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ABSTRACT: The optimized mean-trajectory (OMT) approximation is a
semiclassical method for computing vibrational response functions from action-
quantized classical trajectories connected by discrete transitions representing
radiation−matter interactions. Here we apply this method to an anharmonic
chromophore coupled to a harmonic bath. A forward−backward trajectory
implementation of the OMT method is described that addresses the numerical
challenges of applying the OMT to large systems with disparate frequency scales.
The OMT is shown to well reproduce line shapes and waiting time dynamics in
the pure dephasing limit of weak coupling to an off-resonant bath. The OMT is
also shown to describe a case where energy transfer is the predominant source of line broadening.

I. INTRODUCTION
Multidimensional infrared spectroscopy probes nuclear mo-
tions in condensed phase and biomolecular systems through
the dynamics associated with vibrational couplings.1−4 Maximal
interpretation of multidimensional vibrational spectra in terms
of molecular structure and dynamical fluctuations relies on
simulating observables with atomistic models. Fully quantum
dynamical calculations of nonlinear response functions are
generally not practical for large anharmonic systems, while
purely classical response function calculations5−12 can deviate
qualitatively from quantum mechanical results at long times.
Several general strategies13,14 have been successfully used to
calculate the response functions that underlie multidimensional
vibrational spectra. One of these is to divide a large system into
a quantum subsystem coupled to surroundings that are treated
classically or semiclassically.15−27 Another approach is to use
quantum calculations on isolated subsystems to develop
mappings between vibrational frequencies and collective
coordinates such as values of the local electrostatic potential
and its gradients. These mappings are then applied to molecular
dynamics simulations of the full system to generate a time-
varying vibrational frequency, from which the response may be
calculated.20,28−34 A third approach for delocalized chromo-
phores such as amide modes35 is to apply a tight-binding
exciton Hamiltonian with structure dependent couplings to an
ensemble of structures generated in a molecular dynamics
simulation.17,36−38 Here we follow a distinct strategy of using a
semiclassical approximation39−49 to quantum vibrational
dynamics that in principle can be applied uniformly to all
degrees of freedom. This approach has the goal of
approximating quantum vibrational response functions from
classical trajectories on a specified potential surface.
The optimized mean trajectory (OMT) approximation50,51 is

based on the approximate identification of semiclassical paths
with pairs of quantum-mechanical double-sided Feynman
diagrams,1,3,52,53 which depict nonlinear optical processes
from a density operator perspective. These semiclassical paths

are composed of classical trajectories linked by discontinuities
representing the effect of radiation−matter interactions.54−57

The OMT approach relies on the identification of classical-
mechanical action and angle variables;58 the trajectories are
calculated at quantized values of action and the discontinuities
are transitions in action at fixed angle values. Such action
quantization also features in previous semiclassical approx-
imations to vibrational response functions.59−61 An advantage
of the OMT method is the absence of classical stability matrices
that occur in other semiclassical propagation methods,62−65

while a limitation is the requirement that action and angle
variables exist and the necessity of performing canonical
transformations between these variables and Cartesian
coordinates and momenta.
We have applied the OMT method to compute the third-

order vibrational response of thermal distributions of
anharmonic oscillators50 and of coupled pairs51 of anharmonic
oscillators. For these readily assessed cases, the OMT third-
order response functions accurately reproduce the time
dependences associated with each of the three time variables,
describing the dynamics of populations and one- and two-
quantum coherences. For our calculations on pairs of strongly
coupled, near-resonant anharmonic oscillators, we developed an
implementation of the OMT method that employed a small
number of precalculated classical trajectories51 that are
efficiently reused to compute dynamics during each of the
three time periods. We will refer to this implementation as the
“fixed-trajectory” approach. This implementation of the OMT
approximation becomes impractical for a large number of
degrees of freedom particularly when there is a disparity in
frequency scales among different motions.
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Here we use the OMT to calculate two-dimensional infrared
(2DIR) spectra for a high-frequency anharmonic chromophore
coupled to a harmonic dissipative medium.66−69 Because this
model contains both of the features just mentioned, a large
number of degrees of freedom and separation of frequency
scales between chromophore and medium, the implementation
of the OMT used previously51 is no longer appropriate. We
present here a forward−backward implementation43,49,70 of the
OMT, which is better suited to treat systems characterized by
these features.
In section II, we review the form of the third-order response

function and specify the model. The OMT approximation and
its fixed-trajectory implementation are summarized in section
III. In section IV, the forward−backward implementation of the
OMT, suitable for larger systems with disparities in frequency
scales, is presented. Numerical calculations are reported in
section V, and are compared to results from the fluctuating
frequency approximation3,53,71−73 and from previous quantum
calculations.69 Conclusions are drawn in section VI.

II. RESPONSE FUNCTION AND MODEL
The quantum mechanical third order vibrational response
function for the signal with wavevector ks = αk1 + βk2 + γk3 is
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with α, β, γ, and δ either + or − and the restriction that two
signs are + and two −. The rotating-wave approximation has
been applied.53 A single chromophore mode labeled a interacts
with the field through its dipole operator, μ̂a. We take the
dipole operator to be proportional to the coordinate qâ with the
constant of proportionality suppressed. The operators μ̂a

± can
then be expressed in terms of the boson creation and
annihilation operators, b ̂a† and bâ, as μ̂a

+ = bâ
†(ℏ/2maωa)

1/2 and
μ̂a
− = (μ̂a

+)†. The equilibrium density operator is given by ρ̂ and
(t)Â = e−iĤt/ℏÂeiĤt/ℏ, with Ĥ the Hamiltonian without the

electric field. The purely absorptive (correlation) spectrum,3,69

Rabs(ω3,ω1;t2), is obtained by combining the rephasing, RI =
R++−, and nonrephasing, RII = R+−+ responses
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with R̃(3)(ω3,ω1;t2) the one-sided Fourier transform of
R(3)(t3,t2,t1) with respect to t1 and t3.
The chromophore is coupled to a bath of harmonic

oscillators66−68
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Here Ĥa is the chromophore Hamiltonian, Nb is the number of
bath modes, mj and ωj are the mass and frequency of bath
mode j, and cj quantifies the coupling between mode j and the
chromophore. The dependence of the coupling on the
chromophore coordinate is determined by V(qâ), which has
dimensions of length. We will consider this function up to
second order in chromophore coordinate69

̂ = ̂ + ̂V q v q
v

q( )
2a a aLL
SL 2

(4)

with vLL and vSL quantifying linear−linear (LL) and square-
linear (SL) coupling, respectively. This Hamiltonian with LL
coupling has been used to quantify the effects of a dissipative
bath on quantum corrections to the classical vibrational linear
response function.61

The bath coupling coefficients and frequencies can be
obtained from a specified spectral density, J(ω) ≡
∑jcj

2/(2mjωj)δ(ω − ωj). We take J(ω) in the continuum
limit to be Ohmic with a Lorentzian cutoff69
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where γ controls the width of J(ω) and η is the classical friction
coefficient for vLL = 1. This continuous distribution can be
approximated by a discrete bath of oscillators with linearly
spaced frequencies, ωj = jΩ/Nb, and maximum frequency Ω by
taking the coupling constants cj to be74
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To better approximate a continuous bath, an additional zero
frequency mode was included in eq 3.74 This mode contributes
a frequency shift to the chromophore. The coupling coefficient
of this zero frequency mode and of mode Nb with frequency Ω
is given by half of the right side of eq 6. We describe the
chromophore−bath coupling in terms of the dimensionless
parameters νLL = vLL(η/maωa)

1/2 and νSL = vSL(ηℏ/ma
2ωa

2)1/2.
Quantum calculations of purely absorptive spectra for the
model of eqs 3−5 with a continuous bath were performed by
Ishizaki and Tanimura69 using a quantum Fokker−Planck
equation approach.75,76 Our semiclassical results are compared
to these quantum calculations in section V.

