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High extinction ratio 
electromagnetically induced 
transparency analogue based on 
the radiation suppression of dark 
modes
JingYa Xie1,2, Xi Zhu1, XiaoFei Zang1,2, QingQing Cheng1,2, YangYang Ye1 & YiMing Zhu1,2

A high extinction ratio (ER) electromagnetically induced transparency (EIT) analogue based on single-
layer metamaterial is designed and experimentally demonstrated in this paper. This design involves 
four mirror-like symmetrically coupled split ring resonators (SRRs) that exhibit a bright-dark-dark-
bright mode configuration. The EIT-like effect is realized by coupling between the bright resonators 
and dark resonators. The high ER feature is achieved from the suppression of radiative losses, due 
to opposite directions of electric and magnetic dipoles of two dark modes in the unit cell. Classical 
coupled resonator model is used to theoretically analyze the device transmission performances and 
to characterize parameter influence of the ER. Both numerical simulation and experiment results 
demonstrate that the ER of this device can reach more than 21 dB, which is 11 dB higher than that of 
conventional bright-dark coupling SRR arrangement. Finally, the potential multi-channel sensing utility 
of this device is demonstrated to show the importance of high ER feature.

Electromagnetically induced transparency (EIT) is originally observed in atomic physics and arises due to quan-
tum interference effect, resulting in a narrow transmission window inside an absorption band1. This concept was 
later extended to classical oscillator systems, such as mechanical spring-mass configurations2, RLC electric cir-
cuits3, coupled optical micro-resonators4, 5, and waveguides side coupled to a resonator6, 7. In the field of metama-
terials, the transparent and highly dispersive nature of EIT-like effect offers a potential solution towards low-loss 
and high-quality-factor resonances, which are critical for realizing low-loss slow-light devices8, sensors9, filters10, 
photoluminescence11 and enhancing nonlinear interactions12. The classical analogue of EIT in metamaterials 
relies on the coupling between a broadband ‘bright’-mode resonator, which is accessible from free space, and a 
narrowband ‘dark’ mode resonator, which is less-accessible from free space13. Due to low radiative loss of the dark 
mode, the EIT-like resonance can be very sharp, resulting in complete transmission14 or reflection15.

The EIT-like effect has been realized in a variety of metamaterial configurations, such as nanoring dimer, 
metal strips and coupled split ring resonators16–21. Active control and tuning the transparency window as well 
as its slow slight properties have also been explored in the past few years5, 22, 23. An appealing scheme was to 
use two polarization dependent split-ring resonators (SRRs) work as bright and dark modes respectively24, 25. 
However, the extinction ratio (ER) of conventional bright-dark SRR resonance is quite low due to its high radi-
ative losses25, 26. Since high ER resonance is of particular importance for the ultrasensitive resonance sensing or 
frequency-selective ability in filter applications27, it is necessary to further suppress the radiation loss of bright or 
dark mode and increase ER in designing such devices.

In this work, we propose and demonstrate a mirror-like symmetrical unit cell of metamaterial to generate an 
EIT analogue with high extinction ratio. The unit cell consists of four SRRs to form the bright-dark-dark-bright 

1Terahertz Technology Innovation Research Institute, Shanghai Key Lab of Modern Optical System, and Engineering 
Research Center of Optical Instrument and System, Ministry of Education, University of Shanghai for Science and 
Technology, No. 516 JunGong Road, Shanghai, 200093, China. 2Terahertz Science Cooperative Innovation Center, 
Chengdu, 610054, China. Correspondence and requests for materials should be addressed to Y.Z. (email: ymzhu@
usst.edu.cn)

Received: 27 June 2017

Accepted: 31 August 2017

Published: xx xx xxxx

OPEN

mailto:ymzhu@usst.edu.cn
mailto:ymzhu@usst.edu.cn


www.nature.com/scientificreports/

2SCIEnTIfIC REPOrTS | 7: 11291  | DOI:10.1038/s41598-017-11920-8

modes configuration. Two bright resonators can be strongly excited by the incident wave, while two dark resona-
tors can only be excited through near field coupling with bright SRRs. Compared to the conventional bright-dark 
coupling of two SRRs, the symmetrical arrangement of two dark modes induces highly suppression of their own 
electric and magnetic dipole radiation losses, and hence extraordinarily high ER transmission. A theoretical 
analysis using the coupled-resonator model shows the transmission characteristics, and numerical simulation is 
adapted to analyze interaction between the four elements in the metamaterial unit cell. The transmission perfor-
mance is measured for fabricated devices and 11 dB improvement of ER is obtained, which verifies our design. 
Finally, we demonstrate the sensing ability of our structure and compare the results with conventional bright-dark 
structure, to further show the potential utility of this multi-channel sensor and the importance of high ER feature.

