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Abstract

The impact of snow darkening by deposition of light absorbing aerosols (LAAs) on snow cover 

over the Himalaya-Tibetan-Plateau (HTP) and influence on the Asian summer monsoon are 

investigated using the NASA Goddard Earth Observing System Model Version 5 (GEOS-5). We 

find that during April-May-June, deposition of LAAs on snow leads to a reduction in surface 

albedo, initiating a sequence of feedback processes, starting with increased net surface solar 

radiation, rapid snowmelt in HTP and warming of the surface and upper troposphere, followed by 

enhanced low-level southwesterlies and increased dust loading over the Himalayas-Indo-Gangetic 

Plain. The warming is amplified by increased dust aerosol heating, and subsequently amplified by 

latent heating from enhanced precipitation over the Himalaya foothills and northern India, via the 

Elevated Heat Pump (EHP) effect during June-July-August. The reduced snow cover in the HTP 

anchors the enhanced heating over the Tibetan Plateau and its southern slopes, in conjunction with 

an enhancement of the Tibetan Anticyclone, and the development of an anomalous Rossby 

wavetrain over East Asia, leading to weakening of the subtropical westerly jet, and northward 

displacement and intensification of the Mei-Yu rainbelt. Our results suggest that atmosphere-land 

heating induced by LAAs, particularly desert dust play a fundamental role in physical processes 

underpinning the snow-monsoon relationship proposed by Blanford more than a century ago.
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1. Introduction

Since Blanford [1] first reported a possible inverse relationship, i.e., increased Himalayan 

snow cover linked to a weakened South Asian summer monsoon (SASM), nearly a century 

had elapsed before researchers began the rigorous pursue to better understand the 

relationship using modern satellite observations and global climate models. Modern studies 

of snow-monsoon relationship have provided more diverse perspectives of the original 

Blanford hypothesis that can be broadly categorized into three overlapping strands. Strand-1 

represents work done mostly in the 1970–1990’s, in which the original Blanford hypothesis 

was essentially affirmed, but with additional findings that the relationship might be a 

component of a broader connection between Eurasian boreal winter and spring snow cover 

and the South Asian Summer Monsoon (SASM) [2–10]. In Strand-2 (1980 to mid-2000’s) 

thanks to the advances of modern satellite data, global reanalysis data and global climate 

models, studies of Eurasian snow cover-monsoon relationships were expanded to include 

possible impacts on East Asian summer monsoon (EASM), and connections with major 

modes of global climate variability. Evidence were found that the snow-monsoon 

relationship could be attributed to the influence of El Nino Southern Oscillation (ENSO) on 

both snow cover and monsoon, and that the relationship is strongly masked by the influence 

of ENSO [11–17]. Included in this strand were also studies showing that the different 

patterns of Eurasian snow cover were controlled by various modes of natural climate 

variability, and that during certain periods, increased SASM precipitation was found to be 

preceded by above normal winter and spring snow cover over the Tibetan Plateau, contrary 

to the Blanford hypothesis [18–19]. Others have surmised that that a weakening of the snow-

monsoon relationship in recent decades may be related to a weakened ENSO-monsoon 

relationship, possibly due to climate change [20–21].

Strand-3 represents more recent studies from the mid-2000’s to the present, where the focus 

is back on the fundamental physical underpinnings of the Blanford’s snow-monsoon 

relationship, by removing or minimizing impacts of remote SST forcing from climate 

variability. Corti et al [22] found strong inverse relationship between Himalaya winter snow 

cover and Indian monsoon, unless a strong ENSO is present. Wu and Kirkman [23] noted 

that while ENSO and Tibetan snow cover compete for influence on the Indian monsoon, 

they cooperate to enhance monsoon precipitation over southern China, via a wave train 

signal connecting the two regions. Fasullo [24] used a stratified diagnostic methodology and 

found that in ENSO neutral years, the inverse relationship between Himalayas-Tibetan 

Plateau (HTP) snow cover and Indian monsoon rainfall was highly significant, while for 

Eurasian snow cover the correlation with Indian monsoon rainfall is only modest. Turner and 

Slingo [25] found similar results in numerical model experiments using the HadCM3 

coupled model, indicating that an increase in surface albedo due to more snow cover over 

the HTP is key to reduction in surface fluxes leading to a cooling of the Tibetan Plateau, and 

reduced meridional tropospheric temperature gradient during the early summer, and 

therefore a weaker SASM. In related modeling studies, Wang et al. [26] found that a warmer 

and less snow-covered Tibetan Plateau (TP) could lead to increased summer monsoon 

precipitation over northern India, and an enhanced subtropical Mei-Yu rain belt over East 

