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[1] Relativistic electron intensities in Earth’s outer radiation belt can vary by multiple
orders of magnitude on the time scales ranging from minutes to days. One fundamental
process contributing to dynamic variability of radiation belt intensities is the radial
transport of relativistic electrons across their drift shells. In this paper we analyze the
properties of three-dimensional radial transport in a global magnetic field model driven
by variations in the solar wind dynamic pressure. We use a test particle approach which
captures anomalous effects such as drift orbit bifurcations. We show that the bifurcations
lead to an order of magnitude increase in radial transport rates and enhance the
energization at large equatorial pitch angles. Even at quiet time fluctuations in dynamic
pressure, radial transport at large pitch angles exhibits strong deviations from the
diffusion approximation. The radial transport rates are much lower at small pitch angle
values which results in a better agreement with the diffusion approximation.
Citation: Ukhorskiy, A. Y., M. I. Sitnov, R. M. Millan, B. T. Kress, and D. C. Smith (2014), Enhanced radial transport
and energization of radiation belt electrons due to drift orbit bifurcations, J. Geophys. Res. Space Physics, 119, 163–170,
doi:10.1002/2013JA019315.

1. Introduction
[2] Relativistic electrons (& 500 keV) in the near-Earth

space are organized (on average) in two populations trapped
by the magnetic field and referred to as the inner and the
outer radiation belts. In geomagnetically quiet conditions the
belts are separated by a slot region centered at L � 2.5. Dur-
ing geomagnetic storms electron intensities in the outer belt
can vary by orders of magnitude which some time results
in transient multibelt configurations [Baker et al., 2013] and
particle injections into the slot region [e.g., Baker et al.,
2004; Kress et al., 2008]. This dynamic variability is pro-
duced by a shifting balance between acceleration and loss
mechanisms operating at various spatial and temporal scales
[see recent reviews, Millan and Thorne, 2007; Thorne, 2010;
Millan and Baker, 2012].

[3] One basic process underlying global variability of the
radiation belts is electron transport across their drift shells,
which is referred to as radial transport or radial diffusion
[e.g., Kellog, 1959; Tverskoy, 1964; Fälthammar, 1965;
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Roederer, 1968; Vernov et al., 1969; Lyons and Thorne,
1973]. Radial transport is commonly attributed to large-scale
ultralow frequency (ULF) fluctuations of the electric and
magnetic fields in the Pc4-5 frequency range (2–22 mHz)
[Jocobs et al., 1964]. Large-scale ULF fluctuations can
exhibit resonance with the electron azimuthal drift motion. If
the amplitude of ULF fluctuations is sufficiently large to pro-
duce an overlap of particle populations trapped at resonances
with the adjacent harmonics of the spectrum, or alternatively,
if the phase shifts across the wave spectrum vary in time,
electron motion in the direction perpendicular to the drift
becomes stochastic producing their scattering across the drift
shells [see review, Ukhorskiy and Sitnov, 2012].

[4] In the dayside-compressed geomagnetic field, electron
drift orbits can undergo bifurcations that abruptly violate
their second adiabatic invariant and cause their scattering to
high latitudes [Northrop and Teller, 1960; Northrop, 1963;
Roederer, 1970; Shabansky, 1971; Antonova et al., 2003;
Öztürk and Wolf, 2007; Kim et al., 2008; Wan et al., 2010]. It
has recently been realized [Ukhorskiy et al., 2011; Ukhorskiy
and Sitnov, 2012] that drift orbit bifurcations affect a broad
region of the outer belt and can cause radial transport even
in the absence of fluctuations in the field, which can enhance
both energization and loss of relativistic electrons.

[5] The effects of drift orbit bifurcations were previously
analyzed only in stationary magnetic field configurations,
whereas most of the studies of the radial transport due
to ULF waves were conducted in two-dimensional models
of the equatorially mirroring electrons that do not account
for the bifurcations [e.g., Elkington et al., 1999, 2003;
Ukhorskiy et al., 2006; Degeling et al., 2008; Ukhorskiy and
Sitnov, 2008]. Here we present the first analysis of three-
dimensional radial transport in global dynamic fields that
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includes both the effects of the ULF fluctuations and drift
orbit bifurcations. We examine how transport properties and
energization rates are affected by drift orbit bifurcations.
In the following section we discuss how to quantify radial
transport across the entire outer belt including the regions
affected by drift orbit bifurcations where the third adiabatic
invariant is not defined. In section 3, followed by con-
clusions, we describe the details of our three-dimensional
test particle model and present the results of our numerical
simulations and their analysis.