Results and Discussions
Figure 1(a) shows the schematic illustration of our proposed symmetrically coupled bright-dark-dark-bright 
metamaterial unit cell that consists of four SRRs, such unit cell appears periodically to form a metamaterial 
structure of Fig. 1(b). In each unit cell, the two SRRs with the split gap aligned parallel to the electric field of inci-
dent wave are termed as bright resonators (R1 and R4), since their fundamental LC resonances can be excited. 
On the contrary, the other two orthogonally twisted resonators (R2 and R3) are called dark resonators, as their 
fundamental LC resonance is less accessible with the same polarization. Therefore, the unit cell is composed of 
the bright-dark-dark-bright mode resonators, which are coupled through their electromagnetic near-fields. The 
interference between bright and dark modes form a typical EIT-like system, and the near-field coupling between 
dark modes results in the changing of resonance shape. More importantly, the symmetrical structure generates 
electric and magnetic dipoles in opposite directions to make further suppression of dark mode radiative losses. 
The geometric parameters of optimized unit cell are illustrated as follows: all the SRRs are square and the length 
of their sides are h = 216 µm, the width of metallic arm w = 18 µm, the size of all the gaps is g = 9 µm, the distance 
between R2 and R3 is d1 = 20 µm. The distance between bright and dark resonators are all set to d2 = 16 µm. To 
form a metamaterial structure, the periods in the x direction is Px = 1250 µm, and the periods in the y direction is 
Py = 400 µm. The traditional bright-dark mode EIT-like metamaterial is also designed and fabricated to compare 
with our device, which consists of two SRRs with the same above dimensions. It is necessary to note that the ER 
of bright-dark SRRs varies little with the changing of the geometric size, as shown in numerical simulation results 
in supplementary section 1. Its periods in x and y direction are 625 µm and 400 µm, respectively. The total sample 
array has a footprint of 15 mm × 15 mm = 225 mm2.

To explore the physical origin of symmetrically near-field coupled bright-dark-dark-bright metamaterial, the 
widely used coupled resonator model is adapted to analyze the interaction between the four SRR elements in the 
unit cell28, 29. The SRRs R1 and R4 of bright modes are represented by resonators 1 and 4, which can strongly cou-
ple with the incident light E(t). In our model, E t E t E e( ) ( ) i t

1 4 0= = ω  due to the fact that different part of the pla-
nar metamaterial under normal incidence will suffer the same applied electromagnetic field. The SRRs R2 and R3 
of dark modes are represented by resonators 2 and 3, which can be excited only through near-field coupling with 
resonators 1 and 4. Next-nearest-neighbor coupling is neglectful, thus not included in our model. In order to gain 
the EIT-like spectral profile, the resonance frequency of all resonators are equal and denoted as ω0. The mode 
energy amplitudes of these four resonators a1, a2, a3 and a4 satisfy the coupled differential equations as bellow:
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Figure 1.  The schematic illustration of the mirror-like symmetrical metamaterial unit cell. (b) Image of the 
fabricated sample.
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where γ1, γ2, 3γ  and γ4 are the damping rates of resonators. k12, k23, and k34 are the near field coupling coefficients 
between neighbouring resonators. g represents a parameter indicating the coupling extent between the radiative 
mode and the incident electromagnetic wave. Based on the mirror-like symmetrical structure, we have γ γ=1 4, 

2 3γ γ= , =k k12 34, a t a t( ) ( )1 4= . If resonators 2 and 3 work as symmetric case, a t a t( ) ( )2 3=  and k23 is positive. 
Otherwise, a t a t( ) ( )2 3= −  and k23 is negative. Since the dark mode resonators do not couple with the incident 
light, we only give solutions for a t( )1  and a t( )4 . Suppose they have the following time-harmonic form:

= = ω−a t a t Ne( ) ( ) (2)i t
1 4

where N is a constant. From Eq. (1), the mode energy amplitude of resonators 1 and 4 can be calculated as:
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It is worth mentioning that the form of amplitude a is different from the results obtained in one bright-dark 
mode coupling system12, because in our model the dark oscillator can also induce the near-field coupling which 
affects the final transmission. The foregoing energy flow P(ω) as a function of frequency is obtained by: 
P a a( ) 1 ( ( ) ( ) )1

2
4

2ω ω ω= − + 26, which is shown in Fig. 2. By analyzing this transmission spectrum, we see 
that the main parameters affecting the extinction ratio (the ratio of maximum to minimum power, defined as 10 
log10 (Phigh/Plow)) are the damping rates γ1 and 2γ , which is shown in Fig. 2 as three curves: the black-solid curve 
shows the reference transmission spectrum with = .gE 0 010 , γ = .0 0121 , γ = .0 0032 , = .k 0 0112 , = .k 0 000123 , 
the blue-doted curve shows the result with γ1 increased to 0.015, and when 2γ  is increased to 0.005, the transmis-
sion spectrum is shown by red-dash curve. The results show that ER is increased with lower damping rates 1γ  and 
γ2.

The damping rates γ  (indicating the losses for resonators) are affected by two factors: radiation losses and 
dissipation losses. Radiation losses are resulted from electromagnetic energies scattered by metamaterial elements 
away from the incident wave, while dissipation losses arise from intrinsic ohmic losses of materials. It has been 
clearly shown that radiation losses dominate and far exceed dissipation losses, even in the optical regime, where 
the ohmic losses are high30. The bright-mode resonances are strongly coupled to free space, leading to very high 
radiation losses and low Q factors. Potentially the most appealing approach to suppress their radiation losses is to 
introduce dark-mode coupled SRRs, which results in the EIT-like transmission31, 32. Hence, our device leverages 
the radiation loss suppression of bright-dark coupled SRRs, and further suppress the less-radiation losses of the 
two dark modes using the symmetrical arrangement.

To further verify our design, we compare the numerical calculation transmission response of 
bright-dark-dark-bright mode with the bright-dark mode. Figure 3(a) and (b) show the simulated transmission 
of the two designs with normally y-polarized irradiation. When the resonant frequency of this sub-radiative 
mode coincides with that of the radiative mode, a sharp and narrow transparency peak (denoted by “I”) appears 
in the original transmission-forbidden band, resembling the spectral line shape of a typical EIT-like effect in 
atomic systems. It is seen clearly that by introducing the symmetrical arrangement of the unit cell and forming a 
bright-dark-dark-bright mode, a higher ER is achieved.

To reveal the underlying mechanism of increasing ER and near field coupling of SRRs, we calculated the 
induced surface current density at the frequency of transparent peaks and dips, as shown in Fig. 4. The direction 
and size of the red arrows indicate the direction and relative value of the surface current density. One SRR can be 
viewed as an equivalent inductance-capacitance (LC) circuit, in which the metal ring is regarded as a magnetic 
loop, and the slit of the ring is a capacitor. In the bright-dark coupled system, the LC resonance mode originates 
from the resonant electric currents oscillating around the bright resonator, which is induced by the incident wave. 
Then, the LC mode in the dark SRR is excited by the bright SRR through near-field inductive coupling. With such 
circular currents in both SRRs, they would couple to each other through their self-consistent electromagnetic 
field, leading to resonance mode hybridization, which is reflected in clear splitting of the fundamental resonances. 

Figure 2.  The transmission power versus the detuning frequency at different damping rates.
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The induced surface current densities of two splitting modes oscillate out of phase at the lower asymmetric reso-
nance frequency and in phase at the symmetric higher resonance frequency24, 33.

According to classical electrodynamics theory, the equivalent radiation structure of one SRR can be viewed as 
an electric dipole in the split gap and a magnetic dipole in the loop34, with the former much stronger than the lat-
ter35. In the bright-dark-dark-bright structure shown as Fig. 4(d–f), the currents in the neighbouring dark mode 
SRRs are in opposite directions (one is clockwise and the other is counter clockwise). As a result, the two dark 
mode SRRs form opposite electric dipoles (in x and –x direction respectively) and magnetic dipoles (in z and –z 
direction respectively) shown in supplementary section 2, which lead to lower radiation loss, lower damping rates 
and thus higher ER transmission. On the other hand, the opposite currents in the two bright mode SRRs form an 
electronic dipole with the same direction (both in -y direction).