III. OPTIMIZED MEAN-TRAJECTORY APPROXIMATION
The OMT approximation for the nonlinear vibrational
response of a single oscillator50 and its extension to a collection
of coupled oscillators51 have been previously described. Here
the OMT will be reviewed, focusing on computing the
rephasing and nonrephasing responses for a chromophore
weakly coupled to a bath. The OMT results from translating
pairs of quantum mechanical double-sided Feynman diagrams
into semiclassical OMT paths. Double-sided Feynman diagrams
portray the perturbative time evolution of the density operator
throughout a spectroscopic experiment.1,3,52,53,73 The identi-
fication of double-sided Feynman diagrams with OMT paths
relies on evaluating the quantum diagrams in a harmonic
approximation to the energy eigenstate basis. It further rests on
the analogy between energy eigenstates in quantum mechanics
and the invariant tori defined by the classical-mechanical
action−angle variables,58 in cases where the latter can be
defined. In analogy to free propagation in the energy basis
interrupted by the radiation-induced transitions between
eigenstates in the quantum diagrams, OMT paths consist of
classical trajectories propagated at quantized action values
connected by jumps in action at constant angle representing
radiation−matter interactions. For a single degree of freedom,
the evolution of the density operator |ni⟩⟨nj| in a double-sided
Feynman diagram is represented in an OMT path as a classical
trajectory with action ℏ(ni + nj + 1)/2, the mean action
associated with the harmonic energies of the bra and ket aspects
of the density operator. Interactions with the electric field are
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similarly treated within this harmonic approximation as jumps
in action of magnitude ℏ/2 at constant angle. Although these
quantization rules are derived within a harmonic approxima-
tion, they are applied to the good action variables of the system,
thereby including anharmonic effects.
Within the quasiperiodic regime77,78 where action−angle

variables can be defined, the OMT for one oscillator can be
extended to multiple degrees of freedom.51 Anharmonic terms
in the Hamiltonian are initially ignored, and the harmonic
approximations of the OMT for a single degree of freedom are
applied to each normal mode. The quantization rules are then
applied to the action variables of the full coupled Hamiltonian.
This approach relies on each action variable being unambig-
uously associated with one normal mode. This will hold if the
anharmonic couplings between normal modes in the full
Hamiltonian are sufficiently small that the transformation to
good action−angle variables is well approximated by
perturbation theory in anharmonicity.51,77 For both single
and multimode models, OMT paths can be attributed to
specific physical processes using the connection between these
semiclassical diagrams and double-sided Feynman diagrams.
For f coupled oscillators the OMT approximation for the

quantum mechanical response in eq 1 is51

∑ ∑ ∑κ ρ κ κ ρ= +

γβα

γβα γβα
= = ≠

R t t t

t t t t t t

( , , )

( , , ) ( , , )
r

f

ar
r

r

f

s r
ar as

r s

(3)
3 2 1

1

4
3 2 1

1

2 2 ,
3 2 1

(7)

Here κar is the overlap of normal mode r with the local
chromophore mode a, given by the expansion qa = ∑r κarxr ,
with {xr} the normal mode coordinates. In general,
contributions to the system response result from either one
normal mode interacting with the electric field, as in the first
sum in eq 7 or two normal modes, as in the second sum. The
relative contribution of each term in eq 7 is determined by the
factors κar

4 or κar
2 κas

2 . For the couplings investigated here, a single
normal mode will have significant overlap with the
chromophore. We will refer to this mode as the “system”
normal mode labeled 1 and the others as “bath” normal modes.
Because κa1

2 ≫ κar
2 for r ≠ 1 the OMT calculation can be greatly

simplified
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The superscript has been omitted from ργβα because there is
only one contributing term. Within this approximation only
action jumps in the system normal mode are allowed. This
corresponds to computing contributions to the two-dimen-
sional spectrum from the diagonal peak near the fundamental
frequency of the system normal mode and the peaks associated
with overtone transitions in this mode.
For the response function components in eq 2, ργβα is given

by51
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The index p in eq 9 sums over semiclassical paths, composed
of classical trajectories linked by jumps in the system action at
fixed angle values. There are four such paths, corresponding to
the combinations of either increasing or decreasing the system’s
action at the second and third interactions with the field.
Whether the action is increased or decreased following a
particular trajectory in the OMT path is controlled by the
subscripts σ, which can be either + or −, in the terms Δσ

(s)

defined in eq 13. Superscripts s = 1, 2, 3 label the three classical
trajectories of the OMT path. In eqs 9−14, z(s)(t) refers to the
phase space variables z for trajectory s of the OMT path at time
t; if no time is specified, t = 0. Subscripts on action values, J, and
coordinates and momenta, x and p, in eqs 10−14 indicate
normal modes. As defined in eq 12, F is the classical
distribution function renormalized to reflect the quantization
rules imposed on the action values at equilibrium.
Although the expression for ρ+±∓ is written as three 2f-

dimensional integrals, delta functions in angle in eq 9 and in
action in eq 13 simplify the integrations over z(2) and z(3), so
that only the integration over z(1) needs to be performed
numerically. The integration over action variables, J(1), is
further reduced to f sums by Γ(z(1)) in eq 10. Therefore, it is
convenient to visualize the OMT calculation as a summation of
OMT paths with different initial conditions z(1). For the
rephasing and nonrephasing responses the four possible paths
are shown in Figure 1.50,51

Figure 1 shows the action of the system normal mode as a
function of time; the action values of the bath normal modes
are not shown and remain constant throughout the path.
Dotted horizontal lines indicate half-odd-integer multiples of ℏ,
corresponding to the system density matrix being diagonal in
the eigenstate basis. Integer multiples of ℏ correspond to single-
quantum coherences and are indicated by dashed horizontal
lines. OMT paths begin after the first radiation−matter
interaction. The first sum in eq 10 restricts the action of the
system normal mode in trajectory 1, J1

(1), to be an integer
multiple of ℏ. The dots at the beginning and end of this
segment represent points in the path where factors of Q σ in eq
9 are evaluated. The blue dot corresponds to z(1), and the red
dot to z(1)(t1). At time t1 the system mode interacts with the
field, either increasing or decreasing its action by ℏ/2. This
transition is controlled by the factor Δσp

(1) in eq 9. All angle
values are unchanged during this jump in action as required by
δ(ϕ(2) − ϕ(1)(t1)). The second trajectory is propagated for time
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t2 and another ℏ/2 jump in action is performed at constant
angle according to the factors Δσp′

(2) and δ(ϕ(3) − ϕ(2)(t2)). The
purple dot at the start of trajectory 3 represents z(3). The green
squares represent z(3)(t3) values used to compute the response
as a function of t3 for a particular t1 and t2 value.
The statistical weight of each path is determined by the

renormalized classical equilibrium distribution function, F, in eq
12, evaluated at the two allowed states prior to the first
interaction with the field. The actions of these states are
obtained by replacing the system action, J1

(1), in J(1) with
J1
(1) − ℏ/2 or J1

(1) + ℏ/2 and the angle values are the same as
after the first field interaction. This total weight is given by eq
11, where the terms have opposite sign due to the innermost
commutator in eq 1. In eq 9 ϵp is an overall sign arising from
the remaining commutators. For the two paths with action J1

(1)

during the third trajectory ϵp = −1, while ϵp = 1 for the paths
finishing with system action J1

(1) + ℏ or J1
(1) − ℏ.

