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Abstract: Bats are reservoirs of a large number of viruses of global public health significance, in-
cluding the ancestral virus for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and
the causative agent of coronavirus disease 2019 (COVID-19). Although bats are natural carriers of
multiple pathogenic viruses, they rarely display signs of disease. Recent insights suggest that bats
have a more balanced host defense and tolerance system to viral infections that may be linked to the
evolutionary adaptation to powered flight. Therefore, a deeper understanding of bat immune system
may provide intervention strategies to prevent zoonotic disease transmission and to identify new
therapeutic targets. Similar to other eutherian mammals, bats have both innate and adaptive immune
systems that have evolved to detect and respond to invading pathogens. Bridging these two systems
are innate lymphocytes, which are highly abundant within circulation and barrier tissues. These cells
share the characteristics of both innate and adaptive immune cells and are poised to mount rapid
effector responses. They are ideally suited as the first line of defense against early stages of viral
infections. Here, we will focus on the current knowledge of innate lymphocytes in bats, their function,
and their potential role in host–pathogen interactions. Moreover, given that studies into bat immune
systems are often hindered by a lack of bat-specific research tools, we will discuss strategies that may
aid future research in bat immunity, including the potential use of organoid models to delineate the
interplay between innate lymphocytes, bat viruses, and host tolerance.

Keywords: bat immunity; innate lymphocytes; innate-like T cells; viral pathogenesis

1. Overview on Bat Immunity and Pathogen Tolerance

Bats are natural reservoirs [1–7] of many species of viruses, including coronaviruses [5],
filoviruses [4,8], and paramyxoviruses [7,9], which cause severe morbidity during human
spillover events [10]. However, such viruses rarely, if ever, cause any overt disease in bats.
Accumulating evidence indicates that this is because bats use immune tolerance [8] as the
primary response against viral infections instead of overt inflammatory responses. The
host immune response to pathogens is traditionally described as a process of detection of
non-self and elimination of the foreign materials. A less studied host defense response
is tolerance [11,12], whereby the immune response is not primarily directed at pathogen
clearance, but instead at limiting host tissue damage inflicted by the pathogens and to
mobilize tissue repair mechanisms. Bats are highly diverse [13–17], and within this rich
species diversity, certain traits including long lifespans [18], cancer resistance [19] and
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being viral reservoirs [2] are conserved. Notable gene families under intense selective pres-
sure [17] include an expansion of DNA repair genes [17,20] and dampened inflammatory
responses [21–23] originating from innate immune receptors [20,24]. These unique traits of
bats are proposed to have co-evolved alongside powered flight and are reviewed in detail
elsewhere [1,18,25,26].

Eutherian mammals’ innate and adaptive immune systems have evolved to sense
pathogen infections and limit disease severity. Bridging these two systems and sharing the
characteristics of both innate and adaptive immune cells are innate lymphocytes, which
circulate in the periphery with the propensity to migrate and reside in non-lymphoid and
mucosal barrier tissues [27–29]. They are highly abundant and are capable of mounting
rapid effector immune responses. Therefore, innate lymphocytes serve as an ideal first line
of defense against pathogen invasion, including those caused by viruses [27]. Although they
may provide critical effector roles during viral infections, their overexuberant responses
can also contribute to viral disease pathogenesis. Innate lymphocytes consist of highly
diverse populations, including those that express germline-encoded antigen receptors, such
as innate lymphoid cells (ILCs) and natural killer (NK) cells and those that express antigen
receptors that undergo somatic recombination, including, but not limited to, mucosal-
associated invariant T (MAIT) cells, natural killer T (NKT) cells, and γδ T cells. Innate
lymphocytes that express specific antigen receptors are commonly known as innate-like
T cells or unconventional T cells [27]. These cells express semi-invariant T cell receptors
(TCRs) with restricted antigen receptor diversity. These receptors recognize a variety
of antigenic structures; some subpopulations recognize peptide fragments as antigens
presented by the classical major histocompatibility complex (MHC) proteins, and some
other subsets recognize a variety of other antigenic structures presented by the non-classical
MHC proteins. Additionally, these specialized immune cell populations can be indirectly
activated through the actions of cytokines.

