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A B S T R A C T   

Purpose: To establish a model for assessing the overall survival (OS) of the hepatocellular carcinoma (HCC) 
patients after hepatectomy based on the clinical and radiomics features. 
Methods: This study recruited a total of 267 patients with HCC, which were randomly divided into the training (N 
= 188) and validation (N = 79) cohorts. In the training cohort, radiomic features were selected with the intra- 
reader and inter-reader correlation coefficient (ICC), Spearman’s correlation coefficient, and the least absolute 
shrinkage and selection operator (LASSO). The radiomics signatures were built by COX regression analysis and 
compared the predictive potential in the different phases (arterial, portal, and double-phase) and regions of 
interest (tumor, peritumor 3 mm, peritumor 5 mm). A clinical-radiomics model (CR model) was established by 
combining the radiomics signatures and clinical risk factors. The validation cohort was used to validate the 
proposed models. 
Results: A total of 267 patients 86 (45.74%) and 37 (46.84%) patients died in the training and validation cohorts, 
respectively. Among all the radiomics signatures, those based on the tumor and peritumor (5 mm) (AP-TP5- 
Signature) showed the best prognostic potential (training cohort 1–3 years AUC:0.774–0.837; validation cohort 
1–3 years AUC:0.754–0.810). The CR model showed better discrimination, calibration, and clinical applicability 
as compared to the clinical model and radiomics features. In addition, the CR model could perform risk- 
stratification and also allowed for significant discrimination between the Kaplan-Meier curves in most of the 
subgroups. 
Conclusions: The CR model could predict the OS of the HCC patients after hepatectomy.   

Introduction 

Hepatocellular carcinoma (HCC) is the most common pathological 
type of Primary hepatic carcinoma (PHC) [1], which accounts for 
approximately 75%− 85% of the PHC [2]. The Barcelona clinical liver 
cancer (BCLC) [3], the most widely used liver cancer staging system, 
classifies patients into five stages and recommends treatment for each 
stage by assessing their tumor burden, liver function and health status. 
Although the BCLC guidelines have recommended hepatectomy for the 
HCC patients with a single tumor [3], recent studies showed that hep-
atectomy could also prolong the survival of some HCC patients with 
intermediate or advanced stages [4–9]. Due to the heterogeneity of HCC 
patients [10], not all patients benefit from hepatectomy. The prognosis 
of patients might be closely related to the clinical factors, laboratory 

variables, and internal lesion features. Therefore, a model is needed, 
which can predict the prognosis of HCC patients after hepatectomy. 

Different studies have extensively used radiomics in a variety of 
medical disciplines and have obtained a huge number of positive out-
comes. This has been made possible by the rapid advancement of im-
aging and computing technologies. [11]. Radiomics is the process of 
obtaining the quantitative aspects of medical images using 
computer-based algorithms. These quantitative features are then uti-
lized in the construction of models for diagnosing, grading, staging, or 
predicting the effectiveness of treatments [12]. Numerous studies 
showed that the radiomics features correlated with the biological 
characteristics of tumors and provided predictive information, which 
was far beyond the clinical features [13]. Radiomics showed a high 
predictive capability for the staging, differential diagnosis, prognosis, 
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and treatment selection of HCC [14,15]. Therefore, it is possible to 
create models, which can assess the survival of HCC patients after 
hepatectomy using radiomics. 

The values of CT radiomics have been investigated for the prognosis 
of hepatectomy [16–18]. The radiomics characteristics of the tumor 
were extracted based on a single-phase (arterial phase or portal phase) 
or multiphase without considering the tumor microenvironment. In 
recent years, numerous studies confirmed that the inflammatory state of 
the tumor microenvironment might affect tumorigenesis and progres-
sion [1921] and the peritumor region could provide key information on 
tumor micro-metastasis and micro-invasion [22]. The risk factors for the 
patients included microvascular invasion, CD68+ cell density, and 
epithelial cell adhesion molecule (EpCAM) in the peritumoral tissues 
[23,24]. These biomarkers were derived from the postoperative tissue 
samples, which were not only invasive but also raised the possibility that 
the samples acquired might not be the representative of heterogeneity 
and burden of all the patients. In contrast, the peritumor radiomics 
features, which were obtained preoperatively and non-invasively, could 
predict the prognosis of HCC patients, thereby providing a novel method 
for the prediction of prognosis. Few studies have predicted the overall 
survival (OS) of patients after hepatectomy by integrating the tumor and 
peritumor radiomics characteristics based on multiphase CT. 

