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Abstract
With the development of single-particle tracking (SPT) microscopy and host membrane

mimics called supported lipid bilayers (SLBs), stochastic virus-membrane binding interac-

tions can be studied in depth while maintaining control over host receptor type and con-

centration. However, several experimental design challenges and quantitative image

analysis limitations prevent the widespread use of this approach. One main challenge of

SPT studies is the low signal-to-noise ratio of SPT videos, which is sometimes inevitable

due to small particle sizes, low quantum yield of fluorescent dyes, and photobleaching.

These situations could render current particle tracking software to yield biased binding

kinetic data caused by intermittent tracking error. Hence, we developed an effective

image restoration algorithm for SPT applications called STAWASP that reveals particles

with a signal-to-noise ratio of 2.2 while preserving particle features. We tested our

improvements to the SPT binding assay experiment and imaging procedures by monitor-

ing X31 influenza virus binding to α2,3 sialic acid glycolipids. Our interests lie in how slight

changes to the peripheral oligosaccharide structures can affect the binding rate and resi-

dence times of viruses. We were able to detect viruses binding weakly to a glycolipid

called GM3, which was undetected via assays such as surface plasmon resonance. The

binding rate was around 28 folds higher when the virus bound to a different glycolipid

called GD1a, which has a sialic acid group extending further away from the bilayer surface

than GM3. The improved imaging allowed us to obtain binding residence time distributions

that reflect an adhesion-strengthening mechanism via multivalent bonds. We empirically

fitted these distributions using a time-dependent unbinding rate parameter, koff, which

diverges from standard treatment of koff as a constant. We further explain how to convert

these models to fit ensemble-averaged binding data obtained by assays such as surface

plasmon resonance.
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Introduction

Single-particle tracking (SPT) is a versatile technique for studying protein-protein binding
interactions occurring at surfaces, particularly the binding of viruses to host cell membrane
receptors [1–5]. Viral adhesion to host membranes is critical for viral infection, and dissecting
this process is relevant for predicting virus emergence, determining susceptible hosts, or devel-
oping binding-inhibitory antiviral compounds. SPT often deploys the use of imaging tech-
niques such as total internal reflection fluorescence (TIRF) microscopy, which can track
fluorescent virions within a 100-nm distance away from a surface (Fig 1A). The viral receptor
can be loaded onto a flat substrate by tethering receptors to polymers attached covalently to the
substrate [6], adsorbing lipid vesicles containing the receptor lipid or protein [7], or forming
supported lipid bilayers (SLBs) containing membrane receptors [4–5, 8–10]. The SLB option is
advantageous because 1) the receptor type and surface density can be carefully controlled
through bilayer preparation steps, 2) receptors are properly orientated in the membrane [11],
3) viral membrane fusion kinetics can be studied using the same assay [8, 12–15], and 4)
mobile lipids allow the virus to recruit receptors and formmultivalent bonds. However, the
SPT-SLB assay contains several technical challenges with experimental design, image process-
ing, and binding kinetic data analysis that limit its adaptation as a standard analytical tool. To
increase the utility of SPT-SLB assays, we explain the cause of and demonstrate solutions to
these issues as we study of influenza virus binding to several types of α2,3 sialic acid (SA)
glycolipids.

One of the biggest barriers to using SPT for viral research is extracting particle information
from images. Manually tracking particles is impractical, hence automated tracking software is
needed and its proper performance is critical. Fluorescently labeled virions appear as white
spots on a dark background, but often, dim particles exist that are only few pixels large and
resemble bright shot noise. Dim particles are particularly detrimental to SPT binding studies
because these are intermittently detected by the software and contribute many short, erroneous
particle trajectories that skew the binding data. Increasing the particle fluorescence signal by
using a more powerful excitation laser is not an effective solution to the problem because
photobleaching destroys the signal before adequate data can be collected. Signal-to-noise ratios
can be improved by developing better microscopy setups such as light sheet microscopy [17],
using other dyes such as quantum dots [18–19], or using dye-free strategies [20], but not all set-
ups and samples can accommodate these improvement. Hence, developing image-processing
techniques provides a means to benefit a broader range of studies with minimal changes to
experimental procedures.

Typical SPT image analysis software usually performs the following three steps: image resto-
ration, particle detection, and particle trajectory linking.While much effort has been invested
in improving particle detection [21–27] and particle linking algorithms [23, 27–33], less effort
has been focused on developing image restoration algorithms for SPT application [34]. Particle
tracking software generally underperformswhen the signal-to-noise ratio (SNR) is below 4
[23]. Most SPT studies use image restoration techniques originally designed for standard pho-
tographs and videos [35–38], which do not adequately restore dim particles with features
barely larger than that of shot noise pixels. To resolve the intermittent particle tracking errors,
we developed and provide a SPT image restoration algorithm called STAWASP (Segmented
Temporal Averaging While Avoiding Synced Pixels). This algorithm effectively uses both spa-
tial and temporal information from the video pixels to stabilize particle intensities, preserve
particle features, and remove substantial noise from videos.

Other challenges of SPT-SLB assays is customizing experiments for studying multivalent
binding of viruses to receptor analogs, and interpreting the SPT binding/unbinding kinetic
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data. There are many experiment design choices to consider that affect the kinetic data, and we
explain these choices in the context of designing experiments for studying influenza X31 virus
(H3N2 strain), which is a model for other enveloped viruses. Enveloped viruses are often
labeled with membrane fluorophores since they do not interfere with protein functions and
can be used in membrane fusion/dye-dequenching studies [8, 13–15, 39–40]. Yet, quenched
concentrations of membrane dye or inefficient labeling can generate substantial numbers of
dim particles that are intermittently observable.Hence, trackingmembrane-labeled X31 virus

Fig 1. SPT binding assay and receptor structures. a) Setup of SLB on TIRF microscope. Evanescent

field illuminates regions where SLB and virus interacts. b) Structure of the sialic acid receptors for X31 tested

here. The α2,3-linked sialic acid groups are circled by the blue perimeters. Following the notation by Suzuki

et al. [16], sialic acid groups are labeled as either being in the internal (I) or terminal (T) position.

doi:10.1371/journal.pone.0163437.g001
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serves as a useful test case for developing our image restoration algorithm and data analysis
strategies.

