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Abstract

Introduction: Alzheimer’s disease (AD) is a neurodegenerative disorder involving

interactions between different cell types in the brain. Previous single-cell and bulk

expression Alzheimer’s studies have reported conflicting findings about the key cell

types and cellular pathways whose expression is primarily altered in this disease. We

re-analyzed these data in a uniform, coherent manner aiming to resolve and extend

past findings. Our analysis sheds light on the observation that females have higher AD

incidence thanmales.

Methods:Were-analyzed three single-cell transcriptomics datasets.Weused the soft-

wareModel-basedAnalysis of Single-cell Transcriptomics (MAST) to seekdifferentially

expressed genes comparing AD cases tomatched controls for both sexes together and

each sex separately. We used the GOrilla software to search for enriched pathways

among the differentially expressed genes. Motivated by the male/female difference in

incidence, we studied genes on theX-chromosome, focusing on genes in the pseudoau-

tosomal region (PAR) andongenes that areheterogeneous across individuals or tissues

forX-inactivation.Wevalidated findings by analyzing bulkADdatasets from the cortex

in the Gene ExpressionOmnibus.

Results:Our results resolve a contradiction in the literature, showing that by compar-

ing AD patients to unaffected controls, excitatory neurons have more differentially

expressed genes than do other cell types. Synaptic transmission and related path-

ways are altered in a sex-specific analysis of excitatory neurons. PAR genes and

X-chromosome heterogeneous genes, including, for example,BEX1 and ELK1, may con-

tribute to the difference in sex incidence of Alzheimer’s disease.GRIN1, stood out as an

overexpressed autosomal gene in cases versus controls in all three single-cell datasets

and as a functional candidate gene contributing to pathways upregulated in cases.

Discussion: Taken together, these results point to a potential linkage between two

longstanding questions concerning AD pathogenesis, involving which cell type is the

most important andwhy females have a higher incidence thanmales.
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Highlights

∙ By reanalyzing three, published, single-cell RNAseq datasets, we resolved a contra-

diction in the literature and showed thatwhen comparing ADpatients to unaffected

controls, excitatory neurons havemore differentially expressed genes than do other

cell types.

∙ Further analysis of the published single-cell datasets showed that synaptic trans-

mission and related pathways are altered in a sex-specific analysis of excitatory

neurons.

∙ Combining analysis of single-cell datasets and publicly available bulk transcrip-

tomics datasets revealed that X-chromosome genes, such as BEX1, ELK1, and

USP11, whose X-inactivation status is heterogeneous may contribute to the higher

incidence in females of Alzheimer’s disease.

1 INTRODUCTION

Alzheimer’s disease (AD) is a progressive disease where neurons in

brain regions involved in thinking, learning, and memory become dam-

aged. In 2021, an estimated 6.2 million Americans 65 years of age

and older were living with AD.1 Alzheimer’s is a complex physiologi-

cal disease due to the involvement of many cell types, such as neurons,

astrocytes, and microglia. We analyze published datasets of single-cell

and bulk gene expression in AD to investigate two questions regard-

ing its pathogenesis: (1) what are the cell-type–specific transcriptional

alterations that are associated with AD and which cell type is the most

transcriptionally altered; and (2), given the considerably larger AD inci-

dence in females compared to males,2 what are the underlying most

notable sex-specific, cell-type–specific transcriptional alterations?

Mathys et al. published the first single-cell transcriptomics dataset

from Alzheimer’s patients and controls. They found that all cell types

in the prefrontal cortex had transcriptional changes associated with

AD.3 They found neurons to have more differentially expressed genes

(DEGs) downregulated, whereas other cell types such as astrocytes

and microglia had more genes upregulated. They found excitatory

neurons to have the most DEGs 3. However, in a second, single-cell

Alzheimer’s dataset (GSE157827), Lau et al. found that astrocytes

have more DEGs compared to other cell types.4 Aiming to resolve

this apparent quandary, we reanalyze the Mathys and Lau datasets

using consistent methods. For validation, we analyze a third single-cell

transcriptomics Alzheimer’s dataset,5 with the caveat that we cannot

compare cell types, such as endothelial cells, that are not adequately

sampled in all three datasets.

In addition to the relative importance of different brain cell types,

another longstanding puzzle about AD is the observation of its sub-

stantially higher incidence in females.2 The biology of the sex differ-

ences in AD incidence is poorly understood, even after a mouse study

targeting this question.6 Mathys et al. did sex-specific analysis and con-

cluded that there are subtle differences in the transcriptomicsbetween

sexes in each cell type, with neurons and oligodendrocytes having

the most extreme differences.3 However, they did not look at specific

genes or enriched pathways in a sex-stratified way.

To study the observed sex differences at a single-cell resolution,

Belonwu and colleagues reused the Mathys dataset to perform a

sex-stratified analysis to identify sex-stratified cell-type–specific per-

turbations inAlzheimer’s patients. They found that neuronsweremore

similar betweenmales and females compared to glial cells, havingmore

shared genes and pathways.7 Their analysis was limited inadvertently

to fewer than 200 genes. We instead perform a sex-stratified analysis

for most genes using the same differential expression method that we

use to resolve the cell-type contradiction.

