, K, N, O, R, S, V, or Z) using the Sloan
font. Each letter and blank was presented to the 11
retina for 1 second per trial.

Cell Clustering

Every 5minutes, we exposed the retina to 1.0 second
of darkness, 0.5 seconds of full-fieldwhite light, and 2.0
seconds of darkness. We constructed the mean firing
rate per unit by binning the spikes across all trials into
1-ms bins, dividing by the trial count, and convolving
with a Gaussian kernel (50-ms bandwidth, cutoff at
6-sigma). We take the first two principal components,
and then used ordering points to identify the cluster-
ing structure13 according to a cosine distance metric,
a minimum steepness (xi) of 0.05, and a minimum of
8 units per cluster. When applied to our highest-acuity
recording—a grating contrast experiment—this analy-
sis resulted in 157 of 270 units split into 13 clusters.
Although unbiased, the extracted clusters are sensitive
to changes in preprocessing. To improve robustness,
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we constructed a reachability plot: a graphical repre-
sentation of ordering points to identify the cluster-
ing structure that is analogous to the dendrogram in
hierarchical clustering. We use this plot to select a
noise threshold, epsilon, that separates “true” clusters
from noise by identifying regions of low density, and
extracting clusters according to density-based spatial
clustering of applications with noise.14 We empirically
found that an epsilon between 0.004 and 0.016 provides
consistent results across multiple retinas. We reliably
extracted clusters that correspondwith off cells (cluster
0), on cells (cluster 3), and on–off cells that are either
balanced (cluster 2), have an enhanced off response
(cluster 1), or a stronger on response (cluster 4).

Feature Extraction and Cross-Validation

We initially constructed a featurized representation
of the RGC responses to each 1-second checkerboard
or grating stimuli by counting the number of spikes per
unit per 100-ms time bins and flattened these counts
into a one-dimension feature vector. The target for
each example was either 0 or 1, corresponding with
either two identical checkerboards or two alternat-
ing checkerboards or drifting grating to the left or
drifting grating to the right. For optotype disinclina-
tion outputs were 0 to 9, corresponding with each
of the ten ETDRS letters. We split the 6 sizes × 7
contrasts × 25 repetitions × 2 classes into 42 groups of
50 samples. Using Monte Carlo cross-validation,15 we
randomly partitioned the 50 samples into 30 training
examples that were used to train a radial basis function
(RBF) kernel support vector machine (SVM)16 and
20 withheld examples used to test the accuracy of
the SVM. For classification of ETDRS letters, we
used a one-against-all strategy for generalization to 11
classes.17 This partition process was repeated 30 times
to construct a sample mean from the accuracy of the
SVM on withheld data.

RBF Kernel SVM Classifier

For each Monte Carlo cross-validation draw, we
performed a grid search on two RBF kernel SVM
hyperparameters, C, a regularization parameter against
the decision function’s margin, and gamma, a param-
eter adjusting the radius of influence of each example
15 SVMmodels were trained for each draw of training
examples, and the best-performing model, as measured
by accuracy on training data, was chosen for evalua-
tion on the withheld test data. Thus, for each group we
trained number of draws × models per grid search =
450 SVM models. For each full recording, we trained
18,900 unique SVM models.

The Cycles Per Degree (cpd) of the Projected
Stimuli

Our setup projects 13.09 pixels per degree in x
and 12.54 pixels per degree in y. This was calculated
based on a posterior nodal distance of 2 mm.18 We
used the smaller of the two numbers for conserva-
tively converting stimulus size in pixels into cycles per
degree or logarithm of the minimum angle of resolu-
tion (logMAR).

Acuity Threshold

A neural code is capable of transmitting informa-
tion at a particular spatial acuity if a receiver is capable
of recovering the signal at a low error rate. Therefore,
we defined the acuity threshold as the highest value
of cycles per degree for which the mean accuracy level
outperformed random chance at a 1% or lower signifi-
cance level. Contrast sensitivity was similarly defined as
the largest value of 1/contrast for a given spatial acuity
that outperformed random chance at a 1% or lower
significance level.

Data Availability

The data used to support this article are available
upon request from the corresponding author.