A typical influenza virion surface contains roughly 400–500 hemagglutinin (HA) proteins
[41] that govern the multivalent binding of the virus to sialic acid receptors on host cells. In
this work, we measured the binding times of influenza viruses to SLBs that separately contained
glycolipids aGM1, GM1, GM3, or GD1a (Fig 1B). Except for aGM1, all glycolipids contain the α2,3
SA linkage but with different peripheral oligosaccharide structures. These structures serve to
impart differences in binding behavior that can be resolved when tracking stochastic binding
events instead of ensemble-averaged binding events. We are also interested in counting the
binding attempts made by viruses, which is not observablewhen using traditional binding
assays that measure the change in collective adsorbedmass of viruses on a receptor-coated
surface.

Generally, viruses bind better to SA at the terminal position [16, 42–43], but SPR studies
have shown that X31 virus does not bind to GM3 even though it also has a terminal SA [7].
Contrary to this study, X31 virus can infect chicken red blood cells that have been incubated
with GM3 receptors [44]. We show that the flu virus does bind weakly to GM3, observablewith
the experiment conditions and image restoration used in this work. Additionally, we show that
binding residence time distributions reflect the adhesion-strengthening process via multivalent
bonds that enable viruses to bind stably to host membranes [45–48], and we present strategies
to characterize these kinetics.

Materials and Methods

Producing Lipid Vesicles for SLBs

Supported lipid bilayers (SLBs) containing glycolipids were made from lipid vesicles. To make
the lipid vesicles, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-
2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG) [Avanti Polar Lipids, Alabaster, AL]
were separately dissolved in chloroform, while glycolipids monosialotetrahexosylganglioside
(GM1) [Avanti Polar Lipids, Alabaster, AL], monosialodihexosylganglioside (GM3), disialogan-
glioside (GD1a), and asialoganglioside (aGM1) [Sigma-Aldrich, St. Louis, MO] were separately
dissolved in a 2:1 chloroform to methanol solution. Glycolipids and POPC solutions were
mixed together to yield 1 mol % of glycolipids, while POPG was added when necessary to
maintain the same anionic charge density across all lipid samples (equivalent to 2 mol % of
monovalent anionic lipids). Lipids were dried under vacuum for 3 hours and rehydrated in
MES buffer (1 mMMES, 150 mMNaCl, pH 7) such that the final lipid concentration was 1
mg/mL. Lipids were extruded 10 times using a 1-directional, 20-mL lipid extruder [Northern
Lipids Inc., Burnaby, Canada] and a 50 nm pore-size polycarbonate membrane [GE Health-
care, Pittsburgh, PA] to yield 100 nm-diameter vesicles as determined by dynamic light scatter-
ing [Malvern Instruments, Worcestershire, UK]. Extruded lipids were collected in a new vial to
ensure all lipids have passed the filter.

Measuring Surface Charges of Vesicles and Viruses

To ensure long-range electrostatic forces do not influence binding, the surface charges of the
vesicles and lipid vesicles were measured using a zeta potential analyzer [Malvern Instruments,
Worcestershire, UK]. Lipid vesicles at 0.25 mg/mL dilutions or X31 virus (dye-labeled and
unlabeled) at 0.008 mg/mL dilutions were added to zetacells (model DTS 1061) and subjected
to light scattering measurements under an electric field. Triplicate measurements were per-
formed at pH 7, 150 mMNaCl.
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Assembling the Microfluidic Device

Virus binding experiments were performed inside a microfluidic device as shown elsewhere
[15]. Glass coverslip slides (No. 1.5 thickness) [VWR, Radner, PA] were cleaned for 10 min
using a piranha solution composed of 30 vol % hydrogen peroxide solution (contains 50 wt %
H2O2) [Sigma-Aldrich, St. Louis, MO] and 70 vol% concentrated sulfuric acid [VWR, Radner,
PA]. Glass slides were stored in deionizedwater until use. A polydimethylsiloxane (PDMS)
[Dow Corning,Midland, MI] mold of microfluidic channels (135 μm wide, 75 μm high, and
1.5 cm long) was prepared on top of a patterned, hydrophobic silica wafer produced at the Cor-
nell Nanofabrication Facility (CNF). An air-dried glass slide and the PDMS mold were
annealed together after a 30-second oxygen plasma cleaning step at 700 μmHg oxygen pres-
sure. Tygon tubes (0.02” ID x 0.06” OD) [Saint-Gobain Performance Plastic, Worcester, MA]
were attached to the microfluidic device such that one end is submerged into the loading solu-
tion and the other end is attached to a syringe pump [Harvard Apparatus, Holliston, MA]. The
microfluidic device was setup on an inverted total internal reflection fluorescence (TIRF)
microscopewith a 100x oil immersion objective and 1.46 numerical aperture [Carl Zeiss, Ober-
kochen, Germany. Model Axio ObserverZ1]. A 561 nm laser was shined at a 70° incidence
angle to generate an evanescent wave that illuminates the virus within ~100 nm from the glass-
water interface. The camera in the microscope is a Hamamatsu ImageEM C9100-13 (Hama-
matsu Photonics, Bridgewater, NJ).

Forming SLBs Inside Microfluidic Channels

SLBs that act as host membrane mimics were formed by rupturing lipid vesicle on hydrophilic
glass surfaces [9, 49]. Lipid vesicle solutions at 1 mg/mL vesicle concentration were loaded into
the microfluidic channels at a flow rate of 100 μL/min for 1 min. Vesicles were incubated in the
channels for 4 hours to form high quality, high-quality bilayers. Excess vesicles were rinsed
away by flowingMES buffer at a flow rate of 100 μL/min for 3 min.

Storing X31 Viruses Until Use

X31 (H3N2/Aichi/68) influenza were obtained from Charles River [Charles River Laboratories,
North Franklin, CT] at a protein concentration of 2 mg/mL, which comes in a frozen state. The
stock virus solution was defrosted, aliquoted into 5 μL volumes and stored at -80°C until used.
An aliquot of virus was freshly thawed and used for each experiment.While this procedure
requires viruses to undergo two thaw cycles that decreases viral infectivity relative to fresh
virus, it is repeatable and out-competes the other option to store the virus liquid state until
each use. The drop in infectivity for a 2nd thaw cycle has been reported to be from 108.6 to 107.0,
whereas degradation over time at 0°C liquid state causes a larger drop in infectivity to 106.5

[50]. The spherical morphology of virus was fairly well preserved after a 2nd thaw cycle, as con-
firmed in a separate EM study using the same virus batch [51].