2. Radial Transport in the Absence of L�

[6] Relativistic electrons trapped in the geomagnetic field
exhibit three-dimensional quasiperiodic motion, which con-
sists of gyromotion around the guiding center, the bounce
motion of particle guiding center along the field lines
between conjugate reflection points, and gradient curva-
ture azimuthal drift of the guiding center around Earth.
Each component of the quasiperiodic motion is associated
with its own adiabatic invariant. A set of three invari-
ants defines a drift shell. Radial transport across the drift
shells requires violation of the third invariant, ˆ, associ-
ated with the azimuthal drift motion. In a quasi-dipole field
the spatial and temporal scales of the three motions are
separated by multiple orders of magnitude. Drift-resonant
interaction with ULF fields, therefore, violates the third
invariant without breaking either the first, �, or the second,
J, invariants.

[7] The third invariant of a radiation belt electron is the
magnetic flux, which is enclosed by its unperturbed guiding
center trajectory (i.e., computed in the static magnetic field
fixed at a given moment of time):

ˆ =
I

C
A � dl =

I
C
˛dˇ, (1)

where A is the magnetic field vector potential: B = r �A, ˛
and ˇ are the Euler potentials [e.g., Stern, 1967]: A = ˛rˇ,
and the integration contour C can be chosen anywhere on the
unperturbed drift bounce guiding center surface. The third
invariant is often expressed in terms of the L� variable:

ˆ = –
2�B0R2

E
L�

. (2)

Physically, L� is the radial distance (in Earth radii) to the
equatorial points of the drift bounce shell on which the par-
ticle would be found if all nondipolar contributions to the
magnetic field would be adiabatically turned off [Roederer,
1970]. In the above expression B0 ' 31000 nT is the mag-
netic field intensity on Earth’s surface at the equator, and
RE ' 6380 km is the Earth’s radius. Being analogous to a
dimensionless radial distance L� is convenient for quantify-
ing radial transport of radiation belt electrons. In particular,
it allows separating transport due to violation in the third
invariant, from fully adiabatic variations in radiation belt
intensities in which L� is conserved.

[8] The magnetic field, however, is not quasi-dipolar
across the entire outer belt. In the outer belt regions adjacent
to the magnetopause, the distribution of magnetic field inten-
sity along the field lines, B(s), has two minima below and
above the equatorial plane, as opposed to the quasi-dipolar

field on the nightside where B(s) has a single minimum at
the equator. A particle bouncing across the equator and drift-
ing from the nightside to the dayside into the compressed
field region branches off into one of the off-equatorial B(s)
pockets at the point where the value of B(s) at the local
maximum at the equator exceeds the magnetic field value at
its mirror points. Such drift orbit bifurcations correspond to
crossing a separatrix in the bounce phase space between tra-
jectories across the equator and trapped at the pockets below
and above the equator. As particle approaches the separatrix,
its bounce period grows until in some vicinity of the separa-
trix the time scales of the bounce and drift motions become
comparable, which breaks the adiabaticity of the bounce
motion. Violation of the second invariant at bifurcations
causes simultaneous scattering in the radial direction and
therefore provides an additional mechanism for radial trans-
port (for a detailed description of drift orbit bifurcations, see
Öztürk and Wolf [2007], Wan et al. [2010], Ukhorskiy et al.
[2011], and Ukhorskiy and Sitnov [2012]).

[9] It has been suggested [Ukhorskiy et al., 2011] that drift
orbit bifurcations enhance energization produced by radial
transport across the outer belt. Radial transport due to only
ULF waves conserves the first and the second invariants,
which specifies the energy gain with inward radial transport
as a unique function of the radial position. Drift orbit bifur-
cations break the second invariant while conserving the first
invariant and the energy. The energy gain with radial trans-
port in the presence of bifurcations, therefore, is no longer
a unique function of the radial position, which can result in
higher energization rates.