Results

The experimental construct consists of three parts:
the stimulator, which projects psychophysical stimuli
on the isolated retina in vitro; the MEA system record-
ing system, which samples and collects RGC spike
trains in response to each stimulus; and the data
processor, which translates the spike trains into data
streams to be processed using ML. Both the stimula-
tor and MEA system are commercially available (DLP
LightCrafter 4500 and Multi Channel Systems MEA,
respectively) (Fig. 1). The stimulator is powered by a
webpage served byEyeCandy, which leveragesHTML5
canvas to provide cross-platform GPU acceleration for
high-performance stimulation. Protocols were written
in the EyeCandy Programming Language, enabling
the creation of multihour experiments with thousands
of stimuli presented in a time-stratified random order
to avoid confounds from adaptation or preparation
decay. For each experiment, a human- and machine-
readable laboratory notebookwas automatically gener-
ated that included stimulus metadata such as spatial
resolution, stimulus class, and condition (e.g., contrast
or drift speed). This laboratory notebook and spike-
sorted data were passed to Glia, an analysis package
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Figure 1. Components of the EyeCandy system. (a) Schematic diagram of tandem DLP-based stimulator and multielectrode array with
sample stimuli. Images of the digital micromirror device (DMD) are formed between lenses L1 (f= 200mm) and L2 (f= 150mm) and on the
MEA-mounted retina. Isolated retinas were placed RGC layer facing down, onto theMEA. C, cones; R, rods; H, horizontal cells; B, bipolar cells;
A, amacrine cells; G, ganglion cells. (b) Spike raster plot ofmultiple trialswith varyinggratingwidths (color) anddurations (area). Sixty percent
of trials for each condition are randomly assigned to training and labeled with direction+ or –, and the remaining 40% of trials are assigned
to test, denoted by “?”. Unit number indicates the number of individual RGCs recorded (n = 8 retinas). Classifier performance is estimated
bymultiple draws (checkerboard and grating stimulus samples) usingMonte Carlo cross-validation (MCCV), and uses the classifier accuracy
from each draw to calculate the standard error of the mean. (c) Illustration of how the penalty parameter, C, and kernel coefficient, gamma
(γ ), of the RBF influences a SVM classifier on actual data. To visualize, we projected each data point onto the first two principal components
before training an SVM. The classifier performs a grid search over C and gamma to find the best performing SVM on training data. The solid
line represents the decision boundary and the dotted line shows themargin. (d) Classification accuracy as a function of number of available
training examples across five different stimulus time durations (see Methods).

written in Python, for training a SVM classifier on a
time-stratified subselection of data of varying class, but
consistent spatial resolution and condition. A separate
classifier was trained for each combination of spatial
resolution and condition. We defined retinal acuity as
the highest- acuity set of stimuli for which we obtain a
P value of less than .01 statistically significant classifi-
cation accuracy on held-out test data.

Estimation of Ex Vivo Retinal Acuity to Static
and Dynamic Stimuli

A variety of visual behavior tests have been devel-
oped for rodents with either static or dynamic

stimuli.1–3 We initially tested two widely used
paradigms using black-and-white stimuli for a binary
classification task: an alternating checkerboard (a
static measure since there is no directional motion of
the stimulus), and a kinetic drifting grating (Fig. 1b).
For checkerboard acuity, we used RBF kernel SVMs
to distinguish whether the retina was presented with
either (a) two sequential identical checkerboards or (b)
two sequential alternating checkerboards. For drift-
ing gratings, we trained the classifier to distinguish
between two opposing directions of drift. For both
paradigms, three degrees of freedom were modulated:
spatial resolution, contrast, and stimulus duration.
For drifting gratings, a fourth parameter—drift
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speed—was also varied. Unless noted, a typical test
for each paradigm per retina consisted of 6 sizes × 7
contrasts × 25 repetitions × 2 classes (+, –), resulting
in 42 groups of 50 samples. A separate classifier was
created for each group.