Until recently, a lack of available tools has hindered extensive studies into bat immune
systems. Nevertheless, studies have shown the presence of these innate lymphocytes in
various bat species [30–32] (Table 1). This mini-review will focus on the current knowledge
of innate lymphocytes in bats, their function, and their potential role in antiviral immunity
and tolerance. Despite the significant roles that γδT cells play in viral immunity and
pathogenesis in humans, TCRγ- and TCRδ-related transcripts were found only in low
abundance in bats [16]. Additionally, because there is no conclusive study on the presence
and function of γδT cells conducted in bats, discussion of γδT cells in bat immunity
will be the focus for future work. Finally, we will explore and discuss the potential use
of organoid models to address the most pressing knowledge gap in bat immunological
research, particularly in the interplay between innate lymphocytes and bat viruses and
viral tolerance.

Table 1. Brief summary of known characteristics of innate lymphocytes in humans and bats.

Innate Lymphocytes in Bats Innate Lymphocytes in Humans

NK cells

CD3−Tbet+Eomes+ cell population could be
regarded as NK cells in P. alecto bats; transcripts

of CD56 and CD16 genes present [16].

Human NK cells are identified as CD56+CD3−

and are functionally heterogeneous based on
differential expressions of CD56 and CD16
[33–35]. Circulating NK cells constitutively

express T-bet, EOMES, IL-2 and IL-15
receptor [36].

Frequency and location of NK cells in bats
currently unknown.

NK cells represent 7–25% of all circulating
lymphocytes in humans and are abundant in

tissues with different phenotypes [37].
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Table 1. Cont.

Innate Lymphocytes in Bats Innate Lymphocytes in Humans
NK cells

Absence of KIR genes across bats species.
Inhibitory NKG2A/CD94 and activating

NKG2D found. However, ligand and
downstream signaling protein for NKG2D

appears to be absent [20].

Express a diverse set of activating and
inhibitory receptors, such as KIR and KLR

receptors [29,38].

Function unknown. NK cells have a role in controlling viral
infections and prevent tumorigenesis [33,39].

NKT cells
Surface markers unknown. Express both T cell and NK cell markers.

CD1d transcripts detected in P. alecto [16]. TCR
segment usage is unknown.

Type I NKT cells recognize glycolipid antigens
presented by CD1d [40]. Express TCR

Vα24-Jα18 with limited TCR Vβ repertoires
(predominantly Vβ11).

No information related to function of NKT cells
in bats.

NKT cells are involved in both bacterial and
viral infections.

MAIT cells

P. alecto MR1T cells are defined as
hMR1-5OP-RU tetramer+ and intracellular

CD3+ cells [30]. TCR segment usage
is unknown.

Canonical MAIT cells are defined as Va7.2+

CD161+hMR1-5-OP-RU tetramer+ CD3+ cells.
Express TCR Vα7.2-Jα12/20/30 with limited

TCR Vβ repertoires (predominantly Vβ2
and Vβ13).

P. alecto MR1T cells may comprise 30% of CD3+

T cells compartments in the peripheral
blood [30].

Abundance of MAIT cells in blood; 5–10% of
total T cells [27].

P. alecto MR1T cells recognize MR1
molecule [30]. MAIT cells recognize MR1 molecule.

Antibacterial capacity demonstrated in P. alecto.
Antiviral function is unknown.

Antibacterial and indirect antiviral
role demonstrated.

Other innate lymphocytes: ILCs/γδT cells/Lti cells in bats remain to be explored.
Abbreviations: NK cells, natural killer cells; T-bet, T-box expressed in T cells; EOMES, eomesodermin; IL,
interleukin; NKG2, natural killer group 2; KIR, killer Ig-like Receptor; KLR, killer lectin-like receptor; NKT, natural
killer T; TCR, T cell receptor; MAIT cells, mucosal associated invariant T cells; MR1, MHC-Ib protein; 5-OP-RU,
5-(2-oxopropylideneamino)-6-D-ribitylaminouracil; ILCs, innate lymphoid cells; γδT cell, gamma delta T cell, Lti
cells, Lymphoid tissue inducer cells.