This study aimed to develop and validate a model for predicting the 
OS of patients by combining the clinical variables and radiomics features 
retrieved from the tumor and peritumor regions. 

Materials and methods 

Population 

This study was approved by the Ethical Review Committee of the 
Affiliated Hospital of North Sichuan Medical College (AHNSMC), which 
waived the informed consent of the participants. 

A total of 661 HCC patients were recruited from June 2016 to July 
2021, who underwent hepatectomy procedures at the AHNSMC. Based 
on the inclusion and exclusion criteria, a total of 267 patients were 
enrolled in this study, who were randomly divided (at a ratio of 7:3) into 
the training and validation cohorts. The inclusion criteria were as fol-
lows: (1) the patients underwent hepatectomy and were followed-up 
and (2) the patients were diagnosed with HCC based on the 

histopathological confirmation. The exclusion criteria were as follows: 
(1) the patients, who had already received other systemic or local 
antitumor therapies before hepatectomy; (2) the patients, who did not 
receive Computed Tomography (CT) or performed CT more than one 
month before hepatectomy; (3) patients with poor quality CT images 
would be excluded; and (4) the patients, who had incomplete laboratory 
examinations, demographic information, and follow-up data. 

Follow-up 

Following hepatectomy, the patients were followed up. And 3 
months (first year postoperative), 6 months (second year postoperative) 
and 6–12 months (third year onward) were used as follow-up intervals. 
As a part of the follow-up examinations, the liver function tests, ultra-
sounds, abdominal CT scans, and other necessary laboratory variables 
were evaluated in the patients. 

The OS rate was calculated at the primary endpoint of the study, 
which was defined as the time duration between hepatectomy and death 
of the final date of observation. 

CT scan 

The scanning parameters are listed in Supplementary Table 1. All the 
patients received the standard abdominal enhanced CT within one 
month before surgery. They were injected intravenously with 60 mL of 
contrast medium at a rate of 3.0–3.5 mL/s using a high-pressure syringe. 
After 30 and 60 s, the images of the arterial and portal phases were 
obtained, respectively. 

Radiomics signature 

Pyradiomics package (https://pyradiomics.readthedocs.io/en/ 
v3.0.1/) was used to normalize the voxel spacing by resampling the 
images to a voxel size (1 mm × 1 mm × 1 mm) using a linear interpo-
lation approach. By discretizing the values of voxel intensity with a fixed 
bin width (25HU), the image noise and equalize voxel intensity were 
controlled [25]. 

The preprocessed images were then imported into the 3D Slicer 
software, in which, reader 1 indicated the region of interest (ROI) in 
each transverse section along the tumor border. The peritumor ROIs 

Fig. 1. Definition of the radiological 
characteristics. The black arrows show 
the presence of cirrhosis (A); absence of 
cirrhosis (B); the presence of fusion le-
sions (C); absence of fusion lesions (D); 
absence of tumor capsule (E); tumor 
with unintegral capsule (F); tumor with 
integral capsule (G); the breakthrough 
of tumor capsule (H); the presence of 
intra-tumoral necrosis (I); absence of 
intra-tumoral necrosis (J); the presence 
of arterial peritumoral enhancement 
(K); and absence of arterial peritumoral 
enhancement (L).   
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were automatically reconstructed using the erosion and dilation tech-
nique, expanding 3 mm and 5 mm outward from the tumor perimeter. 