We evaluated the performance of several standard
classification approaches: logistic regression, multi-
layer perceptron, convolutional neural networks,
nearest neighbor, random forests, and SVM. Multi-
layer perceptron, random forests, and SVM consis-
tently had the highest performance. We selected SVM
as our model of choice; during Monte Carlo cross-
validation, we found that SVM had lower variance
in classification accuracy than random forests or
multilayer perceptron models. Although deep learn-
ing approaches achieve state-of-art performance in
numerous benchmark tasks, SVM is better suited for
problems with low sample counts and where fast and
robust training is required.19

Of the 50 samples, 30 training examples (15 of
each class) were used to train a particular SVM and
20 withheld examples (10 of each class) were used to
test the classification accuracy of the classifier. Analy-
ses using varying fractions of training examples and
withheld test examples suggested that the 60% training
set provided near-saturation discrimination for high
contrast stimuli. Using higher proportions of training
versus held-out datasets resulted in better performance
for low-contrast stimuli, but at the cost of substantially
higher standard error of measurement (Supplementary
Fig. S4).

Using the training data, we performed a grid search
over the RBF’s C and gamma parameters , influencing
the margin of the decision zone and the influence of
each example, respectively, and used the best perform-
ing classifier to evaluate performance on the test data
(Fig. 1c).We empirically estimated theminimal number
of training examples needed for near-optimal classifi-
cation accuracy for a high acuity stimulus (Fig. 1d) to
maximize the number of unique stimuli per recording.
Themean and standard error of classification accuracy
were estimated via 30 draws of a Monte Carlo cross-
validation, a standard ML technique that repeatedly
draws a random training and test split without replace-
ment. We chose the 99th percentile of the binomial
distribution as our threshold for statistically significant
classification accuracy, which is 15/20= 75% for 20 test
stimuli with P(+) = P(−) = 0.5.

All tests were performed on freshly harvested
C57BL/6 mouse retinas with removal of the pigment
epithelium and cultured in oxygenated ACSF on the
MEA. We initially established the effect of stimu-
lus duration on classification accuracy, because this
parameter plays a crucial role in the number of stimuli

that can be presented in one experiment. Testing
the durations of checkerboard presentation from 0.1
second to 1.0 second, we found that a stimulus of
at least 0.25 seconds was required to elicit a retinal
response that could be classifiedwith statistically signif-
icant prediction of retinal acuity (Fig. 2a, top right).
Increased duration of stimulus presentation correlated
with an increase in measured retinal acuity. Maximal
measured acuity for full contrast checkerboard in the
wild-type mouse retina was 0.25 cpd (Fig. 2a, top
left). To address retinal acuity to kinetic stimuli, we
developed a binary, drifting grating stimulus test that
incorporates testing for a range of spatial frequen-
cies, durations, contrasts, and drift speeds. Consider-
ing that the most abundant RGC cells in the mouse
retina, W3 RGCs, have the highest density and small-
est receptive field with specialized visual responses to
movement, we expected that dynamic stimuli would
improve retinal acuity testing.20 The maximal retinal
acuity measurement, 0.4 cpd, was accomplished at the
lowest speed recorded, 8°/s, at 100% contrast (Fig. 2b,
top right). In comparison with static checkerboard
testing, retinas were sensitive to drifting gratings at 0.1-
second durations of presentation at a constant speed
of 16°/s. Most durations tested had a retinal acuity
limit of 0.2 cpd (Fig. 2a, top right). Retinas blind from
outer retinal degeneration (rd1) did not reach thresh-
old for acuity with either static or dynamic stimulus
(lower subpanels in Figs. 2a and 2b). Given that rd1
retinas have a spontaneous hyperactivity with rhythmic
bursting of RGCs, these results indicate that the system
does not associate acuity with random spiking.21,22
This negative control also eliminates direct photoelec-
tric stimulation of MEA as a potential confound for
acuity measurements.

By altering contrast between adjacent blocks and
stripes in the checkerboard and drifting grating
paradigms, contrast sensitivity functions could be
derived. Contrast sensitivity (Figs. 2c, 2d) showed
maximal sensitivity at 0.15 and 0.22 cpd for static
and dynamic measurements, respectively. The curves
display a consistent decrease in contrast sensitivity with
increasing spatial frequency. This result is compara-
ble with in vivo testing with a two-alternative, forced-
choice method.23