[10] In the bifurcation region the three-dimensional parti-
cle motion is no longer quasiperiodic. Unperturbed (i.e., in a
static magnetic field) drift bounce orbits do not conserve the
second invariant, and the third adiabatic invariant therefore
is undefined. To quantify radial transport across the entire
belt including the bifurcation region, we generalize defini-
tion (1) of the third invariant by changing the integration
from the unperturbed drift shells to the actual drift bounce
orbits in time-varying magnetic field:

N̂ =
Z 2�

0
˛dˇ = –

2�B0R2
E

NL
. (3)

The generalized NL variable is expected to be a good measure
of radial transport because (a) for quasiperiodic orbits in a
static field, L� = NL; (b) for time-varying adiabatic variations
in the field (ˆ = const), L� ' NL; (c) for non-adiabatic trans-
port (ˆ ¤ const), NL is approximately the average of L� over
particle drift orbits.

3. Test Particle Simulations
[11] To simulate the global distribution and large-scale

variability of magnetic field across the outer belt, we used
the [Tsyganenko and Stern, 1996] (T96) magnetic field
model. Time dependence in the model comes from varying
solar wind and geomagnetic input parameters. The induc-
tive electric field induced by the magnetic field variations
was calculated as the time derivative of the magnetic field
vector potential: A = ˛rˇ. The Euler potentials ˛ and ˇ
were computed by tracing magnetic field lines to Earth’s sur-
face, where their values were determined from the analytical
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expressions for a dipole magnetic field similarly to [Fok and
Moore, 1997]

˛ = –B0
sin2 �

r
; ˇ = ', (4)

where (r, � ,') are the spherical coordinates of the foot points
of the traced field lines.

[12] As was previously shown [Ukhorskiy and Sitnov,
2008], fluctuations of the magnetic and inductive electric
fields in the model induced by variations in the solar wind
dynamic pressure have properties of m = 1 ULF waves
observed in the inner magnetosphere and therefore provide
a good proxy of large-scale ULF activity that drives radial
transport across the outer belt.

[13] In this study the T96 model was driven with the
dynamic pressure time series corresponding to quiet time
solar wind conditions and generated as

Pdyn (t) = P0 +�P
NX

k=1

k–ˇ/2 sin(k�!t +  k), (5)

with P0 = 4 nPa. The spectral exponent ˇ = 5/3, the
number of harmonics N = 50, the spectral density �! =
2� � 0.1 mHz, and the random phase shifts between spectral
harmonics  k 2 (0, 2�] were chosen similarly to Ukhorskiy
and Sitnov [2008]. The amplitude value �P was selected
such that the root-mean-square amplitude of pressure vari-
ations was Prms = 0.6 nPa. All other T96 input parameters
remained fixed at quiet time values: Dst = 0, IMF Bz = 5 nT,
and IMF By = 0.

[14] Radial transport was then simulated in three dimen-
sions with the use of large ensembles of test parti-
cles. Particle motion was calculated in the guiding center
approximation based on our Hamiltonian formulation
[Ukhorskiy et al., 2011]:8̂̂

ˆ̂̂̂<
ˆ̂̂̂̂
:̂

dR
dt

=
pk
m�

B�

B�
k

+ c
E� � Ob

B�
k

dpk
dt

= e
E� � B�

B�
k

� =
p2
?

2mB
= const

, (6)

where R is the guiding center position, pk and p? are the
momentum components parallel and perpendicular to the
field lines, Ob is the unitary vector parallel to the magnetic
field, e and m are the electron charge and mass, � is the rela-
tivistic factor, and the effective fields E� and B� are defined
in terms of the effective potentials:

B� = r � A�; E� = –rˆ� –
1
c
@A�

@t
A� = A +

c
e

pk Ob; eˆ� = mc2�
. (7)

[15] To investigate how drift orbit bifurcations affect
radial transport and energization, we compare the results of
two simulations with small and large initial values of the sec-
ond invariant. At large values of the second invariant, cor-
responding to small equatorial pitch angles, particles are not
susceptible to bifurcations and radial transport in this case is
attributed solely to drift-resonant interaction with pressure-
induced ULF fluctuations in the field, whereas the radial
transport of particles at small values of the second invari-
ant, corresponding to near-equatorial (i.e., with mirror points

Figure 1. Unperturbed electron drift shells at Pdyn = 4 nPa
and zero dipole tilt angle used to initialize test particle sim-
ulations of radial transport. The drift shell correspond to
NL = 5.5, LM = 5.5 and ˛eq = 85ı (red) and NL = 5.7, LM = 6.5
and ˛eq = 15ı (blue) at midnight.

close to the equator) particles, is driven by a combination of
the ULF fluctuations and drift orbit bifurcations.