The intra-reader and inter-reader reproducibility were used to test 
the segmentation’s stability. A total of 20 patients were selected 
randomly, and the ROIs in these patients were independently defined by 
Reader 1 and Reader 2 to determine inter-reader reproducibility using 
the intraclass correlation coefficient (ICC). After 1 week, reader 1 again 
delineated the ROIs of these 20 patients to measure the intra-reader 
reproducibility. 

The radiomics features were extracted using the Pyradiomics pack-
age. The retrieved features and their detailed algorithms were available 
at https://pyradiomics.readthedocs.io/en/latest/features.html.. Before 
selection, the feature values were normalized using Z-score to remove 
dimension divergence amongst the radiomics features. In order to limit 
the risk of overfitting, the features were selected as follows: first, the 
features with intra-reader and inter-reader ICC <0.70 were removed; 
second, Spearman’s correlation coefficient (hereafter denoted as "R") 
between the features was measured, and those with |R| >0.6 were 
excluded; third, the least absolute shrinkage and selection operator 
(LASSO) regression analysis was used to obtain the reliable prognostic 
features. 

After extracting and selecting the radiomics elements of each phase 
and their combination, the radiomics signatures were produced and 
their predictive values were assessed. Then, the radiomics signatures of 
the peritumor regions (3 mm, 5 mm) were constructed and their prog-
nostic performance was assessed. 

Clinical variables and radiological characteristics 

A standardized form was created for collecting the clinical variables. 
The form included the following parameters; age, sex, diabetes, HBV 
infection, alanine aminotransferase (ALT), serum albumin (ALB), pro-
thrombin time (PT), international normalized ratio (INR), glutamyl 
transpeptidase (GGT), total bilirubin (TBIL), platelet count (PLT), serum 
creatinine (sCr), aspartate aminotransferase (AST), albumin-bilirubin 
(ALBI) grade, Child-Pugh, Eastern Cooperative Oncology Group Per-
formance Status (ECOG-PS), and BCLC stage. For detailed clinical fea-
tures see Supplementary Text 1. The patient’s Alpha-fetoprotein (AFP) 
data were excluded because some HCC patients were not tested for AFP 
values (67/267). 

The radiological characteristics were independently evaluated by 
two physicians. The evaluated characteristics included the following: (1) 
tumor diameter; (2) tumor location (right, left, or across); (3) tumor 
number; (4) cirrhosis (present or absent); (5) fusion lesions (present or 
absent); (6) tumor capsule (absent, unintegral, integral, or break-
through); (7) intra-tumoral necrosis (absent or present); and (8) arterial 
peritumoral enhancement (absent or present). Fig. 1 presents the defi-
nition of radiological characteristics. 

In order to analyze the clinical variables and radiological parame-
ters, a univariate Cox proportional hazards regression was performed. 
The candidate factors related to prognosis were included in the multi-
variable analysis. The Akaike information criterion employed a back-
ward stepwise selection strategy for the multivariable analysis. 

Fig. 2. Include and exclude flowchart. HCC, hepatocellular carcinoma; TACE, transcatheter arterial chemoembolization.  
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Construction and validation of models 

A clinical-radiomics model (CR model) was established by 
combining the radiomics signatures and clinical risk factors. In order to 
make it more intuitive, the model was presented as a nomogram. In 
terms of discrimination, calibration, and clinical applicability, the 
clinical model, radiomics signatures, and CR model were evaluated. The 
areas under the curves (AUC) of the receiver operating characteristic 
curves (ROC) from 1 to 3 years were used to assess the discrimination of 
the model at the different time points [26]. Using the calibration curve 
to assess the the calibration of the model, the clinical applicability of the 
model was evaluated by the decision curve [27]. Furthermore, 
Kaplan-Meier analysis was used to evaluate the OS of the patients and 
the log-rank test was tested. 