Asia, in conjunction with the development of an upper-troposphere Rossby wave train, 
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spanning the TP and subtropical East Asia. Overall, in all three strands, studies were largely 

based on observational correlative analyses, which were highly dependent on the spatial and 

temporal windows chosen. So far modeling studies to isolate the snow-monsoon relationship 

have been limited to using various prescribed idealized snow cover changes as boundary 

forcing to the atmosphere, without consideration of the feedback processes involving 

snowmelt and atmospheric dynamics. There is a relative dearth of process-oriented modeling 

studies, especially with regard to the physics of snowmelt. As a result, the fundamental 

physical processes involved in snow cover change, and interactions with monsoon dynamics 

remain poorly understood.

Contemporaneous with the Strand-3 studies, there has been an explosive growth in studies of 

the aerosol-monsoon interactions, indicating that ambient aerosols, both natural and 

anthropogenic, through direct (radiative) and indirect (microphysical) effects could have a 

strong impact on Asian monsoon forcing, variability and change [27–39]. Shielding of solar 

radiation by aerosols, i.e., solar dimming effect, cools the land surface over Asia, reduces 

land-sea contrast and thus weakens the monsoon [28]. On the other hand, atmospheric 

heating by light absorbing aerosols (LAAs), i.e., black carbon (BC), organic carbon (OC) 

and desert dust over the Himalayan foothills and Indo-Gangetic Plain can heat the 

atmosphere, and induce diabatic heating and dynamical feedback via the so-called Elevated 

Heat Pump (EHP) effect, that could strengthen the early Indian summer monsoon, accelerate 

the melting of HTP snowpack, as well as modulate ENSO influence on the South Asian 

monsoon [30, 32, 41–47]. On seasonal and intra-seasonal time scales, effect of absorbing 

aerosols may affect the timing and duration of monsoon active and break periods, as well as 

advance the monsoon rainy season with increased frequency of extreme precipitation over 

the Himalayas foothills and northeastern India [48–50].

Another important impacts of aerosol on climate stems from the reduction of surface albedo 

by deposition of LAAs on snow surface, i.e., the snow darkening effect (SDE), causing 

increased absorption of surface solar radiation and warming of the extratropical land surface, 

and high mountain regions. During boreal spring, over the snow-cover regions of Eurasia, 

SDE far exceeds the aerosol dimming effect, resulting in strong positive radiative forcing 

[51–52]. The efficacy of snowmelt over the HTP, defined as the amount of snow-cover 

reduction per unit rise in surface warming is much larger due to LAAs than greenhouse 

warming [53]. Equilibrium climate model experiments show that SDE warms the 

extratropical Eurasian land surface by up to 2° C, compared no-SDE experiments, exerting 

significant impacts on the water and energy balances and hydro-climate of the Northern 

Hemisphere continents [54–57]. Based on historical data, significant quantities of LAAs 

have been found in snowpack and glacier in the HTP due to local emissions over South Asia, 

as well as remote transport from afar, causing increases surface solar radiation absorption 

via SDE by 5–20 Wm−2 [54, 58–59]. However, the roles of SDE on HTP snow cover on the 

Asian summer monsoon, and relevance to the snow-monsoon relationships have not been 

investigated. The objective of this paper is to shed new light on physical processes involving 

snowmelt induced by SDE over the HTP, and subsequent interactions with aerosol transport, 

atmosphere-land heating processes, and monsoon dynamics.
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2. Model and Methodology

To tease out the SDE impacts on the Asian summer monsoon (ASM), we have carried out 

numerical experiments using the NASA Goddard Earth Observing System Model Version 5 

(GEOS-5) climate model [60], under prescribed sea surface temperature (SST) and polar 

land-ice and sea-ice conditions. The land surface model in GEOS-5 is the catchment model 

[61–62], which uses the snowpack model of Lynch-Stieglitz [63]. Here, we use the newly 

developed GOddard SnoW Impurity Model (GOSWIM) snow darkening physics package 

which includes radiative transfer calculations of snow albedo and mass distributions of 

deposited constituent aerosols of dust, BC, and OC in snow [64–65]. Aerosol emission, 

transport and radiative processes are provided by the Goddard Chemistry Aerosol Radiation 

and Transport (GOCART) module [66]. The LAAs in GOCART consist of wind-generated 

mineral desert dusts [67], prescribed climatological black carbon (BC) and organic carbon 

(OC) emissions from anthropogenic and natural sources including fossil fuel and biomass 

burning [68–69]. The version of GEOS-5 used in this study does not include effects of 

aerosol-cloud microphysics interactions [70].