[16] Electrons were initiated on two stable unperturbed
drift shells at Pdyn = 4 nPa with similar values of NL. The
two initial drift shells are separated at midnight and closely
approach at noon (Figure 1). The large pitch angle shell
corresponds to NL = 5.5 and the equatorial radial distance and
pitch angles at midnight of LM = 5.5 and ˛eq = 85ı, while
the small pitch angle shell corresponds to NL = 5.7, LM = 6.5,
and ˛eq = 15ı. In both simulations, we used ensembles of
105 electrons with the relativistic factor � = 3 (� 1 MeV)
evenly distributed in the drift and bounce phases along the
initial drift shells.

[17] Electron transport in the case of near-equatorial par-
ticles is illustrated in Figure 2 which shows four snapshots
of transport during different times of the simulation pro-
cess. Figure 2 (top row) shows electron positions projected
along the field lines onto the equatorial plane. Figure 2 (mid-
dle row) shows the second adiabatic invariant. In Figure 2
(top and middle rows), particle energy is marked with color.
Figure 2 (bottom row) shows radial distribution function
f ( NL) defined as the number of particles between NL and NL+d NL.
Figure 2 (first column) show initial conditions. Figure 2
(second column) corresponds to 0.55 h after the simulation
start. A single fold formed in the ring of particles at noon
(Figure 2, top row) is indicative of resonant interaction of the
electron drift motion with the pressure-induced ULF fluctu-
ations of the azimuthal electric field [Ukhorskiy and Sitnov,
2008, 2012; Kress et al., 2012].

[18] After about 2.3 h into the simulation process, the
electron population expanded into the drift bifurcation
region. The effects of bifurcations can be seen in Figure 2
(third column) which illustrates the state of the system at
2.95 h shortly after the bifurcation onset. Particles on the
bifurcated orbits bouncing above or below the equatorial
plane are indicated with purple in the Figure 2 (top row).
Figure 2 (middle row) shows the spread in the second
invariant at high L shells due to bifurcations.
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Figure 2. Three-dimensional test particle simulation of 105 near-equatorial electrons with the initial
energy of 1 MeV in the magnetic field with large-scale ULF fluctuations induced by the solar wind
dynamic pressure. (top row) Instantaneous equatorial projection (along the magnetic field lines) of elec-
tron position. Particle energy is marked with color. Electrons on the bifurcating orbits bouncing either
below or above the equator are marked with purple. (middle row) The second adiabatic invariant. (bottom
row) The radial distribution function.

[19] After 20 h by the end of the simulation (Figure 2,
fourth column), the inner edge of the particle population
reached down to NL � 4 and about 40% of particles were lost
from the belt through the magnetopause. Figure 2 (middle
row) shows that the spread in the second invariant expanded
over almost the entire range of drift shells populated by par-
ticles and not just the outer range directly affected by the
bifurcations. This indicates that some particles after bifur-
cations were radially transported inward due to resonant
interaction with ULF fluctuations.

3.1. Radial Transport Rates and Properties
[20] Our initial test particle distributions correspond to

delta function initial conditions on the particle distribution
function in the invariant space: f (J, NL, t = 0) = ı(J – J0)ı( NL –
NL0). Test particle trajectories therefore provide a numerical
estimate of the Green’s function of the underlying transport
equation. If radial transport in the system obeys a Fokker-
Plank equation, then (in some vicinity of the initial NL0) the
second moment of the distribution function scales linearly
with time:

h(� NL(t))2i = h(L(t) – h NLi)2i = 2DNLNL(J, NL0)t, (8)

where DNLNL is the local value of the diffusion coefficient and
h� � � i denotes averaging over the ensemble of particles.