To further assess the value of the CR model, using the time- 
dependent receiver operating characteristic curve to measure the 
prognostic potential of the CR model versus other clinically validated 
staging systems, including AJCC TNM systems (eighth edition), Hong 
Kong Liver Cancer (HKLC stage), China Liver Cancer Staging (CNLC 
stage), and Japanese integrated score (JIS stage).The patients were 
analyzed according to BCLC stage (0, A, B, or C) in the prespecified 
subgroup analysis, tumor diameter (≤5 cm or >5 cm), cirrhosis (absent 
or present), HBV infection (absent or present), ALBI grade (1, 2, or 3), 
and Child-Pugh (A or B). 

Statistical analyses 

The categorical variables were expressed as percentages and 
analyzed using the Chi-square test or Fisher exact test. The continuous 
variables were expressed as mean ± standard deviation (SD) or median 
(range) and analyzed using the Student’s t-test or Wilcoxon rank sum 
test. P <0.05 was considered statistically significant in all the hypothesis 
tests. Open source R software is used to perform statistical analysis and 
build models. The R packages used in this study include: glmnet, rms, 
DynNom, plotly, stargazer, nricens, survIDINRI, dcurves, foreign, sur-
vival, dplyr, tidyr, timeROC, Hmisc, survminer, stringr, ggcorrplot, 
ggbump, pROC, survivalROC, ggrisk, and pec. 

Results 

Study population 

A total of 267 patients were included in this study and randomly 
divided into the training (N = 188) and validation (N = 79) cohorts 
(Fig. 2). The clinical and radiological characteristics of the patients are 
listed in Table 1. There were no statistical differences in the character-
istics of the patients between the training and validation cohorts (P 
>0.05). The median follow-up time of the training and validation co-
horts was 33.20 and 31.00 months, respectively. A total of 86 (45.74%) 
and 37 (46.84%) patients died in the training and validation cohorts, 
respectively. 

Radiomics signature 

A total of 1316 radiomics features were extracted from each ROI, 
followed by ICC, Spearman’s correlation, and LASSO regression analyses 
for the selection of features. Among the radiomics signatures in each 
phase and their combination, the double-phase signature (AP-Signature) 
showed the best prediction potential (training cohort 1–3 years AUC: 
0.729–0.803; validation cohort 1–3 years AUC: 0.750–0.818) (Table 2). 
The comparison of tumoral and peritumoral radiomics signatures sug-
gested that the signature with tumor and peritumor (5 mm) ROI (AP- 
TP5-Signature) showed the best performance (Table 2) (training cohort 

Table 1 
Clinical and radiological characteristics of the patients.  

Characteristics Training cohort (N 
= 188) 

Validation cohort 
(N = 79) 

P 

Age (years), median (range) 58 (49.0–67.0) 58 (48.5–63.5) 0.51 
Sex, No. (%)    
Male 162 (86.2) 66 (83.5) 0.58 
Female 26 (13.8) 13 (16.5)  
HBV infection, No. (%)    
Absent 40 (21.3) 20 (25.3) 0.47 
Present 148 (78.7) 59 (74.7)  
Diabetes mellitus, No. (%)    
Absent 174 (92.6) 72 (91.1) 0.70 
Present 14 (7.4) 7 (8.9)  
Cirrhosis, No. (%)    
Absent 142 (75.5) 60 (75.9) 0.94 
Present 46 (24.5) 19 (24.1)  
PLT (109/L), median 

(range) 
132 (95.8–193.0) 142 (104.5–192.0) 0.43 

GGT (U/L), median (range) 76 (37.3–156.0) 73 (43.5–173.1) 0.73 
ALB (g/L), mean ± SD 39.6 ± 5.6 39.3 ± 5.8 0.62 
TBIL (μmol/L), median 

(range) 
16 (12.6–23.2) 16 (12.5–23.8) 0.75 

sCr (μmol/L), median 
(range) 