Three numerical challenges must be addressed in applying
the OMT method. First, trajectories need to be propagated
with their initial phase space points z(s) specified in action−
angle variables. Second, jumps in action at constant angle must
be performed. Third, a 2f-dimensional phase space integration
over z(1) must be performed.
For two coupled near-resonant oscillators, we developed a

fixed-trajectory implementation that addressed each of these
challenges.51 The minimum number of trajectories is required
in this implementation because only one classical trajectory at
each set of actions reached during any OMT path is computed.
These trajectories are precalculated at the start of the
computation and are reused to determine time-evolution for
each appropriate segment of an OMT path. Initial conditions
for these trajectories are determined using a perturbative
approximation to the canonical transformation between
Cartesian coordinates and momenta and action−angle
variables.77 Computing this transformation to second order in
cubic anharmonicity and first order in quartic anharmonicity
was sufficient to reproduce the quantum mechanical response
for a chromophore with relatively high anharmonicity.51 To
carry out action jumps, approximate constant-angle mappings
between the fixed classical trajectories are also calculated at the
start of the computation. To determine a constant-angle jump
between an initial and final trajectory, a target state is computed

by harmonically scaling the initial coordinate and momentum
of the normal mode interacting with the field by the square root
of the ratio of that mode’s final and initial actions. With the
unscaled phase space points of the other normal modes, this
defines a 2f-dimensional target phase space point that would
represent a jump in action at constant-angle variables in the
absence of anharmonicity. The closest point in phase space on
the final trajectory to this target state is used as the end point of
the approximate constant-angle jump. For relatively high-
frequency oscillators, few quantum states are thermally
accessible so that the sum over initial actions requires a small
number of terms. The angle average is performed in the fixed-
trajectory implementation as a time average by varying the
starting point in trajectory 1.
Although this method is well suited to treat a few high-

frequency oscillators,51 there are difficulties when it is applied
to larger systems with disparate frequency scales. The simplicity
of the initial action sum is lost when the OMT is applied to low
frequency oscillators because they thermally access a large
range of action values, making it impractical to compute the
response function from one fixed set of trajectories. A second
challenge caused by a low frequency bath is that very long
trajectories must be computed to sample all combinations of
bath normal mode angles. The constant-angle jumps are also
more challenging for larger systems because a 2f-dimensional
minimization must be performed to determine constant-angle
mappings between the trajectories. These challenges motivated
the development of an alternative OMT implementation
described in the following section.

IV. FORWARD−BACKWARD OMT IMPLEMENTATION
A forward−backward implementation of the OMT was
developed to address the challenges of applying the OMT to
large systems including low-frequency oscillations. This
implementation has numerical advantages similar to the
doorway- and window-function factorization79,80 described by
Hasegawa and Tanimura for the computation of nonlinear
spectra with nonequilibrium molecular dynamics simulations.70

Our method is illustrated in Figure 2 for the OMT path in

Figure 1 in which both interactions with the field increase the
system action. In this implementation we begin OMT paths at
z(1)(t1), represented by the red dot, instead of z(1). Replacing
z(1) by z(1)(t1) in the factors Γ and ΔF leaves eq 9 unchanged
because both points lie on the same constant-action trajectory
and in the good action-angle variables of the coupled

Figure 1. The four OMT paths contributing to the rephasing and
nonrephasing signals are shown for system normal mode 1 having
action J1

(1) following the first interaction with the field. Time increases
from left to right. Interactions with the field are treated as ℏ/2 jumps
in the system action with all angle values held constant. Colored dots
represent states on the OMT path used in the calculation of Q σ factors
in eq 9. Green squares represent a set of z(3)(t3) values used in the
calculation of Q−(z

(3)(t3)).

Figure 2. Forward−backward implementation of an OMT path for a
fixed value of t2 is shown. The path is initialized at z

(1)(t1), represented
by a red dot, with known ϕ(1)(t1) and J(1). The t1 trajectory is
propagated backward from this point to obtain a set of z(1) values
indicated by blue squares. A trajectory for t2 is propagated forward in
time from the phase space point z(2), with known initial angles ϕ(2) =
ϕ(1)(t1). For each t2 value the point after an ℏ/2 jump in action z(3),
shown as a purple dot, must be determined. From this initial condition
a t3 trajectory is propagated, giving a set of z(3)(t3) values, shown as
green squares.
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Hamiltonian, F has no angle dependence. The contribution
from this path to ρ+±∓ in eq 9 can be written in the form
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In eq 15, the integrand is factored into two expressions,
grouped in square brackets. The first factor is independent of t2
and t3, and the second is independent of t1. Therefore, the
integrand can be computed as the outer product of these two
terms.
In this implementation, the phase space points z(1) are

obtained by propagating the initial point z(1)(t1) backward.
Values of z(1) are represented by blue squares in Figure 2.
When values of z(1)(t1) are sampled directly, ϕ(1)(t1) is known.
Therefore, computing z(2) requires no approximations in
addition to those used to compute z(1)(t1). This is indicated
by the arrowless dashed line connecting trajectories 1 and 2 in
this path. The phase space point z(2) is then propagated forward
in time to z(2)(t2). For each t2 value a jump in system action at
constant-angle values is approximately performed to obtain
initial conditions z(3), which are propagated forward in time to
obtain a set of z(3)(t3) values.
To compute the contribution to the system response from

each OMT path in the forward−backward implementation a
single t1 and a single t2 trajectory are propagated. Then, for each
t2 value, a distinct t3 trajectory is propagated. Therefore, the
total number of trajectories scales as the number of t2 values, nt2.
The number of computations required to perform constant-
angle jumps also scales with this number. By comparison, for
the implementation suggested by Figure 1, where z(1) serves as
the initial point instead of z(1)(t1), a single t1 trajectory is
propagated for each path. For each t1 value a distinct t2
trajectory is propagated and for each combination of t1 and t2
values a distinct t3 trajectory is propagated. In this
implementation, the total number of propagated trajectories
scales as nt1(1 + nt2), as does the number of calculations needed
to perform constant-angle jumps. Typically, 2DIR spectra are
plotted as Fourier transforms with respect to t1 and t3 for a
small number of t2 times, so that nt2 ≪ nt1. The forward−
backward implementation is therefore significantly more
efficient than the implementation of the OMT suggested by
Figure 1, although it does require more trajectories than the
fixed-trajectory implementation described in section III.
For the fixed-trajectory implementation, initial Cartesian

coordinates and momenta were determined in terms of action
and angle variables using low-order perturbation theory applied
to the normal modes.51,77 For the systems investigated here,
this canonical transformation was approximated to zeroth order
in the anharmonic couplings involving bath normal modes and
to first order in cubic anharmonicity for the system normal
mode. These results were used to transform the action−angle
variables into Cartesian coordinates and momenta, and the full
anharmonic Hamiltonian was used to propagate all trajectories.
The forward−backward implementation avoids difficulties

associated with applying the fixed-trajectory implementation to
systems with low-frequency oscillations through its treatment of
action jumps. Because of the relatively small number of jumps
in the forward−backward implementation, these transitions can

be treated within the same perturbative framework used to
compute initial phase space conditions. For the results shown
in section V the perturbative coordinate and momentum
expressions were numerically inverted to determine ϕ(2)(t2) =
ϕ(3), so that initial conditions z(3) could be computed.
The final challenge to be addressed is performing the phase

space integration. Low-frequency bath oscillators thermally
sample a large number of action values so that it is impractical
to directly sum all combinations of these actions. Therefore,
initial conditions for z(1)(t1) were sampled from the equilibrium
distribution function F in eq 12 using a Metropolis criterion.
The difference in eq 11 was approximated as ΔF(z(1)(t1)) ≈
F(z(1)(t1))|J1(1)→J1