Labeling the Viral Membrane with R18

To label the viral envelope with lipophilic fluorescent dye, 5 μL of the virus solution, 250 μL of
MES buffer, and 4 μL of 0.01 mg/mL ethanol-dissolved octadecyl rhodamine B (R18) [Invitro-
gen, Carlsbad, CA] were mixed together in a vial. The mixed solution was gently sonicated in a
water bath for 30 min at 25°C in the dark. Unincorporated R18 dye was filtered out using a G-
25 sephadex spin column [GE Healthcare, Pittsburgh, PA] at 3000 RPM (743 RCF), and the
eluted virus solution was stored in a LoBind vial [Eppendorf, Hamburg, Germany] to prevent
loss of viral particles to vial surfaces while conducting the experiments. Before use, 250 μL of
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filtered virus solution was diluted with 1 mL of MES buffer. Note the labeling of virus with
membrane dyes has already been shown to not affect HA function [52–53].

Determining the Virus Concentration and Size

The stock X31 virus solution at an initial viral protein content of 2 mg/mL was diluted to 0.016
mg/mL. The virus solution was loaded into a flow chamber used in the NanoSight system (Mal-
vern Instrument, Worcestershire, UK). Videos of particles floating in the solution were ana-
lyzed using the NanoSight software to extract the virus concentration.

Setting the Camera Rate and Experiment Time

SPT studies face an unusual sensitivity to the image capture rate of SPT microscopy [1]. Sensi-
tivity is attributed to the fact that a continuous time data of binding events, which could last
anywhere from 0 to infinite time, are being sampled via a camera taking images at discrete time
intervals with a set exposure time. Similar issues are explained by the Shannon Nyquist Sam-
pling Theorem [54] and Bally et al. [1]. Short term binding events will inevitably be lost during
the dead time between images, which means the overall binding event data will be affected by
the camera setting. Increasing the imaging rate (by shortening the dead time) is not always via-
ble as this would lead to excessive dye photobleaching issues and loss of data about long-term
binding viruses. The camera setting was thus set according to the minimum binding residence
time resolution desired relative to a reference time scale.We set the reference time scale based
on that of virus-mediatedde novo clathrin mediated endocytosis (CME), which takes roughly 3
min [55]. To encompass the CME timescale, camera was set to take images at 1 s intervals
using a 100 ms exposure time for a total duration of 20 min (tmovie = 20 min).

Conducting SPT Binding Experiments

Labeled viruses were loaded into a SLB-coated microfluidic channel at a flow rate of 100 μL/
min for 1 min. The flow was stopped by balancing the tube inlet and outlet pressures, which
takes at most 1 minute to equilibrate. Stagnant flow conditions are necessary to prevent shear
forces from affecting the binding/unbinding kinetics, especially of concern for weak binding
interactions. Videos were recorded 1 min after the virus was introduced and the flow was
stopped. The excitation laser was turned off in-between images during the 900 ms dead time to
prevent excessive photobleaching of fluorophores while recording the video. After experiments,
a 20 vol % bleach solution was sent into the microfluidic channels to inactivate viruses. All
experiments were performed at 25°C.

Restoring Images and Tracking Particles in SPT Videos

Shot noise from SPT videos was removed using our image restoration algorithm called STA-
WASP, to stand for Segmented Temporal Averaging While Avoiding Synced Pixels. Details
about STAWASP are provided below. Particles were detected using a custom algorithm that
looks for circular regions that are brighter than the background noise intensities (Part D in S1
Text). Particles’ trajectories were determined using a basic algorithm that links particles from
adjacent video frames together that are within 3 pixels away from each other (Part E in S1
Text). Any remaining and obvious errors in trajectories were correctedmanually to increase
the overall data accuracy, though the number of manually corrected trajectories constitutes a
small portion of all trajectories returned by the automated tracking algorithm. All algorithms
were developed using MATLAB (Mathworks, Natick, MA).
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Defining a “Binding Event” via Visual Cues

Unlike SPR/QCMwhere the adsorbedmass to a surface can be detected, or AFMwhere bind-
ing force can be measured, SPT relies on visual cues that a binding event has occurred. These
visual cues are not always obvious as virions can undergo stop-and-go motions. There are two
criteria that can be used: Criteria 1 –a visible virus is always considered bound, or Criteria 2 –a
visible virus that is immobile for at least a minimum duration time (tcutoff) is considered bound.
With Criteria 1, a mobile virus is treated as only 1 binding event regardless if this particle stops
at and moves to several places. The concern with Criteria 1 is that the more interesting “stop-
ping” events are ignored and the virusmay not always be in contact with the SLB whilemoving.
For instance, the virus could be rolling along the SLBs, unbinding and rebinding to receptors,
or simply floating near the field of view of TIRF without making contact. With Criteria 2, a sin-
gle mobile virus can generate multiple binding events when it remains temporarily immobi-
lized during the stop-and-go motion.

While Criteria 1 may be more appropriate only when studying the lateral diffusion of
viruses into coated pits [56], we used Criteria 2 because an immobile virus is most certainly
bound to the SLB. In this regime we are then correspondingmost closely to the biological situa-
tion of virus binding events that lead to de novo CME occurring at stationary sites [57]. How-
ever, we must decide a minimum binding time for a binding event (tcutoff), otherwise there
would be no visual cue to discern a bound virus from a floating virus.We chose a tcutoff of 5
frames (or 5 s) based on the performance of the automated particle tracking software (Part F in
S1 Text). Note that the choice to tcutoff will always be arbitrary because we are relying on visual
cues, and not physical contact, to discern binding event. Ideally, we would want to capture
events upon contact with the smallest tcutoff possible. Furthermore, the camera exposure time
and frame rate sets a minimum cutoff time.We later investigate how the choice of tcutoff affects
the binding data.