67 (57.1–74.5) 67 (54.6–78.9) 0.66 

PT (sec), median (range) 13.7 (13.1–14.3) 13.8 (13.0–14.3) 0.92 
ALT (U/L), median (range) 39 (24.0–62.0) 31 (21.5–54.3) 0.06 
INR, median (range) 1.1 (1.0–1.1) 1.1 (1.0–1.1) 0.59 
AST (U/L), median (range) 46 (31.0–71.6) 46 (29.2–64.7) 0.37 
Tumor Diameter (mm), 

median (range) 
5.5 (3.8–8.43) 6.0 (3.9–7.8) 0.81 

Tumor location, No. (%)    
Left 62 (33.0) 32 (40.5) 0.50 
Right 113 (60.1) 42 (53.2)  
Across 13 (6.9) 5 (6.3)  
Tumor number, No. (%)    
1 101 (53.7) 47 (59.5) 0.83 
2 42 (22.4) 9 (11.4)  
≥3 45 (23.9) 23 (29.1)  
Fusion lesions, No. (%)    
Absent 102 (54.3) 48 (60.8) 0.33 
Present 86 (45.7) 31 (39.2)  
Tumor capsule, No. (%)    
Absent 45 (24.0) 25 (31.6) 0.97 
Integral 82 (43.6) 41 (51.9)  
Unintegral 35 (18.6) 10 (12.7)  
Breakthrough 26 (13.8) 3 (3.8)  
Intra-tumoral necrosis, No. 

(%)    
Absent 68 (36.2) 30 (38.0) 0.78 
Present 120 (63.8) 49 (62.0)  
Arterial peritumoral 

enhancement, No. (%)    
Absent 67 (35.6) 24 (30.4) 0.41 
Present 121 (64.4) 55 (69.6)  
ECOG-PS, No. (%)    
0 32 (17.0) 15 (19.0) 0.39 
1 150 (79.8) 60 (75.9)  
2 5 (2.7) 4 (5.1)  
3 1 (0.5) 0 (0.0)  
ALBI grade, No. (%)    
Grade 1 91 (48.4) 36 (45.6) 0.09 
Grade 2 93 (49.5) 41 (51.9)  
Grade 3 4 (2.1) 2 (2.5)  
Child-Pugh, No. (%)    
Class A 167 (88.8) 70 (88.6) 0.96 
Class B 21 (11.2) 9 (11.4)  
BCLC stage, No. (%)    
0 stage 5 (2.6) 1 (1.3) 0.18 
A stage 90 (47.9) 39 (49.4)  
B stage 53 (28.2) 20 (25.3)  
C stage 40 (21.3) 19 (24.0)  

Abbreviations: ALB, serum albumin; ALBI, albumin-bilirubin; ALT, alanine 
aminotransferase; AST, aspartate aminotransferase; BCLC, Barcelona Clinic 
Liver Cancer; ECOG-PS, Eastern Cooperative Oncology Group performance 
status; GGT, Glutamyl transpeptidase; HBV, hepatitis B virus; INR, international 

normalized ratio; PLT, platelet count; PT, prothrombin time; sCr, serum creati-
nine; SD, standard deviation; and TBIL, total bilirubin. 
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1–3 years AUC: 0.774–0.837; validation cohort 1–3 years AUC: 
0.754–0.810) (Table 2). And the AP-TP5 demonstrated a better perfor-
mance in terms of the concordance index (C-index) and the Brier score 
(BS) (Table 2). In addition, the AP-TP5-Signature included nine features, 
three of which were extracted from the tumor ROI and six from the 
peritumor (5 mm) ROI (Supplementary Table 2). 

Clinical variables and radiological characteristics 

The univariate analysis resulted in the identification of 10 factors 
(GGT, ALB, ALBI grade, BCLC stage, cirrhosis, tumor number, tumor 
location, fusion lesions, intra-tumoral necrosis, tumor diameter), which 
were significantly correlated with prognosis (P <0.05) (Supplementary 
Table 3). Multifactorial analysis confirmed that the BCLC stage (HR =
1.49; 95% CI: 1.04–2.12; P = 0.03) and cirrhosis (HR = 2.40; 95% CI: 
1.46–3.93; P <0.001) were the independent predictors of OS 

(Supplementary Table 3). Therefore, the clinical models were con-
structed based on the BCLC stage and cirrhosis using Cox’s proportional 
hazards regression analysis. 