The electric field distributions at the respective transparent peaks and dips are also shown in Fig. 4. The color 
map shows the relative local electric field amplitude. The incident plane wave drives circulating surface currents 
in the inductive loops, resulting in charge accumulation at the capacitive split gaps, thus enhancing the electric 
field in the vicinity of gaps. In the transparent peaks, strong electric field is induced in the dark resonator split 
gaps (Fig. 4(b) and (e)), and a weak surface current is developed across the bright resonators. The suppression 
of bright mode electric field in Fig. 4(e) is more significant than that in Fig. 4(b), corresponding to a higher 
transparency peak (denoted by “I”) in Fig. 3(b). The enhancement of electric field and excitation of LC mode of 

Figure 3.  Simulated transmission spectra of (a) bright-dark SRRs and (b) bright-dark-dark-bright SRRs with 
the same dimensions.

Figure 4.  Surface current and electric field distributions of (a–c) bright-dark SRRs and (d–f) bright-dark-dark-
bright SRRs. All simulations are for three resonant response: the lower asymmetric resonance, the transparency 
peak, and the symmetric higher resonance. The red arrows indicate the induced surface current density, and the 
color represents the electric field norm.
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transmission dips in bright-dark-dark-bright mode is much larger than bright-dark mode, leading to a higher 
energy absorption in the resonances, which shows good consistency with high ER characteristics.

In the experiment, we characterize the electromagnetic responses of both bright-dark mode and our 
bright-dark-dark-bright mode coupling. The transmission spectrum of the bright-dark mode is shown in 
Fig. 5(a) by the black-dash line. The fundamental LC resonance has the mode splitting and the split resonances 
appear at 129 GHz and 148.2 GHz. The ERs of transmission dips are measured to be around 9 dB and 10 dB, which 
shows the basic bright-dark mode coupling characteristic of the resonance. On the other hand, the transmission 
spectrum of symmetrically coupled bright-dark-dark-bright metamaterial is measured and shown in Fig. 5(b) by 
the black-dash curve, in which the split resonance is observed at 120.7 GHz and 146.4 GHz. More importantly, 
the symmetrical structure with the involvement of dark modes damping rate suppression shows significantly 
enhancement of transmission ER, which are measured to be 15 dB and 21 dB. Furthermore, we fit the experi-
mental transmission spectra in Fig. 5 according to equation (3) and present the results by red-solid curves in 
the same figure for comparison and verification. It can be seen that the experimental curves are reproduced well 
by the fitted results. The fitting values of Fig. 5(a) are γ1 = 53.25 GHz, γ2 = 32.5 GHz, κ12 = 55.89 GHz, respec-
tively. γ1 is larger than γ2, corresponding to the high radiation loss of bright modes. The fitting values of Fig. 5(b) 
are γ1 = 71 GHz, γ2 = 0.6 GHz, κ12 = 74.52 GHz, and κ23 = 55 GHz, respectively. Comparing the two designs, the 
change of γ1 is relatively small, while γ2 (representing the damping rate between the dark mode SRRs) is signifi-
cantly reduced.

Comparing the measured results in Fig. 5 with the simulated results in Fig. 3, there are two nonnegligible dif-
ference: the mode splitting effect and the position of the transparency peak I. This is most likely due to the fabrica-
tion deviation of sizes and distances of the SRRs. In order to explore the effects of the geometrical parameters on 
the transmission performance, numerous simulations are performed on various parameters setups with different 
d1 and d2, as shown in Fig. 6. In Fig. 6(a), d2 of bright-dark mode scenario is increased from 6 μm to 24 μm, and all 
the other geometrical parameters are set to be identical to the experimental sample design. The results show the 
spectral position of the transparency peak in the EIT like effect remains steady, while the mode splitting increases 
with the distance d2 gradually reducing, corresponding to the resonance positions move away from each other. 
Similarly, the result of bright-dark-dark-bright metamaterial is shown in Fig. 6(b), where d2 is increased from 
10 μm to 30 μm. It is shown that d2 plays a similar role in mode splitting. On the other hand, while d1 casts little 
effect on mode splitting, it shows great influence on ER symmetry of two resonances, which is shown in Fig. 6(c) 
where d1 increased from 3 to 30 μm. Such results help explain the resonant frequencies differences between the 
numerical simulation and experimental results, which can be compensated in design.