Two sets of 10-member ensemble experiments have been carried out. Each member consists 

of a 10-years simulation forced by prescribed observed SST from 2002–2011 [71], but with 

different atmospheric initial conditions, using the GEOS5 model at 2° x 2.5° latitude-

longitude horizontal resolution and with 72 vertical layers. The first set of experiments 

(referred to as SDE) employs the fully interactive land surface and snow processes including 

the GOSWIM SDE physics module. The second set of experiments (referred to as NSDE) is 

identical to the first except for the absence of SDE physics, i.e., constituents are not tracked 

in the snowpack, and do not affect the snow’s surface albedo. Atmospheric heating by 

LAA’s are included in both SDE and NSDE. The impact of SDE on monsoon climate are 

evaluated based on anomaly fields, defined as the difference in the ensemble mean 

climatology of the two experiments (SDE - NSDE), each climatology being based on the full 

100 years of simulation (10 years x 10 ensemble members). Statistical significance of the 

results is evaluated using the Student’s t-test. Further details of the model setup and 

comparison of ensemble mean climates of SDE and NSDE can be found in two related 

previous studies based on the same experiments, revealing the importance of SDE on 

continental scale water and energy balances over northern hemisphere continents [56], as 

well as on hydro-climate feedback, increasing frequency of heat waves over extratropical 

Eurasia land, during boreal spring and summer [57]. Model climatologies of monsoon 

rainfall, winds, temperature, aerosol optical depth (AOD), snow cover are validated with 

data from the Tropical Rainfall Measuring Mission (TRMM), the NASA Modern Era 

Retrospective-analysis for Research and Application, Version-2 (MERRA2) reanalysis, and 

MODerate-resolution Imaging Spectroradiometer (MODIS) respectively. In this work, we 

focus on the physical mechanisms of SDE impact on snow cover in the Himalayas-Tibetan 

Plateau (HTP) and subsequent influence on the ASM.

3. Results

In this section, we discuss in order, a) the monsoon-snow-aerosol climatology and 

comparison with observations, b) SDE-induced forcing and dynamical feedback processes, 
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c) changes in the mean monsoon equilibrium climatic states, and d) implication of our 

results on the fundamental physical underpinning of the Blanford hypothesis. At the outset, 

it is important to point out that the model LAAs considered here consist of only primary 

aerosols, i.e., desert dust, BC and OC. Chemical processes and secondary aerosol formation 

are not included. Dust aerosols, as in nature, are treated as intrinsic component of the 

aerosol-snow-monsoon climate system, with emission rates internally generated as functions 

of surface winds, atmospheric stability, and soil conditions over deserts and semi-arid 

regions. On the other hand, model BC and OC emissions are prescribed with seasonal 

climatology, including both natural and anthropogenic sources. All aerosols are transported 

by winds and subject to removal by both dry and wet depositions. In this work, we focus on 

the interactions of monsoon dynamics with ambient total aerosols (anthropogenic + natural) 

on sub-seasonal to seasonal time scales. For brevity, we refer to the sum total of BC and OC 

as carbonaceous aerosols (CA) in the following discussion.

3.1 Monsoon-snow-aerosol climatology

To begin, we compare the model climatologies of precipitation, winds, aerosol optical depth 

(AOD), and snow cover over the ASM regions to observations. The model shows overall 

features representing a reasonably realistic monsoon climate system, with heavy monsoon 

precipitation over northern India, the Himalayan foothills and the western Ghats and 

prevailing low-level southwesterly winds over the region (Fig. 1a, e). High AOD over 

northern India and the Himalayan foothills is due mostly to dust transported from the deserts 

of the Middle East and West Asia, by the monsoon southwesterlies across the Northern 

Arabian Sea, and from the Thar deserts to the Himalayas foothills (HF), as well as local 

emissions from biomass burning and industrial sources over Indo-Gangetic Plain (Fig. 1b, f). 

Large snow cover fraction is found over the western Himalayas, southern and northern 

slopes of the Tibetan Plateau (Fig. 1c, g). Compared to observations, the model 

climatologies have notable discrepancies. Specifically, the model precipitation is excessive 

over the Himalayas foothills, but too weak, and not as well defined over the eastern Bay of 

Bengal/western Indo-China regions (Fig. 1a, e). These biases are most likely due to the 

inability of the coarse resolution of the GEOS-5 model to simulate orographic precipitation 

over complex terrains. Model AOD’s are too high over the Middle East, and northeastern 

India and Pakistan (Fig 1b, f). Snow cover is excessive over the western Himalayas, and 

northern slopes of the TP (Fig. 1c, d).