2. Innate Lymphoid Cells (ILCs)

ILCs are a heterogeneous group of cells belonging to the lymphoid lineage but do
not possess recombined antigen receptors and lack lineage markers. ILCs are generally
resident in non-lymphoid peripheral tissue, where these cells can quickly execute their
effector functions upon receipt of the appropriate signals during infection or injury [28].
ILCs can be divided into five groups: natural killer (NK) cells, ILC1s, ILC2s, ILC3s, and
lymphoid tissue-inducer (Lti) cells, with functionality mirroring that of conventional T
cells. ILC1s, ILC2s, and ILC3s share similar properties to those of CD4+ T helper (Th)
1, Th2, and Th17 cells, respectively [41]. ILC1 and Th1 cells secrete IFNγ and TNF in
response to intracellular pathogens and tumors; ILC2 and Th2 cells secrete IL-4, IL-5,
IL-9, and IL-13 in response to large extracellular parasites; while ILC3 and Th17 cells
secrete IL-17 and IL-22 in response to small extracellular pathogens. NK cells are similar to
CD8+ T lymphocytes, and both are cytotoxic lineages, although the targeting mechanisms
differ. Finally, LTi cells are generated early in embryonic development and instruct the
formation of secondary lymphoid organs [41]. The effector function of the respective ILCs
may be countered by the other ILC groups. ILCs mediate inflammation directly through
MHC-II and indirectly through dendritic cells. ILCs are not only involved in the immune
response against invading pathogens, but also in regulating thermogenesis, prevention
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of local inflammation, conversion of white fat to brown fat, and protection from high-fat
diet-induced obesity and metabolic diseases [42].

In bats, ILCs have not been characterized. Given that group 2 ILCs favour a Th2
response [43], and that the Egyptian rousette bats were found to be the first mammalian
species with more than one functional immunoglobulin E gene [44], the ILC2 group might
be of interest for future bat research and in viral infection. High levels of IgE are usually
associated with allergic inflammation [45] and coincide with certain viral infections [46],
and the ILC2 group has been proposed to play a role in the initiation of allergic inflamma-
tion [43,47]. In patients with severe cases of COVID-19, circulating ILC2s were found to
be depleted [48]. They may have homed to the inflammatory sites, as ILC2s are important
in mediating the process of tissue repair by the secretion of cytokines and other factors
involved in wound healing and tissue remodeling [49]. The secreted factors stimulate the
proliferation and differentiation of epithelial cells in conditions as diverse as helminth and
viral infections.

3. Natural Killer (NK) Cells

NK cells play a role in immune defenses against viral infections [39] and tumorige-
nesis [33,50]. Using a diverse set of activating and inhibitory receptors that recognize
MHC-I, cell surface receptors, and crystallizable fragment (Fc) domain of antibodies, ac-
tivated NK cells secrete cytolytic proteins and inflammatory cytokines [29]. In humans,
NK cells express highly polymorphic killer-cell immunoglobulin-like receptors (KIRs) and
the C-type lectin receptors (KLRs) heterodimer, which bind to HLA class I molecules, and
their combination results in a spectrum of different reactivity [38]. Virus-infected and
aberrant cells often have dysregulated MHC-I expression, causing loss of inhibitory NK
state through KIR and CD94/NKG2A interaction, resulting in NK cell activation [29,38]. In
addition, there are also subsets of NK cells, such as the uterine NK cells, which play a more
immune suppressive and tolerance role [51].

Previous studies have revealed unique features of MHC-I genes [20,52], a less restric-
tive MHC-I peptide binding groove [53], and inhibition or loss of NK receptor families in
bats [16,20]. Moreover, NK cells in bats seem to have undergone unique negative regula-
tion [16,17,20,31]. Papenfuss noted the lack of KIRs in the fruit-eating bat Pteropus alecto
transcriptomic dataset [16], which is in concordance with other independent studies on the
absence of KIRs in P. alecto and Myotis davidii, Rousette aegyptiacus, and finally, across the
order Chiroptera represented by 28 bat species in the most recent study by Moreno [20].
Given that the MHC-I gene family seems to have expanded outside the canonical MHC-I
region [31] and is lacking in alpha and kappa blocks [52] in bats, does this loss of KIR
genes then prompt a less activating state as a result of stress from flight and infection?
Moreover, KIR+ NK cells are associated with a more mature and cytolytic NK cell state [54],
which may not be ideal for bats, as it may promote a state of broken tolerance. In humans,
certain KIR expressions have been found to be associated with different disease outcomes
in virus infections, such as SARS-CoV-2 [55], SARS-CoV [56], influenza [57], and HIV [38].
In addition, NKG2-like genes such as inhibitory NKG2A and activating NKG2D [16,20,31]
were detected in multiple species of bats. These receptors with inhibitory signaling motifs
were found to be conserved at higher transcript levels, suggesting a favored inhibitory NK
cell state.