Filtering Biased Binding Events

When analyzing the binding residence time distributions, some binding events must be dis-
carded due to ambiguity or bias. Particles that existed since the first frame (left-censored data)
of the video were discarded since the actual binding time is uncertain. Those that bound after
half of the movie time (½ tmovie) were also discarded because binding events that last longer
than ½ tmovie cannot be observed in a fair manner as those that last for shorter times. Virions
that stayed bound by the end of the movie (right-censored data) were included in the data if
they initially bound before ½ tmovie. Due to the filtering of biased binding events, binding sur-
vival curves are drawn only up to ½ tmovie.

Results and Discussion

Establishing Conditions for High-Quality SLBs

There are several ways to form SLBs: Langmuir Blodgett, lipid film rehydration, or vesicle rup-
ture [9]. When using microfluidics, the vesicle rupture strategy is an effectivemeans to form
SLBs as it simply requires loading solutions of lipid vesicles into the channels. However, such
method has previously been reported to cause low-quality SLBs if the devices are plasma
cleaned [58]. To overcome this issue, which can be especially problematic when studying weak
binding interactions, we determined conditions at which high-quality SLBs form with very
minimal defects that viruses bind nonspecifically to by optimizing vesicle concentration and
SLB formation time. Some issues with using lower vesicle concentrations are the creation of
defective SLBs that induce nonspecific binding and spontaneous virus fusion (Fig 2A), most
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likely due to interaction with edges of SLB patches. Defective SLBs like these could be useful for
developing antiviral surfaces and may be worth exploring as a future work. However, since the
focus of this work is on studying binding interactions, we sought conditions for reducing non-
specific binding events. Using at least 1 mg/ml vesicle concentration worked well. The SLB for-
mation time is also important and can vary based on pH or salt [59], lipid compositions [60],
and glass surface treatment [61]. For our SLBs, at least 3 hours were needed to reduce non-spe-
cific binding of viruses to negligible levels (Fig 2B). Additional blocking steps were not required
since SLBs themselves act as passivation layers. Dye-labeled bovine serum albumin, which is a
typical blocking agent, did not bind to these bilayers to any detectable level (data not shown).
Furthermore, inclusion of blocking agents could instill uncertainty, as one must confirm that
these do not coat the receptors, coat the viruses, or disrupt the SLB.

Controlling for Long-Range Nonspecific Electrostatic Binding

Controlling long-range, electrostatic interactions is essential for ensuring that the observed
binding events are due to specific virus-receptor interactions. The net charge varies across
aGM1 (0 charge), GM1 (-1 charge), GM3 (-1 charge), and GD1a (-2 charge). To maintain the
same receptor concentration and charge density of the bilayers, charged lipids must be added.
Negatively-charged POPG lipids were added to equalize the negative charge density across all
of the SLBs (Table 1). Positively charged lipids could also be used to neutralize charges from
the lipids, but since viruses are negatively charged, clusters of positively charged lipids could

Fig 2. Optimizing SLB formation to reduce nonspecific binding. a) SLBs were formed over 30 min using 1% aGM1

receptor-less lipid vesicles at varying concentrations (white text). X31 nonspecifically bound and spontaneously fused to

SLBs (as noted by the radial release and diffusion of R18 into the supported bilayer) formed with low vesicle concentrations.

b) The SLB formation time (white text) was varied while maintaining a constant 1 mg/mL vesicle concentration. Nonspecific

binding was reduced greatly when SLBs are formed over at least 150 min. All images in panel a and b, were taken 30 min

after loading the X31 virus.

doi:10.1371/journal.pone.0163437.g002
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potentially induce non-specific binding. The surface charge of the virus must also be moni-
tored, as the usage of too much lipophilic dye R18, which is positively charged, could change
the polarity of the virus surface. The zeta potentials of all lipid vesicles and dye-labeled X31
virus were negative and less than 5 mV in magnitude (Table 1). These magnitudes are much
lower than 30 mV zetapotentials that could lead to nonspecific electrostatic attraction/repul-
sion between the virus and receptors [62]. The high salt content of the buffer also helps screen
the charges. Long-range, nonspecific interactions are unlikely to play a major role in the viral
binding kinetics here, enabling us to focus more on measuring the binding of viruses to their
putative receptors.

Introducing STAWASP Image Restoration Algorithm for SPT

Shot noise is rooted in low-signal, digital images due to the discrete photon collectionmethod
of digital cameras and complex electronic signal amplification hardware. In SPT videos, the
airy rings of dim particles are barely larger than 2x2 pixels, making them nearly indistinguish-
able from noise. There are three major image restoration approaches: spatial, temporal, and
spatio-temporal filtering. Spatial filtering removes static noise pixels based on how abnormal a
pixel’s intensity is compared to neighboring pixels. This method could produce artifacts such
as particle blurring. Temporal filtering evaluates how pixel intensity changes over time to
remove high-frequencynoise fluctuation. However, it can cause particles to become blurred or
faded. Spatio-temporal filtering combines aspects from both approaches, but this could become
computationally expensive if it requires tracking local spatial regions over time.

Our STAWASP image restoration method can be classified as a spatio-temporal filter, and
the algorithm is explained in Fig 3. In short, this algorithm removes noise and preserves parti-
cle signals by averaging images (or stacking images) together in spatially and temporally-
divided pixel segments. The unique feature of this algorithm is the method at which segments
are determinedwith little input about what is or is not a particle. Segments are determined
based on how synchronous a cluster of pixels fluctuates with time. For instance, the chance all
13 pixels in a circular area (Fig 3A) synchronously increase intensity from one frame to the
next is improbable due to random noise and highly probably if a particle appears/disappears/
moves. Pixels that change intensity synchronously are marked as “synced pixels” (Fig 3B).
Each pixel in the 2D image is then averaged through time, but the averaging is done in seg-
ments separated by the appearance of synced pixels (Fig 3C). We provide the STAWASP soft-
ware as a supplemental MATLAB stand-alone and source code files, and the logic and usage of
STAWASP are explained in detail in Parts A and B in S1 Text.

Comparing the Performance of STAWASP

The performance of the STAWASP image restoration was compared against other common
methods, using a first simulated, noise-ridden video of binding particles (Fig 4). Simulation

Table 1. Zeta potential measurements of vesicles and viruses. suv = small unilamellar vesicles.