Construction and validation of models 

Fig. 3 shows the time-dependent ROC (time-ROC) curves of the 
models. The CR model showed the best discrimination in both the 
training and validation cohorts (training cohort 1–3 years AUC: 
0.837–0.894; validation cohort 1–3 years AUC: 0.781–0.812) as 
compared to the AP-TP5-Signature and clinical models. Fig. 4 shows the 
calibration curves of the three models, demonstrating a good agreement 
between the predicted results of the CR model and actual observed re-
sults. Fig. 5 shows the decision curves of the CR model, AP-TP5- 
Signature, and clinical models. The CR model showed a larger net 
benefit across the range of reasonable threshold probabilities. The CR 

Table 2 
Performances of the different radiomics signatures in the training and validation cohorts.  

Radiomics signatures Training cohort(N = 188) Validation cohort(N = 79)  
1 year-AUC 2 year-AUC 3 year-AUC C-index BS 1 year-AUC 2 year-AUC 3 year-AUC C-index BS 

A-T 0.697 0.755 0.747 0.670 0.180 0.675 0.756 0.685 0.658 0.197 
P-T 0.691 0.748 0.742 0.669 0.182 0.749 0.811 0.724 0.725 0.191 
AP-T 0.729 0.803 0.773 0.692 0.169 0.754 0.818 0.750 0.714 0.198 
AP-P3 0.702 0.762 0.754 0.673 0.178 0.749 0.785 0.712 0.701 0.195 
AP-P5 0.702 0.759 0.753 0.671 0.182 0.628 0.734 0.663 0.626 0.191 
AP-TP3 0.746 0.790 0.782 0.699 0.167 0.780 0.774 0.730 0.716 0.206 
AP-TP5 0.774 0.846 0.837 0.722 0.151 0.754 0.810 0.772 0.720 0.183 

Abbreviations: C-index, the concordance index; BS, the Brier score; A, arterial phase image; P, portal phase image; AP, arterial and portal phase image; AUC, area 
under the receiver operating characteristic curve; T, tumor region; P3, the peritumor (3 mm) region; P5, the peritumor (5 mm) region; TP3, tumor, and peritumor (3 
mm) region; TP5, tumor, and peritumor (5 mm) region. 

Fig. 3. Time-ROC curves of the clinical model, AP-TP5-Signature, and CR model AUC, areas under the receiver operating characteristic curves; AP-TP5-Signature, the 
signature with tumor and peritumor (5 mm) ROI; CR, clinical radiomics. 
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model was visualized using an online calculator of nomogram (Fig. 6). 
The time-dependent receiver operating characteristic curve shows 

that the CR model improved the prediction of HCC survival time 
compared with other clinically validated staging systems at various time 
points in both training and validation cohorts (Fig. 7). 

The median risk score of the CR model in the training cohort was 
defined as the cutoff value. The patients were classified into high-risk 
and low-risk groups. In the training cohort, there was a significant 

difference in the OS of the patients in the high-risk and low-risk groups 
(P <0.001; HR = 0.15, 95% CI: 0.09–0.26) (Fig. 8A). This finding was 
confirmed in the validation cohort (P = 0.018; HR = 0.44, 95% CI: 
0.22–0.87) (Fig. 8B). Notably, with the increase in the risk score, the 
number of cancer-related deaths also increased and that of survivors 
decreased (Supplementary Figure 1). The characteristics of the CR 
model are presented in the heatmap (Supplementary Figure 1). 

The subgroup analysis showed that the CR model could stratify the 

Fig. 4. Calibration curves of the Clinical model, AP-TP5-Signature, and CR model. OS, overall survival; AP-TP5-Signature, the signature with tumor and peritumor 
(5 mm) ROI; CR, clinical radiomics. 

Fig. 5. Decision curves of the Clinical model, AP-TP5-Signature, and CR model. AP-TP5-Signature, the signature with tumor and peritumor (5 mm) ROI; CR, 
clinical radiomics. 
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patients in subgroups except ALBI Grade 3, BCLC Stage 0, and BCLC 
Stage C (Supplementary Figure 2). The subgroup analysis is presented as 
a forest plot in Supplementary Figure 3. 