To validate the sex-specific single-cell findings, we additionally

analyze three bulk expression datasets from the Gene Expression

Omnibus (GEO;Methods). Notably, a recent article reported a study of

the role of sex differences at the transcriptome level and how it influ-

ences complex traits analyzed in the most recent (v8) version of the

Genotype-Tissue Expression (GTEx) v8 project.8 Oliva and colleagues

identified sets of sex-biased genes (genes whose expression levels dif-

fer significantly between males and females) for dozens of different

tissues, which we further consider in our analysis.

For our analysis of sex differences, we introduce standard ter-

minology about X-chromosome genes. Near the Xp telomere is the

pseudoautosomal region (PAR) containing a handful of genes for which

females express two copies on X, whereas males express one copy

on X and one or more copies on Y. The gene copies on X and Y do

not recombine and hence can diverge in evolution.9 Among the non-

PAR X-chromosome genes, most have their expression between males
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RESEARCH INCONTEXT

1. Systematic Review: Literature search in PubMed and

Google Scholar showed that females have a substantially

higher incidence of Alzheimer’s disease. Transcriptomics

studies to investigate the sex difference have been lim-

ited. The authors searched in Synapse and GEO for

single-cell and bulk transcriptomics datasets. Six suitable

datasetswere identified. The analyses in references 3 and

4 disagreed on whether excitatory neurons or astrocytes

are themost important cell type.

2. Interpretation: By using appropriate methods for single-

cell data, we resolved the disagreement. Excitatory neu-

rons have the most differentially expressed genes in

cases versus controls; this was validated on a third data

set. Sex-specific analysis suggested an important role in

female cases versus female controls for X-chromosome

genes that are heterogeneous in their X-chromosome

inactivation status.

3. Future Directions: Further analysis of X-chromosome

genes should be done in transcriptomics and proteomics

datasets to see how these genes contribute to the higher

female incidence.

and females balanced by X-chromosome inactivation in females,10

which is regulated primarily by the RNA gene XIST.11 We partition the

non-PAR genes into three categories according to their X-inactivation

status in females: always inactivated, always escaping X-inactivation,

and heterogeneous with respect to X-inactivation using a published

classification.12 Heterogeneity of Xinactivation may be across individ-

uals and/or across tissues.

In summary, we consistently analyze three, single-cell datasets to

investigate the association of brain cell-type gene expression with the

progression of AD, and to further learn which cell-type–specific path-

ways are enriched in AD. In addition, we performed a sex-stratified

enrichment analysis ofDEGs in these three, single-cell datasets to iden-

tify differences in pathways that may contribute to the observed sex

bias in AD. We complement this sex-stratified analysis of single-cell

data with additional analysis of three existing bulk RNA datasets from

the cortex to validate findings from single-cell and bulk data. Finally, we

investigate the roles that X-chromosome genesmay play in the sex bias

of AD.

2 METHODS

2.1 Single-cell expression analysis

We analyzed the single-cell datasets Syn18485175 (Mathys dataset),

GSE157827 (Lau dataset), and Syn21670836 (TREM2 dataset), as

described in the Supplementary Text and Figure S1.

2.1.1 Choice of MAST (Model-based Analysis of
Single-cell Transcriptomics), as implemented in Seurat,
as the analysis method for single-cell analysis

The data processing of the Mathys dataset done by Belonwu et al.

was through a Seurat object; the Seurat package13 is used widely for

single-cell transcriptomics analysis. Therefore, we used the Belonwu

et al. code up to their overaggressive filtering and continuedwith other

Seurat options for the revised differential expression analysis. Seurat’s

FindMarkers function provides another way to identify DEGs between

clusters while allowing for pre-filtering. In addition, Seurat also sup-

ports a variety of differential expression tests such as bimod, poisson,

wilcox, MAST, and DESeq2.13–16 A large-scale comparison study of DE

analysis methods foundModel-based Analysis of Single-cell Transcrip-

tomics (MAST) to be the best-performing single-cell DE test.17 MAST

is a widely used tool, with Google Scholar reporting 1089 citations

as of December 9, 2021. In addition, MAST has the virtue of being

integrated into Seurat’s FindMarkers function. For these reasons, we

decided touseMAST for our single-cell differential expression analysis,

as described in the Supplementary Text.

2.1.2 Gene set enrichment analysis

We performed all gene set enrichment analysis using the web-based

application GOrilla18 with running mode set to “Single ranked list of

genes.” Geneswere ranked by logFC value and pasted into the text box.

p-value thresholdwas set to “10ˆ-3” and “RunGOrilla in fastmode”was

unchecked.

2.1.3 TREM2 Ex cluster analysis

In the TREM2 dataset, Seurat’s FindMarkers function was used to per-

form the differential expression analysis between Ex0 and Ex1 clusters

as described in the Supplementary Text.