Sample Zeta potential (mV)

1% aGM1 2% POPG 97% POPC suv -3.45±0.50

1% GM1 1% POPG 98% POPC suv -3.32±0.59

1% GM3 1% POPG 98% POPC suv -4.60±1.19

1% GD1a 0% POPG 99% POPC suv -3.47±0.73

X-31 virus with R18 -2.02±0.26

X-31 virus without R18 -10.11±0.55

doi:10.1371/journal.pone.0163437.t001
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Fig 3. STAWASP algorithm. a) A local cluster of pixels (gray pixels) must either increase or decrease in

intensity between consecutive frames to be classified as synced pixels. The pixel cluster size must be larger

than a pixel and smaller than the particle of interest. Here, at least 80% of the gray pixels must be synced. b)

The steps to determine synced pixels are portrayed here for a particle appearing at frame 6. Since synced

pixels are determined using two adjacent frames, synced pixels are marked on both of those frames. Note

that false synced pixels can be generated by random noise fluctuations, but these do not necessarily cause a

false particle to appear. c) The intensity trace for the center pixel of the particle images part B is shown when

using STAWASP or the regular 10-frame temporal averaging scheme. With STAWASP, temporal averaging

is performed in a segmented fashion such that temporally adjacent, synced pixels are not averaged together.

doi:10.1371/journal.pone.0163437.g003
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details are provided in Part C in S1 Text. The signal-to-noise ratios (SNRs, defined here as the
particle peak intensity divided by the standard deviation of the noise intensity) were varied

Fig 4. Testing various image restorations on a simulated movie. A simulated movie with noise was generated

to compare image restoration performance (see Supporting Materials 1.3 for simulation details). The pure video

shows particles with varying intensities appearing at frame 20 and disappearing after frame 33. Noise is added

according to the function N = -0.2ln(R), where R is a uniform random number from 0 to 1. The SNRs of the 9

particles, from top left to bottom right are as follows: 5.0, 4.4, 3.9, 3.3, 2.8, 2.2, 1.6, 1.1, 0.5. The LoG (Laplacian of

Gaussian) spatial filtering method is described by others [34, 63].

doi:10.1371/journal.pone.0163437.g004
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between 0.5 to 5. TheMean, Median, and LoG (Laplacian of Gaussian) noise filters intermittently
revealed particles with SNRs� 2.2, whereas particles with SNRs< 2.2 were undetectable. The
10-frame temporal averaging methodwas able to reveal particles with SNRs� 1.1, but all the
particles faded in and out of view. The STAWASP algorithmwas able to reveal particles with
SNRs� 1.1, and it preserved the appearance/disappearance times of particles with SNRs� 2.2.

No image restoration is perfect, and a common artifact of the STAWASP algorithm are
short-lived bright pixels throughout the movie, which is a result of the inability to distinguish a
small cluster of bright noise from an actual particle. These artifacts are dealt with later by the
particle detection (Part D in S1 Text) and tracking algorithms that filter out false particles (or
shot noise that looks like particles) based on the criteria for a real binding event, as discussed
above. We use a custom tracking algorithm that links particles together within 3 pixels between
frames (Part E in S1 Text). Since determining the improvement of tracking in real SPT videos
is difficult due to the inability to know the “true” binding events, we instead used a simulated
video of particles and noise to assess the overall improvement in tracking (Part F in S1 Text).
The particle detection and tracking results with and without STAWASP are provided in Part F
in S1 Text. In short, STAWASP-restored videos enabled our SPT software to extract binding
residence time curves that converges to the true data for when tcutoff > 5 s, whereas the true
data is not obtainable without any restoration. Note that for actual SPT videos involving X31
viruses, we manually correct any obvious, erroneous trajectories to increase the accuracy of the
data.

Applying STAWASP for Real X31 Virus Binding Videos

We next show real images of viral binding before and after using STAWASP image restoration
(Fig 5). The clarity provided by the restored image is critical for obtaining accurate number sta-
tistics of viral binding. A qualitative assessment of the virus binding microscopy images shows
that X31 binds most frequently to GD1a, less frequently to GM3, and negligibly to GM1. The con-
trol case shows a minimum level of nonspecific binding of X31 to aGM1 SLBs, which confirms
high-quality SLBs were formed inside microfluidic channels. The binding levels of virus to
aGM1 bilayer also serves to characterize nonspecific binding levels, which can be contributed
either by microdefects in the SLBs or denatured HA proteins that can insert hydrophobic resi-
dues into the SLBs.

Some interesting observations from the SPT videos are surface-diffusingviruses. As men-
tioned in the Methods section, surface-diffusingviruses can be a result of rapid binding/
unbinding events, tethered virus to mobile receptors, or rolling viruses. There are higher levels
of surface-diffusingviruses in GD1a bilayers compared to GM3 bilayers. The most likely expla-
nation seems to be that the “diffusion” is actually rebinding events happening in rapid succes-
sion. For GD1a, a virus rebinding to the bilayer is a highly probable event due to favorable
binding interactions. For GM3, the rebinding probability is much lower, and thus virus particles
are more likely to float away from the field of view rather than bind to an adjacent site. The
other possibilities, either that the virus is rolling or moving with a few attached glycolipids,
seem less likely because the virus is much larger than a lipid and the GD1a receptor density is
too high. There are roughly 420 receptors per pixel (assuming a lipid occupies 0.61 nm2 [64]
and 1 pixel = 25600 nm2), hence it would difficult for a virus to traverse long distances without
forming immobilizing,multivalent bonds.

Analyzing the Binding Frequency Rate and Rate Parameter kon

Before discussing the virus binding kinetic data, we must first clearly define variables associated
with SPT data analysis, as summarized in Table 2.

Virus Binding Imaging and Analysis
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Fig 5. Sample images of viruses binding to glycolipids with and without image restoration. Few examples of

restored particles are shown by the colored triangles. The white number shows the particle count, Pcount, for the right

half of each image, which represents a physical size of 82 μm high x 41 μm wide using 512 x 256 pixels. Note that Pcount

is not the same as N. We show Pcount for qualitative comparisons only, since quantitative comparisons must be done

using N instead, which is determined after the particle linking step. The time on left is the video recording time, which

starts ~60 s after the virus is loaded, and therefore some virus exists at time 0. We show images starting at 10 s merely

because the performance of STAWASP is optimal after 10 frames. We provide original movies without any image

restoration for the first 300 s as S1–S4 Videos, played at 10x real time where 1 frame = 1 second. STAWASP-enhanced

movies are provided for X31 binding to GM3 (S5 Video) and GD1a (S6 Video). Variations in particle intensities are caused

by several factors, such as variable levels of dye that incorporated into the viral membrane, different degrees of

photobleaching, and uneven microscope illumination (viruses in the center are generally brighter than those near the

edges). [Image Processing Note: All images, including left and right halves, have undergone background subtraction as

explained in Part D in S1 Text, and intensities were linearly scaled. See S1–S4 Videos for original images].

doi:10.1371/journal.pone.0163437.g005

Table 2. Variables involved with SPT data analysis.