The climatological seasonal cycles of key monsoon control variables show good match 

between model and observation (Fig. 1d, h). Key features include increasing upper 

tropospheric meridional temperature gradient, and intensifying All-India rainfall (Fig. 1d, h, 

upper panels) during the late boreal spring and early summer monsoon (April-May-June), 

coincident with a rapid reduction in snow water equivalent (SWE), and increased AOD over 

northern Arabian Sea and northern India (Fig. 2d, h, lower panels). The model AOD peaks 

in April-May, in advance of the peak in rainfall (July), reflecting the seasonal progression of 

competing effects of aerosol emission, transport, and precipitation washout, in general 

agreement with ground-based observations from AERONET [72–74], but slightly in advance 

of MODIS AOD, which peaks in June-July. Also noteworthy is that the model has maximum 

snow cover in MAM, compared to JFM in MODIS observations. The reason for the 
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temporal shifts in the model AOD and snow cover compared to MODIS are unclear. Worth 

noting here is that large uncertainties in snow cover and AOD in state-of-the-art global 

climate models, and in satellite retrievals still exist. Challenges in comparing model AOD 

and snow cover to satellite-derived estimates, and possible impact of model bias in our 

results will be discussed in the Conclusions (Section 4).

3.2 SDE induced forcing and feedback

During the developing phase of the SASM in April-May-June (AMJ), SDE induces a strong 

reduction in surface albedo (up to 0.3), and increase shortwave (SW) absorption (+ 5–30 

Wm−2) over the snow surface, most pronounced along the western, southern and eastern 

slopes of the HTP (Fig. 2a, b). The increased SW spurs rapid snowmelt and warming of the 

HTP land surface (Fig. 2 c, d). Also noteworthy is that in the southeastern and northwestern 

HTP regions, there are pockets of negative snowmelt flux (Fig. 2c), even though the SW 

surface forcing is positive. This is likely because of enhanced precipitation with enhanced 

convection and circulation, in the form of increased snowfall at higher elevations of the HTP 

during AMJ (see discussion pertaining to Fig. 3 in next subsection), that increases the snow 

amount, i.e, negative snowmelt flux, over some isolated regions where the rate of snowfall 

exceeds that of the snowmelt. As the snow cover is reduced, more areas of bare soil are 

exposed and the warming is accelerated through snow-albedo feedback [57]. As a result of 

SDE, the deposition of dust and CA in snow are also increased, especially over the Himalaya 

foothills (HF), which faces the increasing low-level monsoon southwesterlies (Fig. 2e, f, and 

Fig. 6b, later). Note that the large amplitude of the maximum surface warming (> 2°C), and 

related changes in accelerated snowmelt, loss of snow cover, as well as increased deposition 

of LAA’s in snow, are the result of full dynamical feedback of the coupled atmosphere-

snow-aerosol system, which not only amplifies the initial local SDE warming over HTP 

surface, but also exerts influence over extended domains from surface to the upper 

troposphere spanning the greater ASM regions, lasting through entire monsoon season, as 

discussed next.

From May to June, the SDE-induced surface warming ramps up, extending to the upper 

troposphere over the HTP (Fig. 3a, e), by way of increased surface heat fluxes from the 

warmer land [75–76]. The temperature and wind changes are amplified by increasing 

shortwave aerosol radiative forcing (ARF) in the atmosphere abutting the HF (Fig. 3b, f), as 

well as by latent heating from increased precipitation over the region (Fig. 3d, h). The 

increased shortwave ARF stems from increased dust accumulation over the HF, as evident in 

their similar distributions indicating increased dust accumulation over the HF (Fig. 3c, g). 

The accumulation of dust in the HF is enhanced by remote transport by the increased low-

level southwesterlies from the Middle East deserts, and at the same time, dust is removed by 

increased precipitation washout. The net increase in dust loading over the HF by SDE 

indicates that the accumulation out-weights the removal, resulting in a positive net ARF of 

the atmosphere. In contrast, CA, which are derived mostly from local emissions, are strongly 

removed due to SDE-induced increased precipitation washout, providing a negative heating 

feedback. Since the total ARF is positive in the HF region, the dust heating clearly out-

weights any cooling effect due to the removal of CA. As a result of the aforementioned SDE 

forcing and feedback, the tropospheric warming peaks in June, in conjunction with the 
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development of a north-south dipole anomaly in zonal winds above 400 hPa over the HTP, 

and strong anomalous westerlies (easterlies) below (above) 500 hPa over Indian 

subcontinent (10–30° N), signaling a strengthening SASM [77–81].