To begin to analyze the contributions of individual
retinal cell types to the overall retinal acuity, we first
performed unsupervised clustering analysis of individ-
ual sorted cell responses to the 0.5-second bright flash
stimulus.24 This analysis yielded five distinct clusters,
with response parameters roughly corresponding to
ON- (clusters 3 and 4), OFF- (clusters 0 and 1), and
ON–OFF RGCs (cluster 2) (Supplementary Fig. S1a,
S1b). Cluster 2 cells were most numerous in this
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Figure 2. Static and dynamic measure of retinal acuity. (a) SVM classification performance in identifying checkerboard stimulus protocol
(see Methods) presented on each trial as a function of spatial frequency for varying contrasts (left) and presentation duration (right) on
wt (top) and control blind animals, rd1 (bottom). (b) SVM classification performance in identifying grating stimulus protocol (see Methods)
presented on each trial as a function of spatial frequency for varying speeds (left) and contrasts (right) onwt (top) and control blind animals,
rd1 (bottom). Contrast is reported in percentages, speeds as degrees per second, and durations as seconds. The dashed black line denotes
the performance expected by chance at 1%. (c and d) Summary of wild-type contrast thresholds for data in Figures 2a and 2b, respectively,
are shown as a function of spatial frequency for static and dynamic stimuli. Error bars are ± standard error of the mean. wt, C57BL/6J mice;
rd1; C3H/HeJ (Pde6brd1 / Pde6brd1) mice. All data points were recorded from one retina and found consistent across n = 10 retinas.

analysis. We next performed multiple random
samplings of each clustered cell type and attempted to
train the SVMprogramwith only those cells (i.e., could
the system discriminate motion direction from 1 cell, 2,
cells, 5 cells, etc., of a particular cluster). For compar-
ison, we also sampled from all populations by their
proportion in the retina (Supplementary Fig. S1c).
With the exception of rare cluster 2 (ON–OFF) cells,
single cells showed no direction selectivity and SVM
could not discern the direction of movement from
single cells of any class (Supplementary Fig. S1e). The
performance of the ensemble retina improved with
increasing numbers of units analyzed, showing nearly
perfect classification for high-contrast gratings at a
low spatial frequency after analysis of only 10 units.
However, even after analysis of 15 cells, the overall
performance was far below the performance gener-
ated from full retina with 60 units sampled (0.37
cpd) (Supplementary Fig. S4), demonstrating that
SVM used aggregate information from the full retinal

dataset in task discrimination. As expected, classifi-
cation for lower contrast stimuli required input from
more cells (e.g., SVM was able to correctly discern
direction of movement for 98% of 0.15 cpd stimuli
at 100% contrast using input from 15 cells vs 80%
classification for 50% contrast stripes). When given
input only from a single clustered cell type, the SVM
measured markedly different retinal acuity depending
on cluster (Supplementary Fig. S1c). Although the
system could readily classify 0.24 cpd stimulus at 100%
contrast from 10 cells from cluster 3 (ON), the system
could not reliably distinguish direction of movement
from an equivalent number of cluster 0 or cluster 1
cells (predominant -OFF populations). Interestingly,
performance for the cluster 3 cells in isolation outper-
formed performance of the retina as a whole for a given
number of cells (i.e., 10 cluster 3 cells showed better
retinal acuity measurement than 10 cells distributed
across classes). Whether this represents more useful
information derived from the concentrated cluster 3
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cell population or a dilution of useful information for
this specific task from other cell populations was not
tested.

Murine Retinal Acuity Shows Regional
Variation

The retinas of many species show localized areas of
increased acuity such as the fovea in primates and the
visual streak in canines.25 Localized regions of higher
acuity have not been described for the rodent retina to
date. Supplementary Figure S2 shows a representative
analysis of retinal acuity made from a single wild-type
mouse retina, divided into quadrants, using the static
checkerboard stimulus. ML classification performance
on checkerboard stimuli for varying contrasts were
dependent on spatial frequency and had a direct corre-
lation with increasing contrast. Overall, the highest
retinal acuity was measured from the inferior–nasal
quadrant with the inferior–temporal retina very nearly
matching those results with few exceptions. At full
contrast, the inferior–nasal retinal acuity threshold was
0.25 cpd. The superior–nasal retina outperformed its
temporal counterpart with higher accuracy per spatial
frequency and contrast measurements with maximal
limit at 100% contrast of approximately 0.15 cpd.
Analyses were consistent across three retinas; there-
fore, subsequent experiments were performed on the
inferior–nasal sections.