Variable Definition

Pcount Number of particles detected in an image

N Number of binding events

N+ Accumulated number of binding events since the movie started

N- Accumulated number of unbinding events since the movie started

t Time elasped in the movie

tres Binding residence time (or contact time) of virus to receptors

tcutoff Minimum binding residence time required for a binding event

tmovie Total duration time of the SPT video

doi:10.1371/journal.pone.0163437.t002
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Note that N� Pcount (unless tcutoff = 1 frame) because not all particles seen in the movie sat-
isfy the binding event criteria that a particle must remain immobile for longer than a certain
cutoff time. Furthermore, when discussing SPT data, distinguishing normal time t and resi-
dence time tres is important. For instance, N vs t plots portray the net number of binding events
as a function of time, whereas N vs tres plots portrays how many binding events last longer than
tres time (which is a survival function).

We first analyzed the N vs t plots for X31 binding to the SA receptors. N is related to the other
variables by the equation N(t) = N+(t)–N-(t) + N0, where N0 is the N when the movie starts. The
N(t) data clearly shows that GD1a bilayers have a higher capacity to hold onto viruses (Fig 6A,
blue line), versus other receptors. One interpretation of the slowly rising net virus binding curve
of GM3 (Fig 6A, green line), relative to GD1a’s curve, is to say GM3 is not a functional receptor. In
fact, SPR studies concluded that GM3 is not a receptor for X31 [7], though the authors studied
viruses binding to lipid vesicles instead of SLBs, using half the GM3 concentration than what was
used here, and while applying a slight hydrodynamic flow that could prevent weak binding
events. However, having a dN/dt ~ 0 does not mean there is no binding rate, similar to how
when a system reaches equilibrium, a forward/reverse reaction still exists.

The N+ vs t plots (Fig 6B) show that X31 does in fact bind more frequently to GM3 than to
aGM1 and GM1. The slope of the N+ vs t plots yields the binding frequency rate Ron, and Ron for
GM3 is 3 STDs higher than that of aGM1 and GM1 cases. Our data suggest that GM3 can be a
functional receptor for the virus.

Despite GD1a and GM3 each having a terminal SA known to promote binding [16], X31
binds to GD1a ~30 fold more frequently than to GM3. This cannot be explained by the presence
of 2 SA per GD1a molecule, as spatial distances between SA do not allow them to bind to 2 bind-
ing sites of an HA trimer (Fig 7), including alternative binding sites located at the HA1/HA2
junction [65]. Additionally, the lack of binding of X31 to GM1’s internal SA suggests that the
virus is not binding to the same internal SA in GD1a. The extended distance of terminal SA
from the SLB hydrophobic layer appears to promote binding. Access to GM3’s internal SA may
be sterically hindered by the close proximity of terminal SA to the bilayer.

Binding rates are often characterized via a binding rate constant kon, but SPT data do not pro-
vide a single value for kon as we will discuss the reasons for later. Starting with the standard
approach for finding a single kon value, the kon parameter can be solved for via the relation Ron =
kon[V][SA]Acam where Acam is 6274 μm2 for our camera field of view, [V] is the visible virus con-
centration in the bulk solution, and [SA] is the surface density of free receptors in the SLB. Since
Ron is determined using early time points of the experiment, this enables the assumptions that
[SA] and [V] are approximately equal to initial values right when the virus is loaded into the
channels. Therefore we can treat [SA]� [SA]init and [V]� [V]init to estimate the binding rate
constant kon. The concentration [V]init is ~4.5 pM based on Nanosight measurements, and the
receptor surface density [SA]init is ~16500 μm-2 for 1 mol % assuming a lipid occupies 0.65 nm2

[64]. With these constants, the values for kon are (4.4±3.6)x102, (5.5±2.0)x102, (2.1±0.9)x103, and
(6.0±2.1)x104 1/Ms for aGM1, GM1, GM3, and GD1a respectively, when using the binding event cri-
terion tcutoff = 5s. The kon values for GM3 and GD1a are within the expected range found by other
binding assays, which have reported kon = 2x103 M-1s-1 for multiple HAs binding to fetuin [66],
kon = 3.61x104 M-1s-1 for soluble HA binding to GD1a [67], and kon = 1.6x106 M-1s-1 for X31
virion binding to vesicles containing 0.5 mol%Neu5Acα2-3nLc4Cer [7].

We now discuss why there can be multiple values of kon and caution against the direct com-
parison of kon from SPT assays to ensemble assays. Both kon (or Ron) depend on the choice of
tcutoff because tcutoff dictates how many binding events are included in a data set (Fig 8A). For
instance, by setting tcutoff to be infinite, no binding events will exist that meets this requirement,
hence, kon! 0. Conversely, setting tcutoff to be 0 wouldmake kon seem to diverge to infinite
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Fig 6. Two types of binding rate data of X31 to various receptors. A) N vs t plots for one representative data

set from a triplicate set. Negative time means time before recording, and the solid black lines are just an

extrapolation to -60 s when the viruses are estimated to first reach the SLBs. B) N+ vs t plots, averaged over a

triplicate set of data. The slope of this plot corresponds to binding frequency rate Ron. The error bars are the

standard deviations, computed using 3 different trials.

doi:10.1371/journal.pone.0163437.g006
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because there will be no distinction between a binding event, elastic collision, or floating virus
that is simply visible on the camera. Since the chance for a binding event to exceed a certain tcutoff

value is dictated by the binding residence time distribution, this means a relationship between kon

and koff exists and the two parameters are not entirely decoupled as one would normally expect.
In other words, the ability to observe a binding event is affected by the ability of the virus to stay
bound long enough to be observed.To understand this relationship, we generated a plot for SPT
data, that relates Ron (which is directly proportional to kon) to the choice for tcutoff (Fig 8B).This
plot also serves to facilitate the comparison of binding data taken across various tcutoff settings.