2.2 Bulk expression analysis

2.2.1 Datasets

Three datasets were obtained from Gene Expression Omnibus using

GEO2R for the analysis on Alzheimer’s samples.19 These datasets are:

GSE15222,20 GSE33000,21 and GSE44770.22 Our processing of these

datasets and the GTEx v8 data23 are described in the Supplementary

Text.

2.3 Hypergeometric enrichment test for both
single-cell and bulk analysis

For various analyses, we used hypergeometric tests to decide if

one set of genes (e.g., X-chromosome-heterogeneous genes) was
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TABLE 1 Summary of the six datasets re-analyzed in this study; see also Figure S1 for amore visual representation.

Mathys Lau TREM2 GSE15222 GSE33000 GSE44770

Male Female Male Female Male Female Male Female Male Female Male Female

Ast 1543 1849 13922 6361 2408 3188 N/A N/A N/A N/A N/A N/A

Ex 16151 18825 40526 18698 4147 7290 N/A N/A N/A N/A N/A N/A

In 4539 4657 23979 10501 1470 1884 N/A N/A N/A N/A N/A N/A

Mic 897 1023 5164 2974 900 1566 N/A N/A N/A N/A N/A N/A

Oli 8795 9440 30677 10956 8187 15292 N/A N/A N/A N/A N/A N/A

CTRL 12 12 6 3 4 7 98 77 86 24 16 5

AD 12 12 8 4 4 7 82 75 55 40 6 3

Note: For each single-cell dataset we show cell count per cell type and sex for the cell types present in all datasets; we show the total count of patients for

each sex per dataset. Patients counted in the table were those that passed the filtering step (see SupplementaryMethods).

Abbreviations: Ast, astrocytes; Ex, excitatory neurons; In, inhibitory neurons; Mic, microglia; Oli, oligodendrocytes; CTRL, unaffected controls; AD, number

of individuals affectedwith Alzheimer’s disease; N/A, not applicable.

over-represented in another set of genes (e.g., DEGs). To perform the

hypergeometric enrichment test, we used the function phyper.

2.4 Data availability

The Mathys dataset and the TREM2 dataset are available

with permission via Synapse. The Lau single-cell dataset and

the three bulk datasets are available from the Gene Expres-

sion Omnibus (GEO) without any account or extra permission.

Instructions on how to reproduce our analysis are provided in

ftp.ncbi.nlm.nih.gov/pub/catSMA/Alzheimer, which contains the single

file README.txt and the archive Alz_final_manuscript.tar.gz.

3 RESULTS

3.1 Overview of the analysis

Three single-cell/ single-nucleus prefrontal cortex Alzheimer’s

datasets were analyzed, containing expression data for five cell types:

astrocytes, excitatory neurons, inhibitory neurons, microglia, and

oligodendrocytes (Figure 1, upper left, Table 1, Figure S1). Later in

the analysis, we also analyzed three bulk expression datasets from

the cortex (Figure 1, lower left). To investigate which cell type may

contribute more to the progression of AD, we performed a cell-type

differential expression analysis on each dataset to identify the cell

type that have the most differentially expressed genes (DEGs, Figure

1, second panel from left, upper). Once we identified the cell type that

had the most DEGs across the three datasets, we used the software

programGOrilla to identify enriched pathways (Figure 1, upper right).

We also conducted sex-stratified cell-type differential expression

analysis to better understand what may be contributing to the sex bias

in AD (Figure 1, second panel from left, lower). For this analysis, we

were interested particularly in two gene sets that can contribute to the

sex difference observed: (a) GTEx cortex genes that are considered sex

biased andwere published byOliva et al., and (b) X-chromosome genes

(Figure1, third panel from left).Weperformeda sex-stratified cell-type

differential expression analysis on each dataset, and then performed a

sex-stratified enrichment analysis using the software GOrilla. In addi-

tion, we performed hypergeometric enrichment analyses (Figure 1,

lower right) to determine if certain sets of differentially expressed

genes are enriched within the gene sets that can contribute to the

observed sex bias.

To validate the role that X-chromosome genes have in the observed

sex bias in AD, we analyzed three bulk cortex datasets (Figure 1, lower

left) and performed an X-chromosome differential expression analysis

(Figure 1, secondpanel from left, lowest part). After performing the dif-

ferential expression analysis, we performed ameta-analysis to identify

X-chromosome genes that are statistically significant and are upregu-

lated/downregulated in the same direction across the three datasets.

3.2 Excitatory neurons have more differentially
expressed genes than other cell types in AD cases
versus controls

To determine if excitatory neurons play a larger role in AD than other

cell typesdo,we startedbyanalyzing a single-cell dataset fromSynapse

(syn18485175)3 for DEGs. We refer to these data as the “Mathys

dataset.”