4. Mucosal-Associated Invariant T Cells

Mucosal-associated invariant T cells (MAIT cells) are a population of unconventional,
innate-like T cells that were initially discovered in the intestinal lamina propria of mice [58].
In humans, MAIT cells are defined by the expression of the TCR Vα7.2 segment joined
with the Jα12/20/33 segment and coupled with restricted TCR Vβ segments, primarily
Vβ2 and Vβ13 [59]. Mature human MAIT cells are predominantly CD8+ and express
high levels of the lectin-like receptor CD161. In humans, MAIT cells represent 5–10% of
circulating T cells in the blood and are abundant in tissues, including the lungs, intestines,
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and the liver [60]. The MAIT cell TCR recognizes microbial-derived riboflavin-related
metabolic intermediates and some structurally-related non-microbial antigens presented
on the evolutionarily conserved MHC-Ib-related protein (MR1) [61–63]. The high similarity
of MR1 molecules across eutherian mammals [30,64] likely signifies the important role
of MR1 and MAIT cells and other MR1-restricted T cells throughout evolution [65,66].
Besides sensing bacteria-infected cells, MAIT cells can be activated independently of their
TCR through inflammasome-derived and innate cytokines, including IL-1β, IL-12, IL-
18, and type I interferon [67]. MAIT cells play important and often protective roles in
various bacterial infectious diseases in human and animal models [68]. MAIT cells are
also associated with several viral infections such as influenza [69,70], HIV-1 [71,72], and
SARS-CoV-2 [73–79].

In recent studies, the use of MR1 tetramers loaded with MAIT cell antigens have
facilitated a more specific identification of this cell type. Using this technology, we have
identified MR1-restricted T (MR1T) cells in the fruit-eating bat Pteropus alecto [30,80]. As
observed in humans, these MR1T cells represent a significant population at baseline.
However, unlike human MR1-restricted MAIT cells, P. alecto MR1T cells are not capable
of cytokine production without prior antigenic priming [30]. Interestingly, the use of
recombinant human IL-2 and IL-7 were able to prime and support P. alecto MR1T cell
proliferation. When stimulated with the MR1 ligand 5-OP-RU and riboflavin-synthesis
competent bacteria, primed P. alecto MR1T cells produce perforin, TNF, and IL-17 as
detected by flow cytometry. Using cross-reactive antibodies, we detected the expression
of MAIT cell-associated transcription factors PLZF, RORγt, T-bet, and Eomes in P. alecto
MR1T cells. Similar to human MAIT cells, primed P. alecto MR1T cells can kill cells fed with
riboflavin synthesis-competent bacteria and the MR1 ligand 5-OP-RU. This cytotoxic ability
of P. alecto MR1T cells is equally preserved against target cells of P. alecto and human origin,
underscoring the high conservation between human and bat MR1. Whether these P. alecto
MR1T cells are restricted by a semi-invariant TCR sequence has yet to be determined.

Intriguingly, in SARS-CoV-2 infection, several groups have reported a significant
depletion of MAIT cells in the circulation, which have likely homed to the infected and
inflamed lung tissues. Indeed, excessive activation of MAIT cells in COVID-19 exacerbates
the disease [74,76,78] and is an independent predictor of death [74]. Because activated
MAIT cells are highly cytotoxic and are a potent source of proinflammatory cytokines in
the lungs and intestines, MAIT cells may thus amplify the excessive inflammation seen in
COVID-19 disease through the activation and recruitment of other immune cells in mucosal
tissues. On the other hand, MAIT cells have a potent antiviral capacity [81,82] that may
initially limit viral replication during the early stages of infection. How would bats then
be able to minimize disease severity if MR1T cells are a considerable population in vivo?
In our previous study, we noted that the P. alecto MR1T cells resolved their inflammatory
responses within 24 h [30], whereas human MAIT cells continued to display inflammatory
responses days after the initial stimulation [83]. Whether this is due to the role of anti-
inflammatory factors secreted by other cell types within the in vitro culture system or
due to certain mechanistic regulations intrinsic to the MR1T cells would be interesting to
address in future studies.