The warming of the upper troposphere, associated changes in winds, SW aerosol radiative 

heating, dust concentration and precipitation peak in July, over northern India, backing up 

against the southern slopes of the HTP (Fig. 3, i-l), and sustained through August (Fig. 3, m-

p). Starting July, a cooling of the land surface and lower troposphere abutting the Himalaya 

foothills is noted. This is likely due to the blocking of surface radiation by increased 

transport of dust into the region, compounding by increased SW shielding by increased 

cloudiness and cooling by evaporation of falling rain in enhanced deep convection [82–84]. 

Most notable is that while the SDE is letting up due to the climatologically reduced snow 

cover in the HTP in July-August (See Fig. 1d, h), the anomalous shortwave aerosol radiative 

heating of the atmosphere in the HF remains strong, indicating that atmospheric heating by 

dust plays a major role in amplifying and strengthening the SASM during July-August. 

These features are consistent with the EHP mechanism for aerosol-monsoon dynamical 

feedback, which strengthening of the early SASM via atmospheric heating by LAAs [30, 

34]. Here, we find additionally that SDE anchors the action center of the EHP to the 

southern HTP and HF where the SDE effect is most pronounced, intensifying the monsoon 

not only during the early monsoon, but through the entire monsoon season. Also noteworthy 

is that while these results are robust in the GEOS5 model, the model has excessive bias in 

HTP snowcover and AOD, compared to observations. More discussion on how the biases 

may affect the model results are presented in the conclusions (Section 4).

3.3 Changes in mean monsoon climate

As a result of the combined effects of SDE SW forcing and dynamical feedback, the 

seasonal mean SASM is strengthened as indicated by a well-developed warm anomaly in the 

upper troposphere over the HTP, sandwiched between a dipole zonal wind anomaly, with 

increasing easterlies in the tropics 10–30° N, and increasing westerlies in the extratropics 

35–50° N (Fig. 4a), signaling a strengthening of the Tibetan Anticyclone (TPA) [77–78, 80–

81]. Another evidence of a strengthened

SASM can be found in the increased vertical easterly shear with enhanced low-level 

westerlies in the lower troposphere below 400 hPa and increased upper level easterlies above 

at 15N −30° N [79, 85]. In conjunction with the changes in zonal winds and temperature, an 

enhanced monsoon meridional circulation, featuring increased moistening of the lower and 

mid- troposphere by anomalous low-level southerlies and deep rising motions over northern 

India and the HTP. The ascending moister air is coupled to anomalous sinking of drier air 

over southern India and the northern Indian Ocean (0–15°N), and north of the HTP (45–50° 

N).

The SDE in the HTP region impacts not only the SASM, but also the greater ASM regions. 

The warming of the mid- and upper troposphere arising from the center of action over the 

high-terrain HTP region (70–90°E) is expansive (Fig. 5a), spanning the entire Middle East 

and Asian monsoon domains (40– 120° E). Here, the maximum warming straddles enhanced 

northerlies (southerlies) to the west (east), consistent with an enhancement of the TPA over 
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the HTP. Emanating from the enhanced TBA is a pattern with alternating meridional winds 

with opposite signs in the mid- and upper troposphere, spanning a wide range of longitudes 

(40–130°E). The meridional wind pattern is associated with alternating deep tropospheric 

rising and sinking motions from the Middle East across South Asia to East Asia (Fig. 5b). 

Increased atmospheric moisture and anomalous rising motions are found most pronounced 

over the western HTP in northern India/Pakistan (70–90° E), and to a lesser extent, on the 

eastern slopes of the HTP and central central-northern East Asia (100–120° E). Further 

details on the distribution of vertical motions will be discussed with reference to Fig. 6, later. 

Over the East Asia, the east-west circulation exhibits a strong westward tilt with height, 

reflecting the baroclinic tendency of mid- to upper tropospheric extratropical westerlies and 

interactions with low-level moisture transport, and moisture convergence on the Mei-Yu 
front of EASM [85–88].

The aforementioned temperature and circulation features are associated with the formation 

of an anomalous Rossby wavetrain, spanning northern Eurasian (30–60°N, 40–140°E), with 

an enhanced anomalous TPA anchored to the surface heating of the HTP, connected to 

alternating cyclonic and anticyclonic circulation cells, over northern China/Mongolia, and 

northeastern East Asia respectively (Fig. 6a). The Rossby wavetrain occurs in conjunction 

with an elongated band of anomalous easterlies stretching from the Sea of Okhotsk, across 