Previously, Belonwu et al. performed a sex-stratified differential

expression analysis on the Mathys dataset but reported surprisingly

low two-digit numbers of DEGs for a dataset with a large sample size.7

Using voom-limma,24 which was developed specifically for bulk RNA-

seq analysis, they filtered out more than 99% of the genes, which is

too aggressive. Instead, we did the DEG analysis using (in the Seu-

rat package) the MAST method,14 which is used widely for single-cell

transcriptomics data analysis (Methods). We identified cell-type spe-

cific DEGs for six cell types with sufficient data. Excitatory neurons

have far more significant DEGs than the other cell types (Methods,

Figure 2, Table S1).
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F IGURE 1 Overview of the analysis. Single-cell/-nucleus transcriptomics and bulk gene expression Alzheimer’s datasets were obtained for
this project (left panel).We performed three different types of differential expression analyses: cell-type specific, sex-stratified cell-type specific,
and X-chromosome genes (second panel from the left). Some of our analyses on sex bias incorporated published classifications of sex-biased genes
from the GTEx project and a published classification of X-chromosome genes according to X-inactivation status (third panel from the left). After
performing the differential expression analysis, we used the software GOrilla to perform the enrichment analysis (upper right). In addition, we
performed hypergeometric tests (lower right) to identify enrichment of two gene sets in Alzheimer’s patients: GTEx sex-biased cortex genes
obtained from reference 8, and the classification of X-chromosome genes.

To investigate whether the larger number of significant DEGs found

in excitatory neurons happens because theyhave a larger cell count,we

down-sampled the cells for each cell type and repeated the analysis,

taking the mean across 100 replicates (Supplementary Text). Excita-

tory neurons continued to have more significant DEGs than all other

cell types (Figure 1, Table S2). Three hundred genes are differentially

expressed in more than 50 of 100 down-sampling replicates, with RAS-

GEF1B, LINGO1, and SLC26A3 appearing in all 100 (Table 2), overall

testifying that the notable transcriptional alterations observed in the

excitatory neurons are likely to reflect the biology of the disease. Of

interest, LINGO1 has been implicated in numerous neurodegenerative

disorders and has been proposed as a potential for ADdue to its critical

role in the pathophysiology ofADby favoring the β cleavageofAPPand
the generation of amyloid beta (Aβ) fragments.25,26 Belonwu et al. also

detected LINGO1 as significantly differentially expressed in theMathys

dataset.7

TABLE 2 Top 10 genes ranked by the number of times each gene
appeared to be differentially expressed across the 100 subset
replicates for the down-sampling analysis of theMathys dataset.

Gene

Replicate

count

RASGEF1B 100

LINGO1 100

SLC26A3 100

NGFRAP1 99

DHFR 97

GRIN1 93

PDE10A 89

BEX1 88

SPARCL1 88

IDS 87
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F IGURE 2 Total number of DEGswith an FDR-adjusted p-value less than 0.05 before and after down-sampling in theMathys dataset. The
exact numbers are shown in Table S1.

F IGURE 3 Total number of DEGswith an FDR-adjusted p-value less than 0.05 before and after down-sampling in the Lau dataset. The exact
numbers are shown in Table S2.

Again, we used MAST within Seurat for the most important anal-

ysis steps (Methods). Reassuringly, the percentages of cells of each

type that we found correspond well overall with those reported orig-

inally by Lau et al. (Table S2). Using our cell classifications, Figure 3 and

Table S3 show the number of DEGs found per cell type for each of the

five pertaining cell types; we excluded endothelial cells because they

were removed in Mathys analysis (Supplementary Text). These results

reinforce our previous findings in the Mathys dataset that excitatory

neurons had more significant DEGs compared to other cell types. We

performed the samedown-sampling test thatweperformedonMathys

dataset, finding that excitatory neurons contained more significant

DEGs than all other cell types and validating Table 2.

Next, we studied the cell type question in a third dataset,

syn21670836,5 whichwe refer to as the “TREM2dataset” (Supplemen-

tary Text). The metadata provided by Zhou et al. classified cells by cell

type and provided the sex and age for each patient. One unusual aspect
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F IGURE 4 Total number of DEGswith an FDR-adjusted p-value less than 0.05 before and after down-sampling in the TREM2 dataset. The
exact numbers are shown in Table S4.

of this data set is that there were two clusters of excitatory neurons,

which the authors denoted by Ex0 and Ex1.

We focused our analysis on the Alzheimer’s patients with TREM2-

CV, a commonTREM2 variant, because theywere sex-matchedwith the

controls. As shown in Figure 4 and Table S4, we again found that exci-

tatory neurons have far more significant DEGs compared to the other

cell types, if we combine Ex0 and Ex1. However, this time the down-

sampling test (Supplementary Text) revealed that astrocytes con-

tained themost significant DEGs (Figure 4 and Table S4, second row).

We reasoned that combining Ex0 and Ex1 for DEG analysis may be

ill-advised and, therefore, we re-performed the down-sampling analy-

sis on cluster Ex0, which has a much larger cell count (Supplementary

Text). This analysis showed that Ex0 cells have more DEGs than each

other cell types, reaffirming the findings on the first two datasets

(Table S4).

Zhou et al. did not provide any biological characterization of the

difference between Ex0 and Ex1; they just accepting these as distinct

clusters produced automatically by Seurat.5 To try to find a biological

difference, we performed a differential expression analysis thatwewill

present later in Results.