5. Invariant Natural Killer T (iNKT) Cells

Another small subset of innate-like T cells implicated in viral pathogenesis in humans
is the invariant natural killer T (iNKT) cells. This cell type is restricted by the MHC-I-
like molecule CD1d and can be activated by CD1d-presented endogenous and pathogen-
derived glycolipid antigens. The presence of iNKT cells in bats has not been directly shown,
but the presence of putative CD1d sequences in P. alecto [16] suggests that populations
of CD1d-restricted T cells, including iNKT-like cells, may exist in bats. How would the
putative CD1d-restricted T cells contribute to bat antiviral immunity? While there are
no known lipid antigens of viruses that would be presented by the CD1d molecule, the
cytokine milieu generated during virus infection is able to activate iNKT cells in mouse
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models and in humans [84]. Furthermore, certain viral infections alter the presentation
of endogenous lipid antigens, leading to the activation of iNKT cells and the elimination
of infected cells [84,85]. It remains to be explored if bats could express endogenous lipid
antigens that may activate CD1d-restricted T cells in a similar fashion.

6. Future Research: The Use of Organoids to Decode Bat Innate Immune Responses to
Viral Infections

The tools commonly used to establish a living model to understand bat immunology
are cell lines, organoids, and bat colonies. Nevertheless, establishing a distinct cell line of
bat origins is technically challenging and laborious. Furthermore, a single cell type may
not be sufficient to propagate a plethora of viruses, and a model based on one certain cell
line cannot model the complex structure and cell interactions in original tissues [26,86,87].
Compared with cell lines, captive breeding of colonies of bats allows comprehensive
analysis of bat immune systems with high reliability [26,87]. However, it is difficult to
establish a bat colony for some species. A captive breeding colony of Rinolophus sinicus,
for example, the potential reservoir of SARS-CoV-2, has not been established so far [87].
Another unique approach to studying bat immunity would be to develop a chimeric
bat–mouse model, which has been demonstrated in Eonycteris spelaea [88]. In this model,
the bat immune cells transplanted to immunodeficient mice could survive, expand, and
repopulate in the recipients. Thus, the platform recapitulates the bat immune system in mice
without causing obvious abnormalities [88]. However, the impacts of mouse physiology
on bat immune cells are unclear. It also remains to be seen whether this approach can
be uniformly applied to different bat species. Further advancements in bat immunity
research have been achieved by improving sequencing technologies and capabilities, as
well as by the development of bat-specific research tools such as antibodies against cell
surface markers [26,87]. In vitro studies such as the use of cell lines and bat organoids
may further aid in the understanding of how bats deal with viral infections and remain
largely disease-free [26,87,89]. The feasibility of using organoids to understand virus–host
interactions has also been demonstrated by several groups [89,90].