Japan and central China, signaling a weakening of the climatological subtropical East Asian 

jet (120–160E). The anomalous easterlies continue westward, merging with the southern 

flank of the enhanced TPA, and further on across the Middle East. The planetary scale 

nature of the easterly wind anomalies is associated with a warming of the northern Eurasia 

continent in boreal spring and early summer [56–57], which pre-conditions the snow cover 

change and warming over the HTP during JJA (Fig. 6a). As a result of SDE induced 

warming over the HTP, the rainfall and circulation patterns of the entire ASM are 

substantially altered. Increased low-level westerlies transport more dust aerosols from the 

desert regions across the North Arabian Sea into India, accumulating them over the HF, 

enhancing the SASM through the EHP positive feedback mechanism. As a result of 

increased moisture transport by the southwesterlies, precipitation is strongly enhanced over 

the HTP and northeastern India. The latent heat release from increased precipitation further 

enhances the warming of atmosphere over the HTP. Over East Asia, precipitation is 

increased over northern and northeastern China due to the increased southerly moisture 

transport from the south, from Indo-China and the South China Sea. For both the SASM and 

the EASM, a dipole anomalous precipitation pattern (north-positive and south-negative) is 

found, signaling an intensification, and northward displacement of the climatological 

monsoon rain belt. Over East Asia, this displacement may signal the “abrupt northward 

jump” of the Mei-Yu rainbelt from central to northern China [86–88}. The main driver of the 

increased rainfall stems from the increased low-level moist static energy (MSE), with a 

pronounced primary action center over the southern slopes of the HTP, and a secondary 

center over northeastern China (Fig. 6c). These centers feature strong anomalous mid-

tropospheric ascent, due to increased latent heating, and orographic uplifting on wind facing 

steep slopes of the HF regions (Fig. 6c), as well as strong low-level transport of moisture 

from the Arabian Sea, and from Southeast Asia/South China Sea respectively. Because of 

the stable air near the tropopause, the increased ascent over the HTP leads to the shrinking 
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of the air column above, and the development of the anomalous anticyclonic center, 

enhancing the TPA [26, 76].

3.4 A possible mechanism for the Blanford Hypothesis

The physical processes underlying changes in the seasonal cycles of key elements of the 

aerosol-snow-monsoon climate system induced by SDE over the HTP for the SASM are 

summarized in the context of the Blanford hypothesis (Fig. 7). During April-May-June, 

increased snowmelt and reduction in snow cover over HTP are induced by deposition of 

LAAs on snow cover surface. The impurities in snow reduces surface albedo and enhances 

the absorption of insolation, leading to rapid snowmelt, loss of snow cover and warming of 

the land surface, and the atmosphere over the HTP (Fig. 7b). As the monsoon season 

advances in May-June, the warming over the HTP is amplified by aerosol-radiation-

circulation-precipitation feedback, rapidly extending throughout the upper troposphere over 

the HTP, increasing the meridional temperature gradient between the monsoon and oceanic 

regions to the south (Fig. 7b), resulting in increased precipitation over northern India in the 

early monsoon season [89–91]. The increased southwesterlies associated with the 

strengthened early monsoon enhances the dust loading and atmospheric heating over the 

Himalaya foothills region in northern India, sustaining the feedback through the aerosol 

“Elevated Heat Pump” mechanism [30–31] through July-August, even when the 

climatological snow cover over the HTP is significantly reduced (Fig. 7a). As a result of the 

SDE induced dynamical feedback, the monsoon rainy season is advanced, and the monsoon 

precipitation over northern Indian/HTP region is strongly enhanced in July-August (Fig. 7b). 

Correspndingly, the moisture flux from the East Arabian Sea into the India subcontinent 

increases in AMJ, peaking in July, while the ascending motion at 500hPa over the northern 

India/HTP region substantially enhanced in JJA (Fig. 7c), in unison with the precipitation 

increase there (Fig. 7b). Interestingly, the climatological vertical motion over the region 

show steady increase from November-March and then a decline in March-May (Fig. 7c). A 

close examination of the seasonal variation of the winds indicates that the seaonal varation 

in vertical motion over this region is most likely due to orographic forcing of the mid-to-

upper level westerlies by the TP, which are strongest in boreal winter. As the monsoon 

season approaches, the upper westerlies migrate poleward to north of the TP, and the vertical 

motion weakens. However, starting in May, heating over the TP, and increased moisture 

transport by the low-level monsoon southwesterlies lead to increased ascent over northern 

India/HTP. There is no different between SDE and NSDE. Indeed, all aforementioned key 

monsoon indicators signal a strengthening SASM from May through August, due to SDE-

induced reduction in snowcover, but with minimal or no impacts over these regions during 

the rest of the year. Given the time lagged relationship between snow cover and increased 

monsoon rainfall, it is possible that such a relationship could have potential value for 

prediction of the strength SASM, as first proposed by Blanford more than a century ago. 