Reversible Pharmacological Inhibition of
Retinal Acuity

Having established that EyeCandy could reliably
measure retinal acuity of a retina in vitro from RGC
recordings, we tested the sensitivity of the system to
disruptions in the retinal visual stream. To block the
glutamatergic pathway from photoreceptors to RGCs,
retinas were treated with glutamatergic inhibitors
DNQX and D-AP-5. Classification of retinal acuity
in retinas continuously perfused with the inhibitory
cocktail failed to reach statistical significance for either
static or dynamic stimuli (Supplementary Fig. S3a
and S3b, middle). Perfusion washout for 1 hour with
ACSF restored significant retinal acuity classification
with a small loss in spatial frequency sensitivity when
compared to pre-treated retinas (Supplementary Fig.
S3a and S3b, left and right panels).

ETDRS Eye Chart Letter Classification

To establish stimuli relevant to clinical human visual
assessment, we developed a protocol that incorporated

the ETDR Study (ETDRS) eye chart to further test
retinal acuity.26 This optotype chart is routinely used in
human clinical trials to measure visual acuity. ETDRS
letters, white on black background to decrease photo
bleaching, were projected randomly with varying
logMARs onto the MEA-mounted retina and RGC
population responses were used to classify letter recall
accuracy using one-versus-all ML paradigm. Along
with letter presentations for 0.5 seconds, the proto-
col included full field flashes and periods of darkness
to avoid adaptation (Fig. 3a). To visualize how acuity
effects the similarity of population response to various
letters, we used t- distributed stochastic neighbor
embedding (t-SNE)27 to determine the extent to which
trials of the same letter cluster together (Fig. 3b). As
the logMAR increases above 3.0, clusters of letters
separate cleanly, with C and O and N and H remaining
in proximity as expected by their high degree of similar-
ity in pixel space. The SVM classifier outperforms
what would be possible based on the two-dimensional
t-SNE analysis by operating in a high dimensional
space with labeled examples to draw optimal hyper-
planes. As would be expected for images occupying
a greater portion of retina, performance improved
substantially with number of units analyzed and
showed continued improvement that had not saturated
for smaller optotypes at 60 units (Supplementary Fig.
S4). The performance of the SVM can be evaluated
by examining the confusion matrix C on held-out test
data (Supplementary Fig. S5a) with entries, where cij
is the number of stimuli known to be letter i that
are predicted to be letter j. Increasing letter size (i.e.,
logMAR) increased total accuracy, with an almost
perfect classification of 99% achieved at a logMAR of
3.0. The minor misclassifications at a logMAR 3.0 of
occurredwith a single error withN classified asH and a
combined total of five errors between O and C. Similar
results were obtained across several retinas (Supple-
mentary Fig. S5b). Although this test may not repre-
sent an accurate account of amouse’s ability to identify
letters in vivo, it demonstrates two important features
of the test system: (1) the adaptability to present differ-
ent types of psychophysical tests and (2) the ability
to extract more complex information content from a
population of RGCs beyond simple linear shapes.

Measurement of Visual Acuity of Blind Retina
After Photopharmacological Treatment

Many vision restoration techniques under develop-
ment make use of the remaining inner retinal circuitry
that persists after photoreceptor degeneration.28 These
methods include implantation of electrode arrays or
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Figure 3. In vitro ETDRS eyechart testing. (a) Stimulation protocol of ETDRS eyechart. (b) Two-dimensional visualization of population
responses during individual trials using t-distributed stochastic neighbor embedding (n = 6 retinas).

photodiodes that electrically stimulate the remain-
ing inner retina (for review see29) and optogenetic
approaches in which light-sensitive proteins are trans-
genically expressed in surviving cells.30–32 Previously,
we and others have shown that light sensitivity can be
restored in rd1 mouse models with synthetic azoben-
zene photoswitch compounds.33 These compounds
are light-activated, voltage-gated potassium channel
blockers which confer light sensitivity onto RGCs in
the absence of photoreceptors. We subjected blind
rd1 retinas treated with the photoswitch BENAQ
to static and kinetic visual tests. The highest static