Discussion 

This study established and validated a CR model, which combined 

the clinical variables (BCLC stage and cirrhosis) and radiomics signa-
tures. As compared to the clinical model, the CR model showed better 
discrimination, calibration, and clinical applicability. In addition, based 
on the CR model, the patients could be divided into the high-risk and 
low-risk groups, having significant differences in their OS. 

The analysis of multiphase images is necessary for predicting the 
prognosis of HCC patients [28]. The multiphase images contain enough 

Fig. 6. An online calculator of nomogram based on the CR model, predicting the OS of the patients. The Online tool is available at https://radiomics.shinyapps.io/ 
DynNomapp/. CR, clinical radiomics; OS, overall survival. 

Fig. 7. Discriminatory performance of CR model and systems in training and validation cohorts. Graphs show time-dependent areas under the receiver operating 
characteristic (ROC) curve at various time points. AJCC, American Joint Committee on Cancer; HKLC, Hong Kong Liver Cancer; CNLC, China Liver Cancer Staging; 
JIS, Japanese integrated score. 
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prognostic information to comprehensively reflect the tumor heteroge-
neity [28,29]. The radiomics features extracted from both the arterial 
and portal phase images were strongly correlated with the prognosis of 
the patients with HCC [28,30]. However, previous studies using CT 
radiomics for predicting the survival of HCC were mainly based on the 
single-phase images (arterial or portal phase) [16,18]. Therefore, the 
current study compared the performance of each phase individually as 
well as in combination. The results confirmed that the double-phase 
images showed a higher prognostic potential (training cohort 
AUC:0.729–0.803; validation cohort AUC:0.750–0.818) than their 
prognostic potential. These results were consistent with the previous 
prognostic studies [28,31]. 

There may be potential characteristics in the peritumoral tissue that 
are important for the prognosis of HCC patients. [15,29]. Recent studies 
showed that the peritumoral monocytes were associated with tumor 
invasiveness [32] and peritumoral macrophages could promote venous 
metastasis [20,21]. The peritumoral stroma enriched in inflammatory 
cells might provide critical information about micro-metastasis and 
micro-invasion [19]. On the other hand, several studies confirmed that 
the radiomics features derived from the peritumoral non-cancerous liver 
tissues could predict the efficacy and prognosis of transcatheter arterial 
chemoembolization (TACE) [15,29]. However, most of the previous 
studies, which predicted the OS of the patients after hepatectomy based 
on the enhanced CT, did not analyze the peritumoral area [1618]. In this 
study, the double-phase images of the tumor and peritumor areas were 
used for the radiomics analysis. The results suggested that the 
AP-TP5-Signature based on the tumor and peritumor (5 mm) regions, 
showed better prediction potential (training cohort AUC:0.774–0.846; 
validation cohort AUC:0.754–0.772). Therefore, the AP-TP5-Signature 
was selected for further analysis. In addition, the signatures based on 
tumoral with 5 mm peritumoral area exhibited superior prediction 
performance. The reason is that the tumoral with 5 mm peritumoral 
areas may be more appropriate for capturing satellite nodules and 
microvascular based on the distribution nature of the satellite lesions. 

The AP-TP5-Signature consisted of 9 radiomics features, including 
three shape features, two features of the first order, two features of gray- 