(1)−ℏ/2, which is valid for βℏω1 ≳ 1. For sampling,
the dependence of the full Hamiltonian on action variables was
approximated as a sum of uncoupled contributions with the
system mode treated perturbatively to second order in cubic
anharmonicity and the bath modes treated harmonically. The
forward−backward implementation was used to compute all
OMT results in section V.

V. RESULTS
We treat the Hamiltonian in eq 3, with the chromophore mode
taken to be a Morse oscillator defined by dimensionless
parameters, βD = 391 and βℏωa = 7.75. Here β ≡ 1/kBT, D is
the Morse oscillator well depth, and ωa is its harmonic
frequency. At 300 K for the fundamental frequency ω10 = ωa −
Δanh = 1600 cm−1 this corresponds to anharmonicity Δanh =
ℏωa

2/2D = 16 cm−1. These parameters are appropriate to
describe the amide I band14,35 and are used in ref 69. This set of
chromophore parameters is used in all figures.
We compare our results to the quantum calculations of

Ishizaki and Tanimura69 and to the widely applied fluctuating
frequency approximation,71,72 where the effect of the bath
interaction is approximated by Gaussian fluctuations in the
chromophore frequency. This approximation is expected to be
valid for weak coupling to an off-resonant bath where
dissipation is not significant.69 The rephasing and nonrephasing
system responses for this approximation3,53,73 are given in eqs
2.11a and 2.11b of ref 69. The response functions are
determined by the frequency autocorrelation function Cωω(t)
≡ ⟨δω10(t) δω10(0)⟩, which in the present model is given in
terms of the classical friction kernel η(t) for vLL = 1 as

η
ν

ω
ν η=
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+
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ωω
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This is the discrete bath analog of the results in eqs 2.15 and
3.18b of ref 69 for a continuum bath, with coordinate matrix
elements evaluated to lowest order in anharmonicity.
In Figure 3 purely absorptive spectra are shown for bath

parameters in the pure dephasing regime in which the
fluctuating frequency approximation is expected to accurately
reproduce the response.69 The width of the spectral density in
eq 5 is taken to be γ = 4.95 × 10−3ωa , with Nb = 20 and
maximum bath frequency Ω = 0.02ωa. The chromophore−bath
coupling is bilinear with νLL = 1.41 and νSL = 0. These
parameters correspond to a finite bath version of the calculation
in Figure 5(a-i) of ref 69. Purely absorptive spectra for the
fluctuating frequency approximation are shown in column (a)
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and for the OMT approximation using 5000 initial conditions
in column (b). Rows (i)−(iii) show spectra for ωat2 = 0, 150,
and 1200, respectively. For typical amide I vibrational
frequencies14,35 the waiting times in rows (ii) and (iii)
correspond to approximately 0.5 and 4 ps.
The fluctuating frequency approximation spectrum at t2 = 0

in Figure 3(ai) shows diagonal elongation, indicating
inhomogeneous broadening that is characteristic of waiting
times short relative to relaxation time scales. The OMT
spectrum at t2 = 0 in (bi) agrees qualitatively with both the
fluctuating frequency result in (ai) and the corresponding
quantum calculation in ref 69. As the waiting time is increased
in rows (ii) and (iii), changes to the relative contributions of
the rephasing and nonrephasing responses cause the peaks to
become more symmetric, indicating homogeneous broadening.
Both the degree of broadening and the crossover between
diagonally broadened and symmetric peaks are accurately
reproduced by the OMT results, as seen from comparison of
the two columns in Figure 3. The t2 dependence was not
considered in ref 69, so no comparison to quantum mechanical
results is made. In the pure dephasing limit, all broadening from
LL coupling is a result of the system anharmonicity, as is
evident in eq 16 where the LL term is proportional to D−1/2.
Accurately reproducing the broadening present in the
fluctuating frequency approximation demonstrates that im-
portant anharmonic effects are incorporated into the OMT
description by propagating trajectories with the full Hamil-
tonian. Overall, the fluctuating frequency and OMT approx-
imation results are similar for this set of parameters, except for a
bath-induced shift in the centers of both peaks in the OMT
approximation which is also present in the t2 = 0 quantum
results of ref 69.

In Figure 4, the calculations in Figure 3 are repeated for
chromophore−bath coupling that is quadratic in the
chromophore coordinate, νLL = 0, νSL = 0.704. These
correspond to the coupling parameters used in Figure 5(a-ii)
of ref 69. The OMT results in column (b) of Figure 4 were
computed using 35 000 initial conditions, although qualitative
features were apparent with a few thousand initial conditions.
The waiting time dynamics of the spectra in Figure 4 are
qualitatively similar to the dynamics in the LL coupling case. At
t2 = 0 peaks show inhomogeneous broadening and become
homogeneously broadened as the waiting time increases. There
is greater line broadening for the SL coupling in Figure 4 than
for the LL coupling shown in Figure 3, in agreement with the t2
= 0 calculations in ref 69. The OMT approximation reproduces
the line shapes of the fluctuating frequency approximation,
including the decay in the peak amplitude as a function of t2 as
well as the degree of dephasing relative to the LL case. Unlike
LL coupling terms, anharmonic SL coupling terms do not enter
in determining normal modes. The SL coupling terms are only
incorporated in the OMT approximation through their
presence in the full Hamiltonian used to propagate trajectories.
The results in Figure 4 again demonstrate the capacity of the
OMT to reproduce anharmonic effects, even when the action−
angle variables are crudely approximated.
We have further investigated the waiting time dynamics

predicted by the OMT approximation. Figure 5 shows the
waiting time dynamics of the absolute value of the rephasing
response in (a) and of the nonrephasing response in (b) for the
same parameters as in Figure 4, with all signals normalized to
their t2 = 0 value. Fluctuating frequency results are shown as
dashed lines and OMT results are shown as solid lines. Three
values of t = t1 = t3 are shown for each signal, ωat = 30 (blue),
90 (red), and 180 (purple). For a fundamental transition
frequency of 1600 cm−1 these times correspond to approx-
imately 100, 300, and 600 fs, respectively.