retinal acuity, 0.05 cpd, was measured at full contrast
(Fig. 4a, top). An improvement in retinal acuity to
0.08 cpd was measured with the kinetic grating test
(Fig. 4b, top) with the slowest speed tested (8°/s)
at 100% contrast. Figure 4b demonstrates that blind
retinas treated with BENAQ are motion sensitive with
a consistent trend of increasing retinal acuity with
decreasing grating speed. In themore complex ETDRS
test, an overall 88% precision in letter recognition
was restored in BENAQ-treated retinas at the lowest
retinal acuity tested, logMAR 3.2. Figure 4c (left,
control; right, BENAQ treated) shows a single run
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Figure 4. Retinal acuity of BENAQ-treated rd1 retina. (a) SVM classification performance in identifying checkerboard and (b) grating proto-
cols presented on each trial as a function of spatial frequency for varying contrasts and speeds on BENAQ-treated rd1 retinas (top) and
untreated (bottom). (c) Confusion matrix classifying 10 letters of the ETDRS chart each projected individually for logMAR 3.2 on rd1 retina
treated with BENAQ. Blue letters indicate correctly predicted trials per letter and red indicates incorrect letter predictions. d, Percent preci-
sion of SVM classification in letter recall as a function of logMAR for all sizes tested in control (wt retina, green), rd1 blind retina (blue) and rd1
BENAQ-treated retina (orange). Error bars are ± standard error of the mean. wt, C57BL/6J mice; rd1; C3H/HeJ (Pde6brd1 / Pde6brd1) mice (n =
4 retinas).

with 8 test trials per 10 letters presented. The only
significant errors occurred across classification with
the letters O and C; all other letters achieved over
88% precision. Overall, retinal acuity for BENAQ-
treated rd1 retinas showed approximately 0.5 log
decreased acuity compared with wild-type animals
(Fig. 4d).

Discussion

We describe an automated system for estimating
a lower bound of retinal acuity of the murine retina
in vitro. This system uses ML to associate trains of
action potentials emanating from RGCs with specific

stimuli. The system assumes that, if a ML algorithm
can accurately classify a particular stimulus from
RGC spike trains, then the resolving power of the
retina must have been sufficient for this task. In wild-
type mice, a maximal retinal acuity of 0.4 cpd was
measured using a drifting grating presented with white
light on the inferior–nasal quadrant of the retina. In
studies using the visual water maze task in wild-type
C57/Bl6 animals, the range of reported acuities varies
between 0.3 and 0.5 cpd.1,2 Although it is possible
that either the mouse brain or the computer classifi-
cation system could extract more useful information
for classification than the other, finding that acuity
measurements made by the computerized system are
very close to those measured in mice by behavioral
testing suggests comparable ability to extract visual
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information. Because our system only uses a small
fraction of all RGCs in the retina (<10%34), the
measured retinal acuity can be viewed as an estimated
lower bound on the information transmitted by the
total retina to the brain. Rompani et al.35 showed that
inmost cases only a small number of RGC’s relay infor-
mation to a single mouse lateral geniculate nucleus.
Recent findings suggest that as few as 14 RGCs are
involved in the process of complete summation under-
lying human luminance detection.36 Here we show that
our system is sensitive to several factors important to
vertebrate vision with an average sampling of approxi-
mately 250 RGCs.

Using EyeCandy, we were able to investigate retinal
acuity for three experimental conditions that would
be challenging for behavioral testing. First, we were
able to establish the relative acuity of different sections
of the mouse retina, finding the highest acuity in the
inferonasal quadrant. These results are consistent with
reports of increased photoreceptor density described
in the inferior mouse retina37; however, because the
measured acuity was still well below the theoretical
limits predicted by cone spacing in the mouse retina,
other mechanisms (such as regionally varying circuitry
within the retina38) may be responsible. Second, we
were able to measure the acute change in acuity
after pharmacological administration of glutamater-
gic blockers and establish reversibility of this interven-
tion. Systemic administration of these agents would
induce potentially lethal neurologic dysfunction. The
EyeCandy platform may thus have utility for toxicity
testing of retinal function in vitro. Finally, we were
able to demonstrate the rapid return of light-dependent
retinal function associated with acute treatment of the
retina with the photoswitch potassium channel blocker
azobenzene, BENAQ, and were able to demonstrate
restoration of acuity to both static and dynamic stimuli
to approximately 0.5 log less than wild type. Because
the half-life of some photoswitches may be on the
order of hours,33 learning-based acuity methods (such
as forced choice mazes) may not be used successfully
with these agents.