level co-occurrence matrix (GLCM), and two features of gray-level size 
zone matrix (GLSZM). The three shape features, including major axis 
length, maximum 3D diameter, and maximum 2D diameter row, 
described the tumor size. Studies showed that the tumor size correlated 
with the tumor malignancy and was an important factor, affecting the 
prognosis [33]. Among uniformity and the 10th percentile of the 
first-order features, uniformity was used to measure the consistency of 
gray-level intensity. A greater uniformity meant lower confounding 
within the tumor and a better prognosis of the patients. A larger value of 
the 10th percentile of gray level intensity meant a stronger CT 
enhancement in the peritumor region, thereby showing worse prognosis 
potential. This might be due to the occlusion of the portal or hepatic 
venules due to tumor thrombus, resulting in reduced portal blood flow 
and compensatory arterial hyper-perfusion [34], which were manifested 
based on imaging as the peritumoral enhancement and elevated 10th 
percentile values. The presence of peritumoral enhancement indicated a 
more aggressive tumor [35,36]. The two features of GLCM included 
maximum probability (MP) and joint entropy (JE); MP was the 
maximum probability of the occurrences (neighboring intensive in the 
predominant pair). A smaller MP value indicated a more complex 
texture of the peritumoral region. JE was the confusion level of the 
neighborhood intensity values. A larger JE value indicated a larger 
non-uniformity in the peritumor region. The GLSZM features included 
gray-level nonuniformity (GLN) and large area high gray-level emphasis 
(LAHGLE). GLN was defined as the randomness of the gray-level in-
tensity values. The lower GLN value indicated more homogeneity in the 
intensity values. LAHGLE was the weight of the large size zones with the 
high gray-level values. The MP, JE, GLN, and LAHGLE values reflected 
the different aspects of tumoral and peritumoral heterogeneity. The 
tumors with greater heterogeneity had a poorer prognosis. Previous 
studies demonstrated that tumor heterogeneity was an important 
prognostic factor [37,38] These features can be used to characterize and 
quantify the tumor genomic heterogeneity by reflecting the tumor ne-
crosis, hemorrhage, and hypoxia and using the information of the spatial 
distribution of gray-level values. Previous studies supported the infer-
ence of proteogenomic and phenotypic information from the analysis of 

Fig. 8. Kaplan-Meier curves of the OS in the CR model. CR, clinical radiomics; OS, overall survival.  
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CT images [39,40]. 
In terms of discrimination, calibration, and clinical applicability, the 

CR model showed excellent ability. Therefore, it was suggested that a 
multivariate model, combining the clinical and radiomics features, was 
feasible for the prognosis of HCC patients. Furthermore, the CR model 
could classify the patients into high-risk and low-risk groups, thereby 
confirming its prognostic potential. Considering the confounding factors 
of the study population, a prespecified subgroup analysis was performed 
to explore the prognostic potential of the CR model in the different 
subgroups. In most subgroups, the CR model could risk-stratify the 
subgroups. However, the CR model failed to complete the risk stratifi-
cation in the ALBI Class 3, BCLC Stage 0, and BCLC Stage C subgroups, 
which might be due to the small sample size of these subgroups. Simi-
larly, the risk stratification had also failed in other studies due to the 
small sample size [41,42]. 

There were limitations to this study. First, the patients in this study 
were recruited from a single cohort. In order to verify the generaliz-
ability of the model, these results should be validated in other cohorts. 
Second, this study used the manual outlining of the ROIs, which was 
time-consuming and laborious. The subsequent consideration of semi- 
automated or automated outlining of the ROIs is needed to simplify 
the work task. Third, this was a retrospective study. Although bias had 
been minimized, certain clinical factors remained uncontrolled, such as 
the different treatments given to the patients after hepatectomy. This 
factor might also affect the OS of the patients. Fourth, the model 
established in this study was based on Chinese patients only. There are 
differences in the etiology of Chinese and western patients. In addition, 
for patients with intermediate and advanced liver cancer, Western 
physicians and guidelines prefer palliative treatment to control tumor 
growth, while Asian physicians and guidelines prefer radical treatment. 
Therefore, the validity of the model would be subsequently verified in 
Western populations. Fifth, the usefulness of the model was still insuf-
ficient. Our model cannot automatically outline the ROI and calculate 
the radiomics-signature. So, applying the model to the clinic is still 
difficult. 

In conclusion, a model was established for predicting the OS of 
hepatectomy in the HCC patients, which could assist the clinicians in 
building a personalized treatment plan for the patients. However, 
further studies are needed to verify the generalizability of the model and 
translate these results into clinical practice. 
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