Based on these relationships, it can be argued that monitoring dust conditions over the 

Arabian Sea, and Northern India during the pre-monsoon season (April to mid-June) could 

provide value-added information for seasonal-to-interannual predictability of the SASM.
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4. Conclusions

Based on numerical simulations using the NASA GEOS5 climate model, we have examined 

the possible impact of snow-darkening effects (SDE) by deposition of light absorbing 

aerosols (LAAs) on snow cover over the Himalayan-Tibetan Plateau (HTP), and subsequent 

influence on the Asian summer monsoon. Results show that during April-May-June, LAA’s 

deposition on snow reduces surface albedo, increases absorption of surface shortwave 

radiation, reduces snow cover by rapid snowmelt, and induces a strong surface warming (> 

2° C) in the western, southern and eastern flanks of the HTP. The surface warming extends 

from the HTP surface to 200 hPa and above, through dynamical feedback processes, in 

associated with an enhanced Asian monsoon, featuring a stronger Tibetan Plateau 

Anticyclone (TPA), with increased low-level southwesterly flow and increased precipitation 

over northern India. Increased dust aerosols are transported from the Middle East, and West 

Asia and Thar deserts by the strengthened monsoon southwesterlies to the Himalayan 

foothills (HF) and the Indo-Gangetic Plain (IGP) of northern India. The increased dust 

transport from remote sources overpowers the wet removal of dust by increased 

precipitation, resulting a net increase in dust loading over the IGP. On the other hand 

carbonaceous aerosols, which are derived mostly from local sources in the IGP and HF, are 

strongly removed by increased precipitation washout. The net accumulation of dust aerosols 

in the IGP and HF plays an important role in heating of the atmosphere by shortwave 

radiative forcing, which is reinforced and sustained by increased latent heating from 

enhanced precipitation over northern India through July-August, via the Elevated Heat Pump 

(EHP) mechanism [30–31].

The SDE-induced dynamical feedback leads to a new equilibrium monsoon climate. During 

JJA, the strong warming over the HTP, excites an upper tropospheric wavetrain, with 

alternating cyclonic and anticyclonic circulation cells that span eastern Europe and East 

Asia. Anomalous circulation cells develop along the wavetrain is responsible for a 

weakening of East Asian jet, and enhancement of the TPA, that is coupled to increased 

poleward transport of moisture that spurs a northward shift, and intensification of 

precipitation over India and East Asia. We find that the SDE induced rapid snowmelt and 

warming over the HTP can effectively anchored the EHP dynamical feedback, via strong 

build-up of moist static energy, anomalous ascent and latent heating in the southern slopes of 

the HTP, where orographic forcing by the steep topography can provide efficient penetrative 

convection transporting heat, moisture and aerosols to the upper troposphere and lower 

stratosphere [92].

As a caveat, we note that simulations of monsoon mean states of meteorology, snow cover 

and aerosol, and comparison with observations by state-of-the-art climate models, including 

the GEOS5 model used in this study are still challenging, due to inadequate model physics, 

as well as large uncertainties in aerosol and snow products from satellite retrievals [93–96]. 

In the present study, for computation economy of long-term (100 years) simulation, we used 

a low-resolution version of the GEOS5 model, and emphasized the large-scale interactions. 

While the model possesses a reasonable monsoon climate, it has non-negligible 

discrepancies when compared with observations, in that the AOD is too high, snow cover is 

too much, rainfall is over-estimated over the HF and underestimated in the eastern Bay of 
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Bengal. The GEOS5 model used here is also known to have cold bias over continents [56–

57], due to excessive snow cover in Eurasia and the HTP. In the real world, the SDE direct 

(radiative) forcing is time and space limited. Once the ground snow is all melted, the SDE 

shortwave radiative forcing vanishes, even though the induced anomalies may continue to be 

amplified by dynamical feedback. In the model, the excessive snow cover means that SDE 

continues to have an effect even during the peak monsoon season. Hence the excessive 

model AOD and snow cover in boreal spring through summer may mean an over-estimation 

of the SDE effects on monsoon compared to the real world, especially when other control 

factors such as anomalous sea surface temperatures forcing are in play.