Our primary threshold for determining that a gene is differentially

expressed is that the false discovery rate (FDR)-adjusted p-value is

< 0.05. In addition, we did sensitivity analysis for the logFC thresh-

old (Supplementary Text and Tables S5–S7). Tables S8–S15 list for
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TABLE 3 Total number of DEGswith an FDR-adjusted p-value less than 0.05 before and after down-sampling in the Lau dataset.

Astrocytes Excitatoryneurons Inhibitoryneurons Microglia Oligodendrocytes

Pre-down-samplingDEGs 4021 7,784 6515 350 3655

Post-down-samplingDEGs 908 2106 984 118 975

each of astrocytes, excitatory neurons, microglia, and oligodendro-

cytes, the genes that are consistently upregulated and consistently

downregulated in the three datasets.

3.3 Pathway enrichment analysis of DEGs

After discovering that excitatory neurons have themost DEGs, we per-

formed an enrichment analysis to determine which of their pathways

are upregulated or downregulated in Alzheimer’s patients (Methods,

Figures S2 and S3). Overall, we find different key enriched pathways

in the different datasets we have studied (Discussion). One factor that

could contribute to the dissimilar pathway enrichment in the datasets

is that the Lau dataset contains substantially more cells from males

than females, whereas the TREM2 dataset contains more cells from

females than males (Tables S16–S18). In the Mathys dataset, path-

ways involved in synaptic signaling are significantly upregulated in

Alzheimer’s patients, which bears relevance to the core homeostatic

machinery theory proposed by Frere and Slutsky.27 The top pathways

that are significantly downregulated are involved in the electron trans-

port chain, which also contributes to the stability of the homeostatic

machinery.27 Analysis for the Lau and TREM2 datasets is summa-

rized in the Supplementary Text and Figures S4–S7. Pathway analysis

for astrocytes and microglia is in the Supplementary Text and Tables

S19–S63. The difference across datasets in synaptic signaling regula-

tion is surprising, so we analyzed individual, widely studied, synaptic

genes and confirmed inconsistencies across datasets (Supplementary

Information and Tables S64–S65).

To search for common potential AD gene targets, we looked for

genes that were among the top 500 DEGs for excitatory neurons in

each dataset ranked by adjusted p-value and that are members of

the dysregulated pathways identified by GOrilla. We focused on over-

expressed genes, since they may be easier to target. One gene that

stood out is GRIN1, which is one of the most consistent DEGs in

our down-sampling of the excitatory neurons in the Mathys dataset

(Table 3). This gene, also known as GluRN1, encodes a glutamate

receptor and is a functional candidate because of the key roles of gluta-

matergic synapses in the pathogenesis of AD.28–30 Overexpression of

the GRIN1 protein in AD has been found in at least two studies,31,32

but this has been challenging to study in bulk samples because the

glutamatergic neurons tend to die early in the disease.28,33 GRIN1 con-

tributes to the following upregulated pathways (GOrilla rankings in

parentheses) in the Mathys dataset excitatory neurons GO:0050804

modulation of chemical synaptic transmission (1st), GO:0099177 reg-

ulation of trans-synaptic signaling (2nd), GO:0043269 regulation of

ion transport (11th), GO:0032879 regulation of localization (16th),

and GO:0099537 trans-synaptic signaling (32nd). Similarly, in the Lau

TABLE 4 Top 10DEGs between Ex0 and Ex1 ranked by
descending logFC.

Gene logFC adj.p.value

MEG3 4.387 0

MALAT1 3.905 0

MIAT 3.532 0

MIR124-1HG 2.765 0

XIST 2.740 0

PNISR 2.521 0

LINC00632 2.520 0

KCNIP4-IT1 2.485 0

RNPC3 2.471 0

AH1 2.463 0

Note: The second row is the average of 100 replicates rounded to the near-

est integer. A positive logFC value indicate higher expression in Ex0 cluster.

Zero adj. p-values indicate a value less than 1.00e-310.

dataset, GRIN1 contributes to the top two ranked upregulated path-

ways: GO:0050804 modulation of chemical synaptic transmission and

GO:0099177 regulation of trans-synaptic signaling.

Finally, to try to find a biological difference between the two exci-

tatory neuron clusters in the TREM2 dataset, we performed a MAST

differential expression analysis between Ex0 and Ex1 clusters, control-

ling for sex, age, and condition.Table 4 shows the top10DEGsbetween

Ex0 and Ex1. Of interest, the fifth gene that was expressed higher in

Ex0 is XIST, which is known to control X-inactivation.34 Based on this

finding, wewere interested in seeing if this means that Ex1would have

more upregulated X-chromosome inactivation heterogeneous genes

upregulated than Ex0. To test this hypothesis, we analyzed only female

samples. Indeed, we found that Ex1 had more X-chromosome inacti-

vation heterogeneous genes upregulated compared to Ex0 (100 and

63, respectively). Because heterogeneity in X-chromosome inactiva-

tion occurs only in females, this finding led us towonderwhether these

X-chromosome genes are relevant to the difference in AD incidence

between males and females. To pursue the potential contributions

of excitatory neurons to sex differences, we performed sex-stratified

differential expression analysis.