[21] Radial transport rates during first 8 h of the sim-
ulation with a small initial value of the second invariant
are shown in Figure 3a. Red line corresponds to h(� NL)2i
computed over the entire ensemble, while black lines show
(� NL)2 of 80 sample trajectories. Variation of the second adia-
batic invariant across the ensemble is illustrated in Figure 3c.
The average value of the second invariant is shown with

red. The black lines correspond to the invariant values of 80
sample trajectories, same as shown in Figure 3a. The second
invariant is conserved until the onset of drift orbit bifurca-
tions at 2.3 h. At bifurcations, the second invariant exhibits
jumps and is approximately conserved between bifurcations.

[22] It is evident from Figure 3a that the radial trans-
port rates rapidly increase at the bifurcation onset: there is
approximately a factor of 10 increase in the average slope
of h(� NL)2i, which is maintained till the onset of the mag-
netopause losses at 5.3 h. The subsequent large variations
in h(� NL)2i are mostly cased by the change in the magne-
topause location and the loss of particles from the outermost
drift shells.

[23] From Figure 3a, it follows that h(� NL)2i does not
increase with time monotonically prior to the onset of mag-
netopause losses. This means that the radial transport can-
not be approximated by a Fokker-Plank equation. This is
attributed to the fact that the drift-phase correlations among
particles in the ensemble do not fully decay by the time it
takes the ensemble to expand over the entire system (i.e.,
reach the magnetopause). The persistence of phase correla-
tions is also manifested in filamentary multipeak structure
of radial distribution function f ( NL) maintained throughout
the entire simulation (Figure 2, bottom row). Consequently,
particle distribution function cannot be averaged over the
drift phase in the spirit of the Fokker-Plank equation (for
more discussion, see Ukhorskiy et al. [2006], Ukhorskiy and
Sitnov [2008, 2012], and Kress et al. [2012]).

[24] Radial transport of particles with small equatorial
pitch angles not susceptible to drift orbit bifurcations is
shown in Figure 4. Figure 4a shows the transport over the
entire simulation. It is evident that the transport rates are
much slower than in the previously considered case of the
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Figure 3. (a, b) Radial transport and the second adiabatic invariant in test particle simulations of the
near-equatorial particles (LM = 5.5, ˛eq = 85ı). Black lines show time variation of NL2 and J/p0 of 80
sample trajectories from the simulation, while red lines correspond to average values computed with all
trajectories. Figure 3a shows the transport during the entire simulation, while Figure 3b zooms in on the
first 2 h.

near-equatorial particles. Over 20 h, particles with small
equatorial pitch angles expanded only over a small fraction
of the outer belt, which was covered by the near-equatorial
particles over less than 1.5 h. Since the transport is much
slower, the drift-phase correlations among particles of the
ensemble decay well before the particles expand over the
entire system. Consequently, radial transport on the time
scales of & 20 h is in a much better agreement with radial
diffusion, which is evident in nearly linear scaling of h(� NL)2i
in Figure 4a.

[25] Similarly to Figure 3a, Figure 4b shows the trans-
port during first 8 h of the simulation. According to the
figure non-monotonic variations of h(� NL)2i become more
prominent on this time scales. Consequently, even at
small equatorial pitch angles the radial transport cannot be
well approximated with a Fokker-Plank equation on the
timescales of . 10 h.

[26] Figures 3b and 4c show the comparison of radial
transport of near-equatorial and small pitch angle particles
during first 2 h prior to the onset of drift orbit bifurcations in
the case of near-equatorial particles. It is therefore expected
that over this time period, radial transport in both cases is
attributed to only resonant interaction of the electron drift
motion with the ULF fluctuations induced by variations in
the solar wind dynamics pressure. Since the initial NL values

were similar in both cases, an order of magnitude difference
in the transport rates must be explained by the difference in
the ULF power along the drift bounce orbits of particles at
different equatorial pitch angles.

[27] We examine the pitch angle dependence of the ULF-
driven radial transport rates analytically in a dipole magnetic
field, which is a reasonable approximation in the regions far
from drift obit bifurcations. Transport across the drift shells
is attributed to the radial E � B drift due to the azimuthal
electric field of the ULF fluctuations: ur = cE' /B. The drift
velocity varies over the particle bounce period. The radial
displacement over a bounce period is given by the integral of
ur. Since the bounce period depends on the equatorial pitch
angles, to assess the difference in transport rates at differ-
ent pitch angles, one must compare the radial displacements
per unit time, which is given by the bounce-averaged drift
velocity:

Nur =
4c

Tb(˛eq)

