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ABSTRACT Erwinia amylovora is the causative agent of fire blight, a devastating dis-
ease of apples and pears worldwide. Here, we report draft genome sequences of
four streptomycin-sensitive strains of E. amylovora that were isolated from diseased
apple trees in Ohio.

Fire blight, which is caused by Erwinia amylovora, is among the most devastating bac-
terial diseases of apples worldwide and occurs annually in Ohio orchards. Antibiotics,

especially streptomycin sulfate, are the most effective strategy to control this disease (1).
However, widespread use of streptomycin has led to the emergence of streptomycin-re-
sistant (SmR) E. amylovora strains in orchards across the United States (2). We sequenced
the genomes of four streptomycin-sensitive (SmS) strains of E. amylovora that had been
isolated from diseased commercial apple trees in Ohio.

Bacterial isolations from symptomatic shoots were conducted using Crosse-Goodman
medium and nutrient broth yeast (NBY) agar as described previously (3). Erwinia amylo-
vora strains (Table 1) were screened for SmR using a bioassay test (4). Single colonies
were restored from 30% glycerol stocks by streaking on NBY medium, and total genomic
DNA was extracted using the Nextera DNA Flex microbial colony extraction protocol (5).
Extracted DNA was quantified by spectrophotometry and adjusted to 20 ng/ml for library
preparation. Sequencing libraries were prepared using the Illumina DNA preparation kit,
and the libraries were sequenced on the Illumina iSeq 100 platform with 150-bp paired-
end sequencing. Default parameters were used for all software unless otherwise speci-
fied. Illumina Local Run Manager software was used to convert and trim the resulting
sequences. The quality of sequenced reads was assessed with FastQC v0.11.9 (6). SPAdes
v3.14.1 was used to de novo assemble the E. amylovora genomes and determine genome
coverage (7). Genomes were annotated using the NCBI Prokaryotic Genome Annotation
Pipeline (PGAP) v5.2 (8–10).

Classification of the assembled genomes was conducted by average nucleotide
identity (ANI) analysis using the enveomics collection (11) and LINbase with genome
sequence as the identification method (12–16). SmR in E. amylovora occurs either from
the presence of strA and strB on plasmids pEA29 or pEA34 or through a mutation in
codon 43 of rpsL (17, 18). The presence of SmR genes was analyzed by mapping strain
reads to E. amylovora plasmid pEA34 (GenBank accession number M96392.1) and rpsL
(GenBank accession number NC_013961.1) with the programs BWAv0.17 and
IGVv2.10.3 and by conducting BLAST searches for these genes against the assembled
genomes (19–21). The four E. amylovora strains were nearly identical to the reference
strain (E. amylovora ATCC 49946 [GenBank accession number FN666575.1]), with ANI
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values ranging from 99.89% to 99.98% (Table 1). LINbase results confirmed E. amylo-
vora as the best match for each sequenced genome. All four Ohio strains contained
the E. amylovora strain Ea88 ubiquitous plasmid pEA29 (GenBank accession number
NC_005706.1) but not strA, strB, or pEA34, indicating an SmS genotype (17, 18).

The genome sequences and genomic analysis workflow for the SmS strains provide
a baseline to screen and monitor for SmR in Ohio apple orchards. Further genomic
analysis of E. amylovora will increase our understanding of the genetic basis for resist-
ance, allowing us to better address the sustainability of streptomycin use for fire blight
management.

Data availability. Data were deposited in NCBI GenBank (BioProject accession num-
ber PRJNA756955). The partial genomes were also deposited in LINbase. The BioSample
accession number, GenBank accession number, and LINbase number for each E. amylovora
strain are presented in Table 1.
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