Organoids are miniaturized and simplified three-dimensional (3D) models of organs,
ranging in size from micrometers to millimeters and growing from embryonic stem cells,
induced pluripotent stem cells (iPSCs), neonatal tissue stem cells, or adult progenitor
cells [91]. These cells can divide and differentiate into various subsets and self-organize
to form a tissue-like mass which resembles the structures and functions of its counterpart
organ. To date, different types of organoids have been created fulfilling a variety of research
purposes and clinical applications [91–93]. For instance, tonsil organoids modeling key
germinal center features were recently generated to investigate the mechanisms of human
adaptive immune response in vitro and to evaluate the effectiveness of vaccine candidates
in an entirely human system [94]. In addition, human intestinal organoids containing
lamina propria-derived CD4+ T cells were developed to reveal the impacts of intestinal
stem cell–immune cell interactions in fetal intestine development and inflammation [95].
More recently, a lung organoid-on-a-chip system was manufactured to study SARS-CoV-2-
induced aberrant immune responses that lead to lung injury, and it was further used to
test for antiviral drugs [96]. The unique structures and complex components of organoids
facilitate a comprehensive analysis of multiple cells interactions that are otherwise hard
to recapitulate in traditional two-dimensional (2D) cell cultures. As bat organoids are
established by using bat tissues, it is expected to recapitulate the genetic features of the
bats of origin. In addition, generating, maintaining, passaging, and replicating organoids
is relatively easier than establishing the captive breeding colonies of bats, partially due to
their low fecundity [1]. Thus, organoids may facilitate etiological studies and potential
drug development in vitro [91–93]. However, it remains to be seen if the methods used
to generate human or mouse organoids can be directly applied to the generation of bat
organoids. Nevertheless, bat intestinal organoids were recently developed to study bat-
borne viral infections and bat immunity [87,89].
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Novel therapeutic strategies against inflammatory or infectious diseases might be
developed by understanding the innate immunity of bats. In this respect, bat enteroids with
a multicellular composition of intestinal epithelium have been successfully developed from
horseshoe bat species Rhinolophus sinicus to recover SARS-CoV-2 replication in vitro [89].
It suggests that bat organoids are effective tools to propagate a variety of bat-borne viruses
that are otherwise difficult to culture [86]. This is probably due to tissue tropism of
bat virus and innate immune tolerance mechanisms conferred to bat organoids. Only
bat intestinal organoids have been successfully developed to date [89]. The interest in
choosing bat gut tissues as a resource of bat organoid culture probably arose because
many bat-borne coronaviruses were found in samples of bat gut origin [97,98]. It will
be interesting to study the virus infection of different bat tissues using organoids. For
instance, establishing bat lung organoids may help us understand bat defense strategies
against respiratory viral infections, thus shedding light on developing novel treatments of
SARS-CoV-2. Interestingly, bat induced pluripotent stem cells (iPSCs) were generated by
using somatic reprogramming protocols [99,100]. Going forward, these techniques may
facilitate the generation of multiple types of bat organoids that allow for a comprehensive
investigation of various viral infections in different tissues, while reducing the need to
generate the bat organoids from the tissues of captured wild bats or those from breeding
colonies. Alternatively, bat embryonic stem cells could also be a potential resource for
generating different types of bat organoids.

The bat organoid platform is expected to model bat immunity and study the interac-
tions of immune cells and bat viruses, including the lymphocyte activation and function
augmentation upon virus infection, as well as the capacity of innate lymphocytes in re-
stricting viral replication (Figure 1). Though the use of organoids for bat immunology
research is still in its infancy, modern techniques can facilitate the development and use
of the organoid modeling capacity. For instance, quantitative RT-PCR and single-cell
RNA sequencing (scRNA-seq) techniques allow for comprehensive analysis of cellular and
molecular responses of bat organoids to various virus infections. Omics, including both
transcriptomics and proteomics, of bat organoids might serve as routine measures to study
innate immunity in bats and their interplay with bat viruses [1,26,87].

In addition, as antibodies against surface markers of bat immune cells were recently
validated [101–103], they could be used to identify the immune cell compositions of bat
organoids and to isolate the bat immune cells from bat organoids, thus allowing for the
study of immune responses of innate lymphocytes toward virus infections. Furthermore,
because an automated organoid platform and a machine learning algorithm have been
recently established [104,105], the combination of organoid manufacturing technology and
the learning-based assessment system may potentially allow a high throughput modulation
and analysis of the innate immune response of bats to virus infections in the future.
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Figure 1. Generation and potential application of organoid platforms in immunological studies in
bats. Bat organoids could be generated from adult stem cells or progenitor cells of normal tissues,
embryonic stem cells of embryos, or induced pluripotent stem cells reprogrammed from somatic
primary cells. Bat organoids cocultured with their own innate lymphocytes and challenged with
bat-borne viruses could be used to study tolerance and clearance mechanisms of bat innate immune
systems. Decoding bat innate immune systems is expected to assist in drug development and vaccine
design. The figure was created in BioRender.com (www.biorender.com, accessed on 6 December
2021). Abbreviations: ASCs, adult stem cells; ESCs, embryonic stem cells; iPSCs, induced pluripotent
stem cells.

7. Concluding Remarks

In summary, the emerging data on innate lymphocytes in bats suggest that these
unique immune cell populations may play an important role in controlling viral infections
in bats. The recent successful establishment of bat intestinal organoids for SARS-CoV-2
infection and advances in organoid engineering promise to be an appealing tool to address
the most pressing knowledge gaps in bat immunological studies, including the need to
identify, culture, and investigate the different functions of specific immune cell populations
in various bat tissues derived from multiple bat species, as well as the interplay between
bat immune cells with various bat viruses. Knowledge gained from such immunological
studies may help us understand how bats deal with viral infections and remain largely
disease-free.
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