Analyzing the Binding Residence Time Distribution and Unbinding

Parameter koff

We next analyze the N vs tres plots that portray information about the binding residence time
distribution and unbinding rates (Fig 9A). The unbinding curves did not agree with the 1:1
binding model (Eq 1), and double exponential fit model (Eq 2).

Eq 1: single binding energy population

N ¼ N0expð� koff tresÞ

Eq 2: double binding energy populations

N ¼ N0;Aexpð� koff ;AtresÞ þ N0;Bexpð� koff ;BtresÞ

Rather, N decays in an unusual logarithmic fashion with respect to tres, as also noticed by
norovirus binding kinetics studies [1–2] and our recent work with parvovirus binding to trans-
ferrin receptors [48]. Alternative analytical models are generally lacking for multivalent

Fig 7. Using structural arguments to understand binding results. Left) View of HA protein head group in relation to GD1a. Red regions

show the binding pockets and yellow circles show where sialic acid are located. Right) Side view of HA protein in relation to GD1a. Teal

molecules are sialic acids at potential secondary binding sites. The SLB would be on the bottom side of the protein, while the viral

membrane would be on the top side. The hemagglutinin structure and sialic acid positions were obtained by Sauter et al. [65] PDB ID:

1HGG.

doi:10.1371/journal.pone.0163437.g007
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Fig 8. Observing how binding kinetics changes with choice of tcutoff for a 1% GD1a trial. a) N+ vs t at varying

tcutoff settings shown in the legend. b) Ron vs tcutoff plot showing how Ron is affected with tcutoff choice.

doi:10.1371/journal.pone.0163437.g008
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binding systems and recent studies have begun to address this issue [1–2, 5, 48, 68]. Here, we
searched for an empirical model to describe the overall unbinding probability of the virus by
testing various log plots betweenN and tres until a linear relationship was found (Fig 9B and
9C). Two possible fit equations for N vs tres are provided (Eqs 3 and 4). Note that Eq 4 mimics

Fig 9. Representative X31 binding survival curves and empirical fits. a) The number of virus bound, N,

is plotted against the residence time, tres, to yield a survival curve for binding. The Eq 3 fit parameter for GM3

is [A = 0.87, B = 0.19] and GD1a is [A = 2.56, B = 1.38]. The Eq 4 fit parameters for GM3 is [A = 2.14, B = 1.63]

and GD1a is [A = 2.06, B = 1.72]. Note that the Eq 4 fit parameters differ from those found from the related log

plots in panel c. The binning of the binding data in the log plots causes an approximation error. b) Log plots

used to derive Eqn 3. c) Log plots used to derive Eqn 4 as used Bally et al.[1] (the data has been binned).

doi:10.1371/journal.pone.0163437.g009
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the approach used by Bally et al. [1], while Eq 3 is developed by us and also describes the bind-
ing residence distribution of parvovirus binding to transferrin receptors [48].

Eq 3: empirical fit derived from Fig 9B
N ¼ N0expðBÞ ln

tres

Dt

� �� A where Δt is a reference time interval� tcutoff. We usedΔt = 1s based
on the time interval between images. Note that all equations here apply only when tres� tcutoff.

Eq 4: empirical fit derived from Fig 9C and proposed by Bally et al [1]

N ¼ N0 1 �
expðBÞ
1 � A

ðt1� A
res
� t1� A

0
Þ

� �

if A 6¼ 1

N ¼ N0 1 � expðBÞln
tres

t0

� �

if A ¼ 1

Unbinding rates are often characterized via an unbinding constant koff, which in turn is
related to binding force. Since Eqs 1 and 2 failed to fit our data, this suggests that the unbinding
kinetics does not follow a constant koff value, complicating matters. We thus assumed koff is not
a constant and could vary with tres. To extract koff, we equated the empirical fits with the 1st

order dissociation equation (dN/dt = -kofft) and solved for koff. The resulting equations for koff

are shown as Eqs 5 or 6 (derivations are in Part G in S1 Text).
Eq 5: koff(tres) based on Eq 3

koff ðtresÞ ¼
A

tresln
tres

Dt

� �

Eq 6: koff(tres) based on Eq 4

koff ðtresÞ ¼
expðBÞt� A

res

1 �
expðBÞ
1� A ðt1� A

res
� t1� A

0
Þ
if A 6¼ 1

koff ðtresÞ ¼
expðBÞt� 1

res

1 � expðBÞln tres

t0

if A ¼ 1

Since koff is a function of tres, this would imply that the binding force changes depending on
the contact time between the virus and receptor. This is in good agreement with recent work by
H.Witt and coworkers showing that binding force of multivalent bonds does change with con-
tact time [69]. For viruses, the general term for increasing binding force over time is adhesion-
strengthening [45–47], which includes co-receptor binding, conformational changes of viral
proteins, and multivalent binding due to receptor diffusionwithin the target bilayer. Since the
HA proteins do not significantly change conformation upon binding [65] or under the neutral
pH conditions used here, adhesion strengthening is thus most likely caused by multivalent
binding of the virus to the tightly-packed,mobile SA receptors on the SLB. In support of this,
the estimated number of glycolipids per contact area is ~90, assuming a virus diameter is 150
nm, a lipid molecule occupies 0.61 nm2 of the SLB [64], and the contact area is roughly 30% of
the virus cross-sectional area based on cryo-EMpictures of virus-membrane contacts [70]. Fur-
thermore, the glycolipid mobility was confirmed by fluorescence recovery after photobleaching
(FRAP) experiments (see [71–72] and Part H in S1 Text).