Figure 3. Rabs(ω3,ω1;t2) is calculated for an anharmonic oscillator
interacting bilinearly with a medium. Column (a) shows results of the
fluctuating frequency approximation, and OMT results are shown in
(b). Spectra are shown for ωat2 = 0 in row (i), ωat2 = 150 in row (ii),
and for ωat2 = 1200 in row (iii). Results for each approximation are
normalized to the maximum absolute value at t2 = 0. Six contours
equally spaced between −1 and 0 and between 0 and +1 are shown,
with negative contours in blue and positive in red.

Figure 4. Purely absorptive spectra are calculated for the parameters in
Figure 3 but with quadratic coupling, νLL = 0, νSL = 0.704. Fluctuating
frequency approximation results are shown in column (a), and OMT
approximation results in column (b). The t2 values are the same as in
Figure 3.
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The fluctuating frequency approximation rephasing re-
sponses in Figure 5(a) show an overall decay with waiting
time, with greater relative decay for larger ωat values. The
rephasing and nonrephasing signals in (a) and (b) are
reciprocals in the fluctuating frequency approximation, so that
the nonrephasing results show corresponding increases with
waiting time. The OMT results share these features. Relative to
the fluctuating frequency approximation, the OMT results
consistently show less decay in the rephasing signal and smaller
increases in the nonrephasing signal, so that the OMT results in
(a) and (b) are also approximately reciprocals. In (b)
qualitatively similar small amplitude oscillations, caused by
the finite bath, are apparent in both results, especially for ωat =
180 shown in purple. This is a rigorous test of the OMT
because all t2 dynamics of the response functions in Figure 5 are
the result of chromophore−bath couplings. Results in ref 69
were computed at t2 = 0, so no comparison to quantum
calculations is made.
Figures 3−5 show results in the pure dephasing regime

where the fluctuating frequency approximation is expected to
accurately reproduce the response function.69 This approx-
imation will not describe a case in which energy transfer
between the system and bath is significant. Figure 6 shows
2DIR spectra for such a model, where the width of the bath
spectral density has been increased relative to that of Figures
3−5 and the chromophore−bath coupling is bilinear,
facilitating single quantum excitation transfer between the
chromophore and bath. The bath parameters are γ = 9.90 ×
10−2ωa, Nb = 125, and Ω = 1.4654ωa , with the maximum bath
frequency chosen to avoid resonances with the chromophore
mode. The coupling parameters are νLL = 0.222 and νSL = 0.
These are the same coupling strengths used in row (i) of Figure
3 in ref 69 but here the width of the spectral distribution is a
factor of 5 smaller to reduce the number of oscillators in the
finite bath. Fluctuating frequency results are shown in column
(a) of Figure 6, and OMT results computed from 5000 initial

conditions are shown in column (b). Rows show results for the
same waiting times as in the corresponding rows of Figures 3
and 4. Time-domain results were not fully decayed so, to
reduce artifacts12 caused by taking the discrete Fourier
transform of aperiodic data, the response functions used to
compute Figure 6 were multiplied by the product of one-sided
cosine-squared window functions for the t1 and t3 time
variables. Applying this window function to the time-domain
results used to compute Figures 3 and 4 did not result in
significant additional broadening.
In column (a) of Figure 6 the fluctuating frequency

approximation results show no significant broadening or
waiting time dynamics at the figure resolution. This indicates
minimal pure dephasing for this set of parameters. In contrast,
the OMT results in column (b) show significant line
broadening. At t2 = 0 the OMT result in Figure 6(bi) shows
inhomogeneous broadening, while both peaks at finite t2 are
homogeneously broadened. Fluctuating frequency and OMT
spectra calculated with the same parameters as in Figure 6 but
with quadratic coupling νLL = 0 and νSL = 0.222, as in Figure
3(ii) in ref 69, show minimal broadening for all waiting times.
Quadratic coupling facilitates exchange of two system quanta
and one bath quantum and so is unlikely to produce line
broadening for this spectral density. We do not make a direct
comparison to Figure 3 of ref 69 because the results here are for
a smaller γ and, with relatively high Ω/Nb, the finite bath does
not well represent the continuum. However, the spectra in the
energy transfer regime shown in Figure 3 of ref 69 display some
of the same features as the results here. First, the fluctuating
frequency result for LL coupling has no significant broadening.
Second, the quantum LL result shows no apparent inhomoge-
neous broadening at t2 = 0, while our results show diminished

Figure 5. |RI/II
(3)(t,t2,t)/RI/II

(3)(t,0,t)| is calculated for the same parameters
as in Figure 4. The rephasing response is shown in panel (a), and the
nonrephasing response in panel (b). Three t = t1 = t3 values are shown
in each panel: ωat = 30 (blue), 90 (red), and 180 (purple). Fluctuating
frequency approximation results are shown with dashed lines, and
OMT results with solid lines.

Figure 6. Rabs(ω3,ω1;t2) for a thermal ensemble of Morse oscillators
with bilinear coupling to a harmonic bath is shown as a function of
ωat2. Fluctuating frequency approximation results are shown in panel
(a), and OMT results are shown in panel (b). Spectra at ωat2 = 0 are
shown in row (i), at ωat2 = 150 in row (ii), and at ωat2 = 1200 in row
(iii). All spectra are normalized to the maximum absolute value at t2 =
0. Six contours equally spaced between −1 and 0 and between 0 and
+1 are shown, with negative contours in blue and positive in red.
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inhomogeneous broadening at finite t2 compared to the pure
dephasing results in Figures 3 and 4. Finally, the minimal
broadening with SL coupling predicted by the OMT is
consistent with Figure 3(a-ii) in ref 69. This qualitative
agreement indicates that the OMT treatment is applicable in
regimes in which energy transfer processes are a significant
source of line broadening.

VI. CONCLUSIONS

The OMT approximation to nonlinear vibrational response
functions results from the assignment of semiclassical paths50,51

to sums of pairs of double-sided Feynman diagrams,3,52,53,73

which represent additive contributions to exact quantum
response functions. The OMT procedure allows nonlinear
vibrational response functions to be calculated from classical
trajectories linked by transitions representing radiation−matter
interactions. Implementing the method requires approximating
the canonical transformation between Cartesian coordinates
and momenta and good action and angle variables, with the
assumption that the latter exist. This transformation is
necessary to select initial conditions that correspond to
quantized action values and also to execute transitions between
trajectories that correspond to discrete changes in action at
constant angle. We have shown here and previously50,51 that
this canonical transformation can be performed with relatively
crude approximations such as low-order perturbation theory in
anharmonicity. The calculated response functions, however, are
nonperturbative in anharmonicity, because all trajectories are
propagated numerically using the full classical Hamiltonian. For
the model studied here, an anharmonic oscillator coupled to a
harmonic bath, the necessary canonical transformations were
carried out as follows. A normal mode transformation was
applied to the full anharmonic Hamiltonian. The canonical
transformation to action and angle variables was then
approximated to zeroth order in all anharmonic couplings
involving bath normal modes and to first order in cubic
anharmonicity in the system normal mode. Yet because correct
numerical trajectories were used, the calculations in section V
correctly reproduce anharmonic effects of chromophore-bath
coupling in the regimes of pure dephasing (Figures 3−5) and
energy transfer (Figure 6).
An advantage of the OMT approach is that different peaks in