3.4 Sex-stratified enrichment analysis of
differentially expressed pathways in excitatory
neurons

We performed a sex-stratified enrichment analysis to determine

if there are sex differences in enriched pathways (Supplementary

Text). In each dataset we compared male cases to male controls and
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female cases to female controls (we did not compare male cases to

female cases because this would not be a properly controlled com-

parison). In the Mathys dataset, the top pathways upregulated in

Alzheimer’s males and females were involved in cell adhesion and

synaptic transmission, with trans-synaptic signaling beingmore promi-

nent in females. Females also had upregulation of cellular component

organization, whichwas not upregulated inmales. Top pathways down-

regulated in both Alzheimer’s males and females were involved with

cellular metabolism and the electron transport chain. In addition,

males had several downregulated pathways including ferric iron trans-

port, transferrin transport, immune effector process, and immune

system process, which were not enriched in females. Further analy-

ses of the other two datasets and specific genes can be found in the

Supplementary Text.

Key pathways that appear most often in the sex-specific com-

parisons are GO:0099177 regulation of trans-synaptic signaling and

GO:0050804 modulation of chemical synaptic transmission. Genes in

these pathways may be both upregulated and downregulated, con-

sistent with the hypothesis that loss of homeostasis is the key to

Alzheimer’s pathogenesis.27 When comparing upregulated and down-

regulatedpathways, themost strikingobservationwas that theTREM2

Ex0 cluster has only upregulated pathways inmales and only downreg-

ulated pathways in females. Furthermore, among the 178 significant

downregulated pathways in females and the 90 significantly upregu-

lated pathways in males, 56 of 178 and of 90 are the same pathways,

but changing in opposite directions in the two sex-specific analy-

ses. This reinforces our previous conclusion that the Seurat split

between the Ex0 and Ex1 clusters in the TREM2 dataset unmasks

some clues about sex differences inAD. TheMathys dataset hasmostly

upregulated pathways in both males and females, which presents

an opportunity to compare datasets in the pathways upregulated in

Mathys dataset males and TREM2 dataset males, but not in Mathys

dataset females. There are three suchpathways:GO:0009653anatom-

ical structure morphogenesis, GO:0045597 positive regulation of cell

differentiation, and GO:0007156 homophilic cell adhesion via plasma

membrane adhesionmolecules.

3.5 Revisiting the single-cell sex-specific findings
in a bulk expression analysis

After discovering sex differences in enriched pathways in excitatory

neurons, we decided to perform a differential expression analy-

sis on bulk data to see if bulk data analysis would provide addi-

tional information on the observed sex differences. For this analysis,

we were especially interested in X-chromosome PAR genes and X-

chromosome heterogeneous for escaping X-inactivation and their

potential role contributing to AD. We analyzed three datasets for AD

that had gene expression from the cortex: GSE15222, GSE33000, and

GSE44770.20–22 We performed linear modeling of the association of

their DEwith AD, controlling for sex and age (Supplementary Text).

After obtaining the differential expression analysis on each

Alzheimer’s dataset, meta-analysis was performed to identify the

significant pseudoautosomal and inactivation-heterogeneous X-

chromosome genes across all three datasets and the p-values were

corrected formultiple testing (Supplementary Text). Among significant

consistently differentially expressed genes genome-wide were five

pseudoautosomal genes: CD99 (genome-wide FDR adjusted p = 2.7e-

11), ZBED1 (p= 5.2e-11), IL3RA (p= 2.5e-09),ASMTL (p= 6.0e-09), and

GTPB6 (p = 8.6e-05). Table 5 shows the top 10 statistically significant

differentially expressed inactivation-heterogeneous X-chromosome

genes adjusting for multiple testing (Methods). The top three genes

were BEX1, PRKX, and TSR2. Of interest, BEX1 was one of the most

consistent DEGs in our sampling of the excitatory neurons in the

Mathys dataset (Table 4), is significantly downregulated in cases

versus controls in all three single-cell datasets, and functionally has

been shown to be involved in the regeneration of axons35 and is

downregulated in Alzheimer’s patients compared to controls. PRKX

encodes a serine threonine protein kinase and has been shown to

play a crucial role in neural development.36 TSR2 has been shown to

inhibit the transcriptional activity of NF-κB, which is one of the key

transcription factors for the homeostaticmodel,27 and TSR2was found

to be downregulated in Alzheimer’s patients.37 Of note, while this

manuscript was under review, Yan et al., published a beautiful study

implicating the X-chromosome heterogeneous gene USP11 in the

pathogenesis of AD in females38; this coincidentally adds functional

data evidence to the results shown in Table 5.