A competing interpretation of our unbinding curves is that koff spans a wide range of values
due to a wide distribution of virus sizes and thus degree of multivalent binding. To make an
empirical model under this interpretation, one would summany exponential functions for 1:1
bindingmodel that are multiplied by a weight function that reflection the virus size distribution.
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This approach would also assumemultivalent bonds effectively act as a single bond with a stron-
ger binding force. However, the virus distribution is narrow and morphology is uniform accord-
ing to particle size and EM studies [51]. Additionally, AFM studies showed complex unbinding
process [73] that would be inconsistent with the idea that multivalent bonds can be treated as a
single bond. Overall, the interpretation that koff varies with tres because of adhesion-strengthening
via multivalent binding is most likely to agree with the biology involved in this study. The
remaining question is why does koff approach infinity if we allow tres to approach 0? Theoretically,
this is because as tres goes to 0, an elastic collision between virus and membrane will count as a
binding event, and thus koff will be substantially high to reflect a lack of binding force.

Bridging SPT and SPR Data Analysis

Since protein-ligand binding interactions are often studied via ensemble assays such as surface
plasmon resonance (SPR) and quartz crystalmicrobalance (QCM), we explain how to fit
ensemble data using our empirical model from SPT data. Ensemble assays collect data on the
net adsorbedmass on a surface over time, which would be similar to the N vs t data from our
SPT assay. However, unlike SPT assays, ensemble assays require two experimental procedures
to decouple binding and unbinding kinetics, noted as the “association” and “dissociation”
phases. The virus must be loaded during the association phase to observe both binding and
unbinding, and then a virus-free buffer is loaded during the dissociation phase to observe
mainly unbinding. The procedure often requires the virus to be subjected to a gentle hydrody-
namic flow that could shear off very weakly bound viruses and affect the final data. Also,
rebinding events that occur during that dissociation phase are difficult to completely filter out
and could lead to disagreements between expected and actual unbinding curves [74].

With SPT, we can extract association and dissociation curves using stagnant conditions and
without conducting a separate dissociation phase procedure, simply by filtering binding events
that occur during the “dissociation phase” that is set at the image processing stage. To make
SPR-like curves, we plot N vs t, but with few differences.N is now set to start at 0 at t = 0 by
removing binding events that occurred at or before the first frame, and a dissociation phase ses-
sion is defined to start after time tdiss = ½ tmovie, in which new binding events that occurred
after that are ignored (Fig 10).

The unbinding curve can be fitted using a modified form of Eq 3, which the residence time
tres is converted into normal time t as shown in Eq 7. Eq 7 simply states that number of binding
events remaining at t> tdiss is the sum of the binding events that occurred at t< tdiss and lasted
until time t.

Eq 7

NdissðtÞ ¼
Xt0¼tdiss � Dt

t0¼0

DtRonðt
0ÞexpðBÞ ln

t � t0

Dt

� �� A

for t � tdiss

Since ensemble assays do not yield Ron(t) directly, an simplifying assumption must be made.
We approximate ΔtRon(t) as a constant, C, based on the N+ vs t plots showing a fairly linear
relation and constant slope Ron (Fig 6) This yields the fit Eq 8, which would be used if one were
given SPR-like data without knowing exactly what Ron(t) is.

Eq 8

NdissðtÞ ¼
Xt0¼tdiss � Dt

t0¼0

C ln
t � t0

Dt

� �� A

for t � tdiss
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C is the number of binding events that occur on average within a time increment Δt. One
could instead use a time-varyingC fit parameter, C(t), but it may lead to over-fitting issues. A
lower bound value of C can be set based on the initial slope of the N vs t curve during the asso-
ciation phase, denoted as Cmin. Optimal fit parameters can be determined via an iterative
search strategy. An example of how our adhesion-strengtheningmodel (Eq 8) performs against
the standard 1:1 binding model (Eq 1) is shown in Fig 10. The exponential fit model failed to fit
the steep drop in unbinding immediately after the dissociation phase start, whereas our empiri-
cal model fitted main features of the curve.

Conclusions

We assessed of the SPT binding assay platform, image restoration, and data analysis for use in
virus-membrane binding studies. We developed an image restoration algorithm called STA-
WASP to enhance dim particle signal and improve SPT binding data quality. STAWASP
restored particles that had a SNR as low as 1.1, and preserved appearance/disappearance time
of particles with an SNR as low as 2.2. The image restoration enabled the SPT software to
extract accurate binding residence curveswhen tracking particles lasting at least 5 frames.
However, a small number of trajectoriesmust still be manually corrected. Fully automated
tracking without any error is currently not possible and is an active research area for machine-
learning algorithms.

We explained data analysis strategies for X31 binding to various glycolipids, and showed
X31 weakly binds to GM3 and to GD1a ~28 times more frequently than to GM3, despite both
containing terminal sialic acid that should promote receptor binding [16]. On the other hand,

Fig 10. SPR-like curve assemble generated from SPT data for the purpose of comparing and contrasting

the approaches. The fit parameters for Eq 8 are A = 2.0, C = 47 (which is greater than Cmin = 16.4). The fit

parameters for Eq 1 are N0 = 971 and koff = 0.001 s-1).

doi:10.1371/journal.pone.0163437.g010

Virus Binding Imaging and Analysis

PLOS ONE | DOI:10.1371/journal.pone.0163437 October 3, 2016 21 / 27



ensemble assays and cell infectivity assays had mixed results about whether or not the virus can
bind to GM3 [7, 44]. The accessibility of SA appears highly restricted by the close proximity of
it to the SLB lipid core.

The binding residence distribution curves show an interesting time-dependent koff, which is
unusual since koff is often assumed to be a constant. The empirical model agrees with the inter-
pretation that viruses increase their binding force to host membrane with longer contact time
via an adhesion-strengthening process. For X31 virus, adhesion-strengtheningmost likely
occurs via multivalent bonds that form whenmobile receptors in the SLBs are recruited to the
virus, as opposed to any protein conformation changes. We provide a general strategy to apply
our empirical model to fit ensemble assay unbinding data (Eq 8) that feature a sharp decline in
the dissociation curve, followed by a slow decay.

The combined image restoration and analysis tools developed here is easily extendible to
other studies that involve imaging low-fluorescence particles binding stochastically with sur-
faces.We have recently applied these tools for tracking parvovirus binding to transferrin recep-
tors [48], in which both were labeled with limited fluorophores and were difficult to observe
without image restoration. Another example where this approach could be useful is for study-
ing viruses that undergomembrane fusion upon receptor binding (such as parainfluenza). In
such case, viruses are usually labeled with a quenchedmembrane dye and would be difficult to
track until membrane fusion and dye-dequenching occurs.
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