a 2DIR spectrum are associated with different semiclassical
paths, just as they are associated with different double-sided
Feynman diagrams. Using this association, contributions from
different physical processes can be identified and calculated
separately. For example, if the system mode is restricted to the
ground state at thermal equilibrium, the overtone peaks in
section V result solely from the semiclassical diagram where the
system action increases with the second and third field
interactions, as in Figure 2. The diagonal peaks would then
result from the sum of the other two allowed semiclassical
diagrams in Figure 1, where the system action is the same in the
first and third trajectories. This association of semiclassical
paths with spectral peaks emphasizes the physical significance
that may be assigned to these paths.
A naive implementation of the OMT as suggested in Figure 1

is numerically challenging, with the required number of
trajectory propagations and action transitions for each OMT
path scaling as nt1(1 + nt2). Here nt is the number of response
function values computed during the t time interval. This
previously motivated the development of a highly efficient

fixed-trajectory implementation,51 which is unsuited for large
systems with disparate frequency scales. We present here a
forward−backward implementation that is well suited for such
systems. In the forward−backward implementation the number
of trajectories and action transitions required to calculate the
system response contribution from an OMT path scales as nt2.
Because calculating 2DIR spectra requires a Fourier transform
in t1 for a small number of waiting times, nt1 ≫ nt2, so that the
forward−backward implementation is significantly more
efficient than the naive implementation. Here the forward−
backward implementation is shown to be both accurate and
practical for computing 2DIR spectra.
We have applied the forward−backward implementation of

the OMT approximation to compute purely absorptive spectra
for an anharmonic vibrational chromophore interacting with a
harmonic bath with couplings that are linear in bath
coordinates and either linear or quadratic in the chromophore
coordinate. 2DIR spectra at t2 = 0 for this model with a
continuum bath have been computed with a quantum Fokker−
Planck equation approach by Ishizaki and Tanimura,69

providing a basis for assessment of the OMT approach. In
the pure dephasing limit of a weakly coupled off-resonant bath,
our results agree both with the fluctuating frequency
approximation, established to work well in this limit and with
the quantum calculations of Ishizaki and Tanimura69 for both
forms of chromophore−bath interactions. Though this weak-
coupling limit is theoretically simple, it poses a significant
numerical challenge for the OMT. First, there is a large
disparity in frequency scales, one of the challenges that
motivated the development of the forward−backward imple-
mentation. Second, achieving correct time dependences of the
response function requires extensive averaging over initial
conditions and adequate treatment of transitions in system
action at constant-angle variables. We have also computed
spectra beyond this pure dephasing regime, in which energy
transfer between system and bath influences the time and
frequency dependences of the spectra. In this regime, our
results agree qualitatively with the quantum calculations of ref
69. Although the interpretation of these spectra is more
complex than in the pure dephasing limit, these OMT
calculations are less numerically demanding, because the bath
modes sample a smaller range of action values. We have used
the OMT method to calculate waiting time dependences of
2DIR spectra. The line-shape dynamics in the pure dephasing
regime are qualitatively similar to those obtained from the
fluctuating frequency approximation. The t2 dependence in the
energy transfer regime is plausible, but to our knowledge
quantum calculations are not available for comparison.
Our results suggest the level of computational effort that will

be required to apply the OMT approach to more general
models, by identifying simplifying approximations that are likely
to be valid. First, for purposes of generating initial classical
states and for executing transitions, solvent motions weakly
coupled to vibrational chromophores may be treated as
independent. Second, depending on the spectral region of
interest in the 2DIR spectrum, quantized action jumps need
only be performed for a limited number of degrees of freedom.
Last, for motions requiring these transitions, relatively crude
approximations, such as low-order perturbation theory in
anharmonicity are likely to suffice. Quantization of relatively
low-frequency modes is unimportant, so that with the first
simplifying approximation, low-frequency modes, such as
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solvent modes, may not need to be expressed in action−angle
variables. Initial conditions could be sampled directly in
Cartesian coordinates and momenta with constant angles
maintained by simply fixing these variables during transitions.
Thus, our findings have positive practical implications for the
application of the OMT approach to anharmonic systems of a
size that can be treated with conventional molecular dynamics
simulations on the necessary time scales.

■ AUTHOR INFORMATION

Corresponding Author
*R. F. Loring. Electronic address: roger.loring@cornell.edu.

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

This investigation was supported by the National Institutes of
Health under Ruth L. Kirschstein National Research Service
Award (2T32GM008267) from the National Institute of
General Medical Sciences. This material is based upon work
supported by the National Science Foundation under CHE-
1361484.

■ REFERENCES
(1) Cho, M. Two-Dimensional Optical Spectroscopy; CRC Press: Boca
Raton, FL, 2009.
(2) Tanimura, Y.; Ishizaki, A. Modeling, Calculating, and Analyzing
Multidimensional Vibrational Spectroscopies. Acc. Chem. Res. 2009, 42,
1270−1279.
(3) Hamm, P.; Zanni, M. Concepts and Methods of 2D Infrared
Spectroscopy; Cambridge University Press: New York, 2011.
(4) Ultrafast Infrared Vibrational Spectroscopy; Fayer, M. D., Ed.; CRC
Press: Boca Raton, FL, 2013.
(5) Leegwater, J. A.; Mukamel, S. Photon Echoes in Impulsive
Optical Spectroscopy of Phonons. J. Chem. Phys. 1995, 102, 2365−
2371.
(6) Mukamel, S.; Khidekel, V.; Chernyak, V. Classical Chaos and
Fluctuation-Dissipation Relations for Nonlinear Response. Phys. Rev. E
1996, 53, R1−R4.
(7) Kryvohuz, M.; Cao, J. Classical Divergence of Nonlinear
Response Functions. Phys. Rev. Lett. 2006, 96, 030403.
(8) Kryvohuz, M.; Cao, J. Quantum Recurrence from a Semiclassical
Summation. Chem. Phys. 2006, 322, 41−45.
(9) Malinin, S. V.; Chernyak, V. Y. Collective Oscillations in the
Classical Nonlinear Response of a Chaotic System. Phys. Rev. E 2008,
77, 025201(R).
(10) Malinin, S. V.; Chernyak, V. Y. Classical Nonlinear Response of
a Chaotic System: I. Collective Resonances. Phys. Rev. E 2008, 77,
056201.
(11) Noid, W. G.; Ezra, G. S.; Loring, R. F. Semiclassical Calculation
of the Vibrational Echo. J. Chem. Phys. 2004, 120, 1491−1499.
(12) Jeon, J.; Cho, M. Direct Quantum Mechanical/Molecular
Mechanical Simulations of Two-Dimensional Vibrational Responses:
N-Methylacetamide in Water. New. J. Phys. 2010, 12, 065001.
(13) Cho, M. Coherent Two-Dimensional Optical Spectroscopy.
Chem. Rev. 2008, 108, 1331−1418.
(14) Zhuang, W.; Hayashi, T.; Mukamel, S. Coherent Multidimen-
sional Vibrational Spectroscopy of Biomolecules: Concepts, Simu-
lations, and Challenges. Chem. Rev. 2009, 48, 3750−3781.
(15) Merchant, K. A.; Noid, W. G.; Akiyama, R.; Finkelstein, I. J.;
Goun, A.; McClain, B. L.; Loring, R. F.; Fayer, M. D. Myoglobin-CO
Substate Structures and Dynamics: Multidimensional Vibrational
Echoes and Molecular Dynamics Simulations. J. Am. Chem. Soc.
2003, 125, 13804−13818.