Because we saw that X-chromosome heterogeneous genes were

significantly differentially expressed between Alzheimer’s and con-

trol in bulk data, we went back to the single-cell transcriptomics

dataset and tested whether X-chromosome heterogeneous genes are

over-represented among male or female excitatory neurons DEGs. In

the Mathys dataset we did not find significant enrichment of the X-

chromosome heterogeneous genes in the DEGs for males (p-value =

0.21). However, quite strikingly, a hypergeometric test for females

resulted in a p-value of 0, indicating that enrichment is statistically

significant with a p-value less than 1.00e-310. This difference makes

sense, since some X-chromosome heterogenous genes differ in the

expression between female individuals.

In the Lau dataset, we again did not find significant enrichment of

the X-chromosome heterogeneous genes in the DEGs for males (p-

value = 0.10). In the females, the hypergeometric test again resulted

in a p-value of 0, indicating that enrichment is statistically significant

with a p-value less than 1.00e-310.

In the TREM2 Ex0 cluster, we did not find significant enrich-

ment of the X-chromosome heterogeneous genes in the DEGs for

either males or females (p-value 0.51 and 0.21, respectively). This was

expected based on the above analysis that puts the X-chromosome

heterogeneous DEGs preferentially in the Ex1 cluster.

Another source of candidate genes to be involved in diseases, such

as Alzheimer’s, with a difference in prevalence by sex, comes from

the analysis of Oliva et al. of the newly published Genotype-Tissue



10 of 13 GARCIA ET AL.

TABLE 5 Top 10 significant differentially expressed X-chromosome heterogeneous genes between Alzheimer’s and controls meta-analysis.

Gene

GSE15222

logFC

GSE33000

logFC

GSE44770

logFC

Combined

adj.p.value

BEX1 -0.580 -0.065 -0.087 4.45E-24

PRKX 0.545 0.081 0.080 2.50E-23

TSR2 -0.254 -0.047 -0.046 2.13E-22

FOXO4 0.598 0.080 0.046 2.61E-21

ELK1 0.333 0.092 0.107 5.57E-21

USP11 -0.537 -0.040 -0.054 3.15E-20

TBL1X 0.429 0.061 0.030 8.83E-20

ATP6AP2 -0.375 -0.037 -0.039 1.82E-19

IDS -0.524 -0.026 -0.049 8.71E-19

MCTS1 -0.474 -0.022 -0.039 9.10E-18

Note:Meta-analysis was done using Fisher’smethodwith FDR correction for those X-chromosome inactivation heterogeneous genes that had logFC (log fold

change) with the same sign in each of the three data-sets. The rightmost column has the combined adjusted p-value after applying Fisher’s method.

Expression (GTEx) v8 project data. Of the 112 sex-bias genes reported

in that study for the cortex, 31 are either X-chromosome inactivation

heterogeneous or pseudoautosomal genes (19 and 12, respectively),

with an enrichment p-value of 1.21e-40. Of interest, 8 of the 19 X-

chromosome inactivation heterogeneous genes are also identified in

our X-chromosome meta-analysis in the bulk data. Of the 31 genes

mentioned, 21were found to be differentially expressed in theMathys

dataset, 18 were found to be differentially expressed in the Lau

dataset, and24were found tobedifferentially expressed in theTREM2

dataset (Supplementary Table S66). Among these genes, NAP1L3 and

CHM are heterogeneous genes that are consistently downregulated in

cases versus controls.

Taken together, our results suggest that among the commonly

studied cell types, excitatory neurons have the most differentially

expressed genes, resolving a previous contradiction in the literature.

Analysis of the excitatory neuron data in three single-cell datasets

and cortex data in three bulk datasets suggest that the differentially

expressed genes in this cell type and this tissue disproportionately

includeX-chromosomeheterogeneousgenes in females andpseudoau-

tosomal genes when analyzing all cases versus all controls. Further-

more, different pathways are upregulated and downregulated in the

two sexes in excitatory neurons. Thus the longstanding questions of

which cell type is most important in Alzheimer’s pathogenesis and why

females have higher incidence than males can be connected logically

and biologically by analyzing differential gene expression in single-cell

data.

4 DISCUSSION

In this study, we focused on different neuronal cell types and their

expression in the pathogenesis of AD. In contrast, other studies have

investigated the possible pathogenetic role of synaptic alterations28,39

or genetic factors.40 Our study has become feasible due to pub-

licly available Alzheimer’s single-cell transcriptomics datasets. Follow-

ing previous work,3,4,7 we considered the number of differentially

expressed genes (or DEGs) between Alzheimer’s and controls in spe-

cific cell types as an indicator of cell type importance. Analyzing these

datasets in a uniform manner, we asked two fundamental questions:

(1) what are the key transcriptomics differences between the brains of

Alzheimer’s patients and controls and (2) what are the sex-dependent

differences in the cell types and genes that are differentially altered in

Alzheimer’s disease?

Regarding the first question, previous studies3,4 reached contrast-

ing conclusions, finding that excitatory neurons3 or astrocytes,4 have

the most DEGs between Alzheimer’s and controls. Our first key result

resolves this discrepancybyhomogeneouslyusing theMAST14 method

on both datasets, showing that excitatory neurons have more DEGs.