Nonetheless, from the idealized experiments, our results have shed new light on a possible 

physical mechanism that underpins the Blanford hypothesis, i.e., increased (decreased) 

deposition of LAAs on HTP snow surface can lead to a decrease (increase) in surface albedo 

resulting in in less (more) snow cover, warming (cooling) of the HTP land and atmosphere, 

enhanced (reduced) westerly transport of desert dust from the Middle East desert across the 

North Arabian Sea, and increased (decreased) dust loading and heating of the atmosphere 

over the HF and the IGP in April-May-June, foreshadowing a robust increase (decrease) in 

rainfall over northern India in July-August. Given the availability of much improved and 

reliable multiple data sources from in-situ, satellite and reanalysis, specific information on 

snow cover and aerosols could be systematically diagnosed and incorporated into empirical 

and model monsoon forecasts, as first envisioned by Blanford (snow cover only) over a 

century ago. Snow cover and related conditions (temperature, soil wetness and others) over 

Eurasia in spring and early summer could also be implemented to improve monsoon 

seasonal-to-interannual forecasts.

Finally, the results of this study support the new paradigm that LAA’s such as desert dust 

and BC and OC from biomass burning which are abundant in monsoon regions from natural 

sources, are intrinsic components of a monsoon climate system, contributing significantly to 

the distribution heat sources and sinks of the monsoon on multiple time scales [41, 97]. 

Better understanding of interaction of monsoon dynamics and ambient aerosols (natural and 

anthropogenic) are essential in further unraveling the causes, consequence and predictability 

of climate variability and change of in monsoon regions.
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Figure 1. 
Model June-July-August mean climatology of the control experiment (SDE) for a) 

precipitation (mm day−1) and 850 hPa winds (ms−1), b) AOD, c) snow cover fraction, and d) 

seasonal cycle of land-sea contrast (°C), precipitation (mm day−1), AOD and snow mass, 

averaged over respective rectangular domain shown in a), b) and c) respectively. Land-sea 

contrast is computed as the temperature difference in the upper troposphere (500 −200hPa), 

between the northern [70–90°E, 20–30°N] and southern domain [70–90°E, 5°S-5°N]. Panels 

e), f), g), h) are the same as a), b), c) and d), except from observations, i.e. rainfall (TRMM), 

winds and temperature (MERRA2), AOD, and snow mass (MODIS) in normalized units.
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Figure 2. 
Anomalies induced by snow-darkening effects over the Himalayas-Tibetan Plateau region, 

for a) surface albedo, b) surface shortwave fluxes, c) snowmelt, d) surface temperature, e) 

dust in snow, and f) carbonaceous aerosols (OC +BC) in snow. Grey dots indicate 95% 

statistical confidence. Dust and carbonaceous aerosols in snow are set to zero in NSDE.
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Figure 3. 
Height-latitude cross-section along 70–90 E, showing anomalies in a) temperature (° C, 

shaded) and zonal winds (ms−1, contoured), b) atmospheric heating by shortwave radiation 

(°C day−1), c) concentration of dust (color shaded in mg Kg−1) and CA (contoured with 

negative values dashed, in μg Kg−1 ), and d) precipitation (mm day−1) during May. Panels e), 

f), g) and h) are the same as a), b), c) and d), except for June. Same for i), j), k), l), and m), 

n), o), p), except for July, and August respectively. Grey dots indicate 95% statistical 

confidence level.
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Figure 4. 
Height-latitude cross-section June-July-August mean anomalies, averaged over (70–90° E) 

for a) temperature (° C) and zonal winds (ms−1), and b) specific humidity (gKg−1), and 

streamlines of anomalous meridional circulation. Purple dots indicate 95% statistical 

significance.
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Figure 5. 
Height-longitude cross-section of June-July-August mean anomalies averaged over (28–38° 

N) of a) temperature (°C) and meridional winds (ms−1), and b) specific humidity (gKg−1) 

and streamlines of anomalous east-west circulation spanning the Middle East to the western 

Pacific (40° E – 180°). Statistical significant exceeding 95% are indicted by grey dots.
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Figure 6. 
Horizontal distributing showing anomalies in a) surface temperature (°C), and geopotential 

height at 200hPa, b) precipitation (mmday−1) and 850 hPa winds (ms−1), and c) vertical 

motion at 500 hPa (color-shading, in units of Pa s−1) and lower troposphere moist static 

energy (contours, in units of watt m−2)
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Figure 7. 
Time series depicting the seasonal cycles of a) snow cover (percentage) and AOD, b) land-

sea contrast (°C) and rainfall (mm day−1) over northern India (70–90°E, 25–35°N), and c) 

westerly low-level (1000–850hPa) moisture flux (Kg m−1s−1) averaged over the eastern 

Arabian Sea (70–75° E, 10–30° N) and negative p-velocity (Pa s−1) over the northern India. 

Domains for snow cover and AOD are the same as used in Fig. 1. Labels and ordinate units 

are color-matched to the line plot.
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