(16) Zhuang, W.; Abramavicius, D.; Mukamel, S. Two-Dimensional
Vibrational Optical Probes for Peptide Fast Folding Investigation. Proc.
Nat. Acad. Sci. U. S. A. 2006, 103, 18934−18938.
(17) Jeon, J.; Yang, S.; Choi, J.-H.; Cho, M. Computational
Vibrational Spectroscopy of Peptides and Proteins in One and Two
Dimensions. Acc. Chem. Res. 2009, 42, 1280−1289.
(18) Baiz, C. R.; Kubarych, K. J.; Geva, E. Molecular Theory and
Simulation of Coherence Transfer in Metal Carbonyls and Its
Signature on Multidimensional Infrared Spectra. J. Phys. Chem. B
2011, 115, 5322−5339.
(19) Wang, L.; Middleton, C. T.; Zanni, M. T.; Skinner, J. L.
Development and Validation of Transferable Amide I Vibrational
Frequency Maps for Peptides. J. Phys. Chem. B 2011, 115, 3713−3724.
(20) Jansen, T. L. C.; Knoester, J. Waiting Time Dynamics in Two-
Dimensional Infrared Spectroscopy. Acc. Chem. Res. 2009, 42, 1405−
1411.
(21) Roy, S.; Jansen, T. L. C.; Knoester, J. Structural Classification of
the Amide I Sites of a β-Hairpin with Isotope Label 2DIR
Spectroscopy. Phys. Chem. Chem. Phys. 2010, 12, 9347−9357.
(22) Shi, Q.; Geva, E. A Comparison Between Different Semiclassical
Approximations for Optical Response Functions in Nonpolar Liquid
Solutions. J. Chem. Phys. 2005, 122, 064506.
(23) Shi, Q.; Geva, E. A Comparison Between Different Semiclassical
Approximations for Optical Response Functions in Nonpolar Liquid
Solutions. II. The Signature of Excited State Dynamics on Two-
Dimensional Spectra. J. Chem. Phys. 2008, 129, 124505.
(24) McRobbie, P. L.; Geva, E. A Benchmark Study of Different
Methods for Calculating One- and Two-Dimensional Optical Spectra.
J. Phys. Chem. A 2009, 113, 10425−10434.
(25) Hanna, G.; Geva, E. Multidimensional Spectra via the Mixed
Quantum-Classical Liouville Method: Signatures of Nonequilibrium
Dynamics. J. Phys. Chem. B 2009, 113, 9278−9288.
(26) Lopez, H.; Martens, C. C.; Donoso, A. Entangled Trajectory
Dynamics in the Husimi Representation. J. Chem. Phys. 2006, 125,
154111.
(27) Roman, E.; Martens, C. C. Independent Trajectory
Implementation of the Semiclassical Liouville Method: Application
to Multidimensional Reaction Dynamics. J. Phys. Chem. A 2007, 111,
10256−10262.
(28) Corcelli, S. A.; Skinner, J. L. Infrared and Raman Line Shapes of
Dilute HOD in Liquid H2O and D2O from 10 to 90 °C. J. Phys. Chem.
A 2005, 109, 6154−6165.
(29) Schmidt, J. R.; Corcelli, S. A.; Skinner, J. L. Ultrafast Vibrational
Spectroscopy of Water and Aqueous N-Methylacetamide: Comparison
of Different Electronic Structure/Molecular Dynamics Approaches. J.
Chem. Phys. 2004, 121, 8887−8896.
(30) Li, F.; Skinner, J. L. Infrared and Raman Line Shapes for Ice Ih.
I. Dilute HOD in H2O and D2O. J. Chem. Phys. 2010, 132, 204505.
(31) Kwac, K.; Cho, M. H. Molecular Dynamics Simulation Study of
N-Methylacetamide in Water. I. Amide I Mode Frequency Fluctuation.
J. Chem. Phys. 2003, 119, 2247−2255.
(32) Kwac, K.; Cho, M. H. Molecular Dynamics Simulation Study of
N-Methylacetamide in Water. II. Two-Dimensional Infrared Pump
Probe Spectra. J. Chem. Phys. 2003, 119, 2256−2263.
(33) Hayashi, T.; Jansen, T. L. C.; Zhuang, W.; Mukamel, S.
Collective Solvent Coordinates for the Infrared Spectrum of HOD in
D2O Based on an Ab Initio Electrostatic Map. J. Phys. Chem. A 2005,
109, 64−82.
(34) Skinner, J. L.; Pieniazek, P. A.; Gruenbaum, S. M. Vibrational
Spectroscopy of Water at Interfaces. Acc. Chem. Res. 2012, 45, 93−100.
(35) Hamm, P.; Lim, M.; Hochstrasser, R. M. Structure of the Amide
I Band of Peptides Measured by Femtosecond Nonlinear Infrared
Spectroscopy. J. Phys. Chem. B 1998, 102, 6123−6138.
(36) Hahn, S.; Ham, S.; Cho, M. Simulation Studies of Amide I IR
Absorption and Two-Dimensional IR Spectra of Beta Hairpins in
Liquid Water. J. Phys. Chem. B 2005, 109, 11789−11801.
(37) Hayashi, T.; Mukamel, S. Vibrational-Exciton Couplings for the
Amide I, II, III, and A Modes of Peptides. J. Phys. Chem. B 2007, 111,
11032−11046.