We validated this result on a third single-cell dataset.5

To attempt a formal replication, we deliberately analyzed the three

sets separately and, to the extent possible, respected the definition of

cell types in the original publications. In addition, to check that cell

type identification was similar across datasets, we further integrated

the three single-cell datasets using Seurat13 (SupplementaryMethods,

Table S67). We collected marker genes of cell types from the origi-

nal manuscript of each dataset. We present the dot plots of marker

genes of all cell types regarding four scenarios: (1) integration of three

datasets; (2)Mathys dataset (separate from the integration results); (3)

Lau dataset (separate from the integration results); (4) TREM2 dataset

(separate from the integration results) (Figures S8–S11). We found

empirically that cell types are consistent across different datasets.

Using excitatory neurons as an example, the genes RALYL, KCNIP4,

CBLN2, LDB2, and KCNQ5 were markers of excitatory neurons sug-

gested for the Lau dataset, whereas GRIN1, SYT1, RBFOX2, PDE1A,

and ETL4, etc., were marker genes of excitatory neurons, as suggested

for the TREM2 dataset. Our integration dot plot (Figure S8) clearly

identified excitatory neurons by both marker gene sets. Altogether,

we can successfully re-identify clusters after integration of three

snRNA-seq datasets via Seurat across different marker gene sets for

excitatory neurons reported by the original studies. Asmore and larger
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single-cell datasets are collected for AD, it would help downstream

analysis to have more homogeneous sequencing protocols and marker

gene sets to define cell types.

Identifying the cellular pathways that are over-represented among

the DEGs, we found that synaptic signaling (upregulated in theMathys

dataset but downregulated in the Lau and TREM2 datasets) and mito-

chondrial functions related to energy production and ion transport

were downregulated (in theMathys and TREM2 datasets). In addition,

synaptic signalingwasdownregulated in female patients by themselves

but not in male patients in the TREM2 dataset. These findings are

consistent with the homeostatic model of,27 in which “firing home-

ostasis” is central and depends partly on “proteostasis” and “energy

homeostasis” for which themitochondria play key roles.

We next investigated the pathogenic role of sex differences by

analyzing three single-cell transcriptomics datasets and three bulk

gene expression datasets from cortex, and incorporating the recent

genome-wide characterization of tissue-specific sex-biased genes pub-

lished as part of the release of GTEx v8.8 Based on the analysis of

the TREM2 dataset, we hypothesized and validated that two gene sets

on the X-chromosome—PAR genes and heterogeneously X-inactivated

genes—are significantly over-represented among the DEGs between

Alzheimer’s male and female patients, both in single-cell and bulk data.

A recent functional study established the importance of the PAR gene

IL3A, in Alzheimer’s pathogenesis.41

Our hypotheses about the possible role of X-chromosome genes

can be pursued further by reconsidering published GWAS datasets in

females only via meta-analysis, as was done recently by Chung and

colleagues, leading to the identification of variants in the autosomal

gene MGMT as a female-specific risk factor.42 Oliva and colleagues

attempted to connect the sex-biased genes they identified in GTEx

to diseases by searching the NHGRI-EBI GWAS catalog,43 but they

found no associations for AD. Early GWAS ignored the X-chromosome

due to lack of statistical methods; this has been overcome with newer

methods such as XWAS,44 but theNHGRI-EBI catalog does not include

X-chromosome-specific analyses.

Our study has several imitations. First, our analysis is focused on

differential expression and statistical associations, not causal mecha-

nisms. Second, our analyses of upregulated and downregulated gene

pathways uncoveredquite different results for eachof the three single-

cell datasets, possibly due to heterogeneity in their study designs and

wet lab transcriptomics data collectionmethods. Third, somecell types,

such as endothelial cells could not be compared and other cell types,

such asmicroglia, could be formally compared across datasets but have

relatively few cells sampled relative to excitatory neurons. Fourth, to

have larger numbers of samples, we ignore important covariates, such

as theapolipoproteinE (APOE) genotype. Finally, our analysis is focused

on transcriptomic alterations and hence has limited ability to shed light

on classical andprevailing theories ofAlzheimer’s pathogenesis, involv-

ingmanypost-transcriptionalmechanisms concerning the formation of

amyloid plaques and neurofibrillary tangles and beyond.45–47

In sum, we resolved the contradiction between the study of Mathys

et al.3 and the study of Lau et al.4 showing that when comparing AD

patients to unaffected controls, excitatory neurons have more DEGs

than do astrocytes and other cell types. Analysis of enriched pathways

in excitatory neurons points to differences in synaptic transmission

and related pathways betweenmales and females. Further sex-specific

analysis of differentially expressed genes between cases and con-

trols in single-cell and bulk transcriptomics datasets suggests that PAR

genes and X-chromosome heterogeneous genes may contribute to the

difference in sex incidence of AD. Identifying cell types and genes

whose expression is different between female andmale patients opens

new possibilities for understanding the cellular and molecular etiology

of this vexing illness.
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