Z Tb/4

0

E'
B

dt, (9)

where Tb is the bounce period.
[28] The estimate of the bounce-averaged drift velocity is

described in Appendix A. According to equation (A10), a
decrease of the equatorial pitch angle from 90ı to 55ı leads
to a factor of two decrease in the radial transport rate. The

Figure 4. Radial transport in test particle simulations of electrons with small equatorial pitch angles
(LM = 6.5, ˛eq = 15ı). Similar to Figure 3, black lines show 80 sample trajectories, while red lines cor-
respond to average values computed with all trajectories in the simulation. Figure 4a shows the transport
during the entire simulation, while Figures 4b and 4c zoom in on the first 8 and 2 h correspondingly.
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Figure 5. The comparison of the energy K of the near-
equatorial electrons after 20 h of radial transport enhanced
by drift orbit bifurcations, which conserve the first but vio-
late the second invariant; with the energy Kad, the electrons
would have had if the transport conserved both the first and
the second invariants. Electron radial position NL is marked
with color. Electrons on the bifurcating orbits bouncing
either below or above the equator are marked with purple.

ratio of transport rates at equatorial pitch angles of 15ı and
85ı used in our simulations is approximately

h(� NL(15ı))2i

h(� NL(85ı))2i
'
Nur(15ı)2

Nur(85ı)2 ' 0.1, (10)

which is in a good agreement with the simulation results.

3.2. Electron Energization
[29] If radial transport conserves both the first and the

second invariants, as in the case of transport due to
drift-resonant interactions with ULF fields, the particle
energy is a function of the radial position NL and the ini-
tial value of the equatorial pitch angle, which specifies the
second invariant. Thus, in a dipole magnetic field, the L
dependence of electron momentum p varies between L–1 and
L–3/2 depending on the value of the second invariant [e.g.,
Schulz and Lanzerotti, 1974].

[30] It has been suggested [e.g., Ukhorskiy et al., 2011]
that drift orbit bifurcations can enhance the level of energiza-
tion produced by radial transport. Consider a near-equatorial
particle (J ' 0) initially at NL0. Bifurcations violate the sec-
ond adiabatic invariant without changing particle energy.
After a bifurcation on the dayside, its second invariant will
increase, which will require a decrease in the perpendicular
energy. To conserve the first adiabatic invariant, � = p2

?
/2B,

the particle will move outward to NL1 where the magnetic field
is weaker. Thus, if the particle is then transported inward
to some NL2 < NL0 due to drift-resonant interaction with ULF
fluctuations, it will acquire more perpendicular energy then
a particle transported from NL0 to NL2 directly without a drift
orbit bifurcation.

[31] To address the effect of drift orbit bifurcations on
electron energization during radial transport, we compare
the distribution of particle energy K at the end of our sim-
ulation of the near-equatorial particles with the energy Kad

that the particles would have had if the transport conserved
both the first and the second invariants. Since initially the
second invariant in this simulation was approximately zero,
the energy of adiabatic transport was estimated from the
conservation of the first invariant: Kad = mec2(� ad – 1),
� ad =

p
2�B/mec2 + 1. The results are shown in Figure 5.

Particle radial position NL is indicated with color. Electrons on
bifurcating orbits bouncing either above or below the equa-
tor are marked with purple. Transport that conserves both
invariants is constrained to the line K = Kad. The vertical
spread of particle energy across this line is caused by drift
orbit bifurcations. The energy spread is larger (� 60%) at
lower energies corresponding to large NL values close to the
bifurcation region. The narrowing of the energy spread with
increase in energy is attributed to the diminishing of radial
transport rates with decrease in NL, which makes it more prob-
able for a particle to escape from the magnetopause than to
be transported to low NL. Nonetheless, some of the particles
at 1 MeV have energies 20% higher than what they would
have acquired with transport without drift orbit bifurcations.

4. Conclusions
[32] In this paper, we investigated the properties of three-

dimensional radial transport in the outer radiation belt,
including the effects of drift orbit bifurcations. For this
purpose, we used test particle simulations in the guiding
center approximations. Radial transport was driven by res-
onant interaction of the electron drift bounce motion with
large-scale ULF fluctuations in the magnetic field induced
by variations in the solar wind dynamic pressure.