The Journal of Physical Chemistry B Article

dx.doi.org/10.1021/jp5076884 | J. Phys. Chem. B 2015, 119, 8950−89598958

mailto:roger.loring@cornell.edu


(38) Woys, A. M.; Almeida, A. M.; Wang, L.; Chiu, C. C.; McGovern,
M.; de Pablo, J. J.; Skinner, J. L.; Gellman, S. H.; Zanni, M. T. Parallel
Beta-Sheet Vibrational Couplings Revealed by 2D IR Spectroscopy of
an Isotopically Labeled Macrocycle: Quantitative Benchmark for the
Interpretation of Amyloid and Protein Infrared Spectra. J. Am. Chem.
Soc. 2012, 134, 19118−19128.
(39) Wu, Y. H.; Batista, V. S. Quantum Tunneling Dynamics in
Multidimensional Systems: A Matching-Pursuit Description. J. Chem.
Phys. 2004, 121, 1676−1680.
(40) Prezhdo, O. V.; Pereverzev, Y. V. Quantized Hamilton
Dynamics for a General Potential. J. Chem. Phys. 2002, 116, 4450−
4461.
(41) Ho, P.; Coker, D. F. Semi-Classical Path Integral Non-Adiabatic
Dynamics: A Partial Linearized Classical Mapping Hamiltonian
Approach. Mol. Phys. 2012, 110, 1035−1052.
(42) Thoss, M.; Miller, W. H. Generalized Forward-Backward Initial
Value Representation for the Calculation of Correlation Functions in
Complex Systems. J. Chem. Phys. 2001, 114, 9220−9235.
(43) Makri, N. Forward-Backward Semiclassical and Quantum
Trajectory Methods for Time Correlation Functions. Phys. Chem.
Chem. Phys. 2011, 13, 14442−14452.
(44) Wu, J.; Cao, J. Linear and Nonlinear Response Functions of the
Morse Oscillator: Classical Divergence and the Uncertainty Principle.
J. Chem. Phys. 2001, 115, 5381−5391.
(45) Cao, J.; Wu, J.; Yang, S. Calculations of Nonlinear Spectra of
Liquid Xe. I. Third-Order Raman Response. J. Chem. Phys. 2002, 116,
3739−3759.
(46) Cao, J.; Yang, S.; Wu, J. Calculations of Nonlinear Spectra of
Liquid Xe. II. Fifth-Order Raman Response. J. Chem. Phys. 2002, 116,
3760−3776.
(47) DeVane, R.; Space, B.; Jansen, T. L. C.; Keyes, T. Time
Correlation Function and Finite Field Approaches to the Calculation
of the Fifth Order Raman Response in Liquid Xenon. J. Chem. Phys.
2006, 125, 234501.
(48) Heller, E. J. Frozen Gaussians: A Very Simple Semiclassical
Approximation. J. Chem. Phys. 1981, 75, 2923−2931.
(49) Sun, X.; Miller, W. H. Forward-Backward Initial Value
Representation for Semiclassical Time Correlation Functions. J.
Chem. Phys. 1999, 110, 6635−6644.
(50) Gerace, M.; Loring, R. F. An Optimized Semiclassical
Approximation for Vibrational Response Functions. J. Chem. Phys.
2013, 138, 124104.
(51) Gerace, M.; Loring, R. F. Two-Dimensional Spectroscopy of
Coupled Vibrations with the Optimized Mean-Trajectory Approx-
imation. J. Phys. Chem. B 2013, 117, 15452−15461.
(52) Yee, T. K.; Gustafson, T. K. Diagrammatic Analysis of the
Density Operator for Nonlinear Optical Calculations: Pulsed and CW
Responses. Phys. Rev. A 1978, 18, 1597−1617.
(53) Mukamel, S. Principles of Nonlinear Optical Spectroscopy; Oxford
University Press: New York, 1995.
(54) Gruenbaum, S. M.; Loring, R. F. Interference and Quantization
in Semiclassical Response Functions. J. Chem. Phys. 2008, 128, 124106.
(55) Gruenbaum, S. M.; Loring, R. F. Semiclassical Mean-Trajectory
Approximation for Nonlinear Spectroscopic Response Functions. J.
Chem. Phys. 2008, 129, 124510.
(56) Gruenbaum, S. M.; Loring, R. F. Semiclassical Nonlinear
Response Functions for Coupled Anharmonic Vibrations. J. Chem.
Phys. 2009, 131, 204504.
(57) Gruenbaum, S. M.; Loring, R. F. Semiclassical Quantization in
Liouville Space for Vibrational Dynamics. J. Phys. Chem. B 2011, 115,
5148−5156.
(58) Goldstein, H. Classical Mechanics; Addison-Wesley: Reading,
MA, 1950.
(59) Kryvohuz, M.; Cao, J. Non-Divergent Classical Response
Functions from Uncertainty Principle: Quasi Periodic Systems. J.
Chem. Phys. 2005, 122, 024109.
(60) Kryvohuz, M.; Cao, J. Quantum-Classical Correspondence in
Response Theory. Phys. Rev. Lett. 2005, 95, 180405.

(61) Kryvohuz, M.; Cao, J. The Influence of Dissipation on the
Quantum-Classical Correspondence: Stability of Stochastic Trajecto-
ries. J. Chem. Phys. 2009, 130, 234107.
(62) Herman, M. F. Dynamics by Semiclassical Methods. Annu. Rev.
Phys. Chem. 1994, 45, 83−111.
(63) Herman, M. F.; Coker, D. F. Classical Mechanics and the
Spreading of Localized Wave Packets in Condensed Phase Molecular
Systems. J. Chem. Phys. 1999, 111, 1801−1808.
(64) Kay, K. G. Semiclassical Initial Value Treatments of Atoms and
Molecules. Annu. Rev. Phys. Chem. 2005, 56, 255−280.
(65) Deshpande, S. A.; Ezra, G. S. On the Derivation of the Herman-
Kluk Propagator. J. Phys. A 2006, 39, 5067−5078.
(66) Zwanzig, R. Nonlinear Generalized Langevin Equations. J. Stat.
Phys. 1973, 9, 215−220.
(67) Oxtoby, D. W. Vibrational Relaxation in Liquids. Annu. Rev.
Phys. Chem. 1981, 32, 77−101.
(68) Caldeira, A. O.; Leggett, A. J. Quantum Tunneling in a
Dissipative System. Ann. Phys. 1983, 149, 374−456.
(69) Ishizaki, A.; Tanimura, Y. Modeling Vibrational Dephasing and
Energy Relaxation of Intramolecular Anharmonic Modes for Multi-
dimensional Infrared Spectroscopies. J. Chem. Phys. 2006, 125, 084501.
(70) Hasegawa, T.; Tanimura, Y. Nonequilibrium Molecular
Dynamics Simulations with a Backward-Forward Trajectories Sam-
pling for Multidimensional Infrared Spectroscopy of Molecular
Vibrational Modes. J. Chem. Phys. 2008, 128, 064511.
(71) Oxtoby, D. W. Dephasing of Molecular Vibrations in Liquids.
Adv. Chem. Phys. 1979, 40, 1−48.
(72) Schweizer, K. S.; Chandler, D. Vibrational Dephasing and
Frequency Shifts of Polyatomic Molecules in Solution. J. Chem. Phys.
1982, 76, 2296−2314.
(73) Hamm, P.; Lim, M.; Hochstrasser, R. M. Non-Markovian
Dynamics of the Vibrations of Ions in Water from Femtosecond
Infrared Three-Pulse Photon Echoes. Phys. Rev. Lett. 1998, 81, 5326−
5329.
(74) Williams, R. B.; Loring, R. F. Vibrational Dephasing of an
Anharmonic Solute Strongly Coupled to Solvent. J. Chem. Phys. 1999,
110, 10899−10906.
(75) Tanimura, Y.; Wolynes, P. G. Quantum and Classical Fokker-
Planck Equations for a Gaussian-Markovian Noise Bath. Phys. Rev. A
1991, 43, 4131−4142.
(76) Ishizaki, A.; Tanimura, Y. Quantum Dynamics of System
Strongly Coupled to Low-Temperature Colored Noise Bath: Reduced
Hierarchy Equations Approach. J. Phys. Soc. Jpn. 2005, 74, 3131−3134.
(77) Schatz, G. C.; Mulloney, T. Classical Perturbation Theory of
Good Action Angle Variables. Application to Semiclassical Eigenvalues
and to Collisional Energy Transfer in Polyatomic Molecules. J. Phys.
Chem. 1979, 83, 989−999.
(78) Martens, C. C.; Ezra, G. S. Classical, Quantum Mechanical, and
Semiclassical Representations of Resonant Dynamics: A Unified
Treatment. J. Chem. Phys. 1987, 87, 284−302.
(79) Yan, Y. J.; Mukamel, S. Femtosecond Pump-Probe Spectroscopy
of Polyatomic Molecules in Condensed Phases. Phys. Rev. A 1990, 41,
6485−6504.
(80) Tanimura, Y.; Mukamel, S. Description of Nonlinear Optical
Response using Phase-Space Wave Packets. J. Phys. Chem. 1993, 97,
12596−12601.

The Journal of Physical Chemistry B Article

dx.doi.org/10.1021/jp5076884 | J. Phys. Chem. B 2015, 119, 8950−89598959