Numerous previous studies have analyzed the physi-
ologic responses of single ganglion cells to visual
stimuli in vitro and generated estimates of spatial
acuity of different ganglion cell classes.39,40 The
current technique complements these methods. First,
by analyzing the aggregate information content from
a full multielectrode array, a global retinal acuity is
estimated. This acuity seems to exceed the acuity
attributable to any individual cell or cell type (Supple-
mentary Figs. S1, S4), and thus specifically answers the
question as to whether the aggregate retinal response
encodes sufficient information content for a discrim-

inative task. In future studies, the redaction of very
specific RGC types with known spatial and tempo-
ral tuning can be performed to understand the neces-
sity of particular classes of RGCs to acuity to specific
stimuli,41 whereas the determination of acuity achieved
with only these cell types can determine the suffi-
ciency of ganglion cell subtypes in generating acuity.
Second, the system can be used for analysis of more
complex stimuli, such as ETDRS optotypes, that
exceed the receptive fields of individual ganglion cells.
Finally, future iterations of this system may be able
to perform ML-guided reconstruction of images from
retinal output (in effect, using ML to solve the retinal
encoding problem), a task that would be impossible
from single cell recordings.

Numerous opportunities for improvement of the
system exist. Although we have shown that the number
of training and test sets used in the current protocol
is adequate to recapitulate retinal acuity comparable
with whole animal visual acuity, it is likely that larger
training sets may allow increased extraction of infor-
mation and improved performance for low-contrast
stimuli or for restored responses with photoswitches or
other methods for retinal reanimation. We focused on
the mouse retina as a well-studied model with readily
available genetic tools.

However, it must be recognized that the mouse
retina has inherently low acuity comparedwith primate
retina. The EyeCandy system should be directly adapt-
able to other species in the future. We may also
have limitations (particularly in primate retina) in the
relatively low sampling density of theMEAused in this
study (with 60 electrodes). Newer generation MEAs
have two to three orders of magnitude greater electrode
coverage and may allow extraction of more useful
information for higher estimates of retinal acuity.42 It
is also not clear that all RGC cell types are equiva-
lently sampled (particularly displaced ganglion cells);
alternative arrays with three-dimensional penetrating
electrodes may address this challenge.43 The EyeCandy
projection system is capable of projecting more
complex stimuli, allowing for testing of more physi-
ologically relevant probes such as real-world scenes.
Finally, although we have used ML for the discrim-
ination of a small set of image possibilities, this
technique could also be used to reconstruct images
from aggregate RGC firing output and, in this way,
be useful in analyzing the visual code from retina
to brain.

The demonstration of measurable acuity from
photoswitch-treated rd1 retinas suggests that the
EyeCandy system may be used to estimate and
compare the effects of vision restoration method-
ologies, such as stem cell photoreceptor replacement,44
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small molecule photoswitches, optogenetic gene
therapy,45 and opto-electronic stimulation46 on poten-
tial acuity ex vivo. In the current work, we show
proof of concept for the photoswitch BENAQ,47 but
several other photoswitches with varying cell targets
in the retina remain to be tested.48 Additionally, the
treatment of rd retinas with agents such as meclofe-
namic acid that decrease spontaneous oscillations49 or
with inhibitors of retinoic acid that reduce ganglion
cell hyperactivity after retinal degeneration50 may
increase the retinal acuity of retinas treated with vision
restoration methods.

The current system is semiautomated, requiring the
user to harvest and mount the retina on the MEA,
run the EyeCandy stimulus package, spike sort the
resulting MEA recordings, and analyze these with
Glia. No experience with programming is required
by the operator. The system makes use of free and
open source software including Scikit-Learn library for
Python. Currently, the system has an optical limita-
tion of presenting 6 cpd for a grating stimulus, which is
far beyond the visual limitations of the mouse retina
but within the anticipated acuity limit of primate
retinas. Further optimizations of the system can be
achieved by upgrading the optics, using a projector
with higher resolution, and using high-density MEAs.
We anticipate this system will have broad applications
to problems in vision science, particularly in transla-
tional studies. Questions such as the relative effects of
disease on overall acuity and individual cell subtypes,
or the relative efficacy of vision restoration technolo-
gies on different cell classes and their contribution to
overall acuity may be addressed in studies in the near
future.
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