[33] In the absence of bifurcations (i.e., at constant
first and second adiabatic invariants), radial transport rates
exhibit strong dependence on the equatorial pitch angle.
Transport rates decrease by a factor of 2 if the pitch angle
is decreased from 90ı to 55ı and by a factor of 10 if
the pitch angle is further decreased to 15ı. Even at low
fluctuations in dynamic pressure considered in this paper,
radial transport rates at large pitch angles is sufficiently large
for an ensemble of particles initiated at a single L shell
to expand over the entire outer belt before the drift-phase
correlations among the particles have time to decay. Conse-
quently, radial transport at large pitch angles exhibits large
deviations for the radial diffusion approximations. Due to
much lower transport rates, the dynamics of particles with
small pitch angles become independent of their initial drift-
phase distribution well before they expand over the entire
system and their radial transport at long time scales (& 20 h)
attain an approximate agreement with radial diffusion.

[34] Radial transport of radiation belt electrons at large
pitch angles is affected by drift orbit bifurcations. It was
shown that bifurcations lead to an order of magnitude
increase in radial transport rates. Drift orbit bifurcations
conserve the first adiabatic invariant but violate the second
adiabatic invariant. The radial transport in the presence of
bifurcations can produce a stronger energization of radia-
tion belt particle than a transport that conserves both the
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Figure A1. Panel (a): Latitudinal profiles of the ULF fluctuations in the T96 model computed at dif-
ferent values of the magnetic local time (red) and the Gaussian fit (black) used for their approximation
in the computation of radial transport rates. Panel (b): A numerical estimate (red) and an analytical
approximation (blue) of the bounce-averaged velocity of radial E � B drift as function of the equatorial
pitch angle.

first and the second adiabatic invariants. While the effect is
most prominent at lower energies and high L shells, a 20%
increase of energization was observed at 1 MeV in the center
of the outer belt at NL = 5.5.

Appendix A: Pitch Angle Dependence of Radial
Transport Rates

[35] The rate of radial transport of electrons at a given
value ˛eq of the equatorial pitch angle due to ULF
fluctuations in electric field can be estimated from the
bounce-averaged value of the radial component of the E�B
drift velocity:

Nur =
4c

Tb(˛eq)

Z Tb/4

0

E'
B

dt, (A1)

where Tb is the bounce period. The azimuthal electric field of
the ULF fluctuations can be represented as E' = E(', t)E(� ),
where E(', t) is the azimuthal distribution of the field inten-
sity which varies on the ULF time scales and therefore
can be considered stationary on the time scales of the
bounce motion, and E(� ) is the latitudinal dependence of the
field intensity.

[36] The bounce period can be estimated as [Hamlin et al.,
1961]

TB =
4LRE

v
� (˛eq), (A2)

where
� (˛eq) = 1.38 – 0.32(sin˛eq + sin2 ˛eq). (A3)

[37] After using the following substitutions,

dt = ds/v cos˛(� ,˛eq), (A4)

ds = LRE sin �
p

1 + 3 cos2 � , (A5)

B(L, � ) = B(L)
p

1 + 3 cos2 �

sin6 �
(A6)

we obtain

Nur =
uE(L)
� (˛eq)

Z �m

0

E(� ) sin7 �

cos˛(� ,˛eq)
d� , (A7)

where uE = cE(', t)/B(L) is the equatorial E�B drift velocity.

[38] The latitudinal dependence of cos˛ can be expressed
as

cos˛ =

 
1 – sin2 ˛eq

p
1 + 3 cos2 �

sin6 �

!1/2

. (A8)

To approximate the latitudinal distribution of the ULF fluc-
tuations, we used the Gaussian function

E(� ) = exp

"
–
�
� – � /2
��

�2
#

, (A9)

which was fitted into the latitudinal profiles of the electric
field fluctuations in our model, computed at different val-
ues of the magnetic local time (Figure A1a) to determine
�� = 0.5.

[39] After inserting expression (A9) into (A7) and com-
puting the integral numerically for different values of ˛eq,
it was found that the bounce-averaged velocity of the elec-
tron radial drift depends on the equatorial pitch angle as
approximately

Nur = uE(L)

(
a + b exp

"
–
�
˛eq – � /2
�˛

�2
#)

, (A10)

where a = 0.20, b = 0.80, and �˛ = 0.87 (Figure A1b).
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