One of the potential application of our designed device is to be employed as a thin-film multi-channel sen-
sor, for its resonant frequency is highly dependent on the dielectric constant of the surrounding environment. 
We then compare the sensing ability of the devices by measuring the spectra for both bright-dark SRRs and 
bright-dark-dark-bright SRRs. Experimental results are shown in Fig. 7(a) and (b), both metamaterial samples 
are coated by ~50 μm thick 4-aminobenzoic acid with a relative permittivity ~2.0736. As shown by the black-dash 
curve in Fig. 7(a), the presence of the overlayer causes two dip resonances to shift to lower frequencies of 
~120 GHz and ~139 GHz, respectively. The red-shift of resonances is due to the increase in effective capacitance 
of the split gap. A clear shift of two dip resonances of bright-dark-dark-bright structure is observed at 118.5 GHz 
and 138.3 GHz respectively, as shown in Fig. 7(b). The sensing performance of metamaterial can be evaluated by 
a practical concept of figure of merit (FOM) as below37,

FOM m m RIU
FWHM m

( / )
( ) (4)

µ
µ

=

In case of Fig. 7, the FOM 2 26≈ . , which is close to the value of the nanotubes (FOM = 2.4) and SRRs with an 
asymmetrically coupled resonance (FOM = 2.86)37, 38. It is worth mentioning that the FOM of our proposed 
EIT-like metamaterial can be further maximized by increasing the separation distance d1 because the quality 
factor of the transparency window (corresponding to less mode splitting) grows with d1, as already demonstrated 

Figure 5.  Measured transmission spectra of (a) bright-dark SRRs and (b) bright-dark-dark-bright SRRs.
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in Fig. 6. Benefiting from the higher extinction ratio feature, the spectrum shift of our designed structure is 
clearer to observe and less affected by the power fluctuation. Therefore, such bright-dark-dark-bright structure 
metamaterial with a higher ER is more suitable to be designed and used as a thin-film sensing device.

In summary, we proposed and demonstrated a symmetrically coupled bright-dark-dark-bright metamaterial 
to generate an EIT analogue with high extinction ratio. A planar structure composed of four SRRs in each unit 
cell is used to verify the transmission characteristic. The device is analyzed theoretically with coupled-resonator 
model, and then supported by numerical simulation that shows the interaction between the four SRR elements. 
By suppressing the radiation losses of dark modes, the extinction ratio could reach more than 21 dB, which is 
much higher than conventional bright-dark mode coupling due to the cancelling of electric and magnetic dipoles. 
Finally, a sensing application is demonstrated and the results show that the spectrum shift of higher extinction 
ratio EIT-like device we proposed is less affected by the power fluctuation, which indicates good potential in sens-
ing technique for practical applications in environmental, chemical, and biological diagnostics.

Methods
Numerical simulation.  The transmission spectra, induced surface current density and electric-field distri-
butions are simulated by solving Maxwell’s equations based on the finite element method (FEM). Periodic bound-
ary conditions were used in the x and y directions for simulating an infinite array and port boundary conditions 
are applied on the top and bottom. The permittivity of the PI substrate was ɛpi = 3.2 + 0.01i and the electrical 
conductivity of gold is . × S m4 561 10 /7 .

Fabrication and Testing system.  The metamaterial sample was fabricated using a surface micromachining 
process on a polyimide (PI) substrate with thickness of 25 µm. A 100 nm-thick gold (Au) with 10 nm of titanium 
(Ti) film was E-beam evaporated to create the metal film on the substrate. Lift-off of the photoresist was achieved 
by rinsing in acetone for several minutes and the metal SRRs were formed on the surface of the polyimide. The 
transmission characterizes of the sample was measured by using an Agilent N5227A PNA network analyzer and 
a set of WR-6.5 110–170 GHz VNA extenders. The frequency measurement precision is set to 2 MHz. The polari-
zation of the incident electric field is aligned parallel to the gap-bearing arm of bright SRRs.

Figure 6.  (Color online) Simulated transmission of (a) bright-dark SRRs with d2 changes from 6 to 24 μm, 
bright-dark-dark-bright SRRs with (b) d2 changes from 10 to 30 μm and (c) d1 changes from 3 to 30 μm.

Figure 7.  Measured resonance shift of (a) bright-dark SRRs and (b) bright-dark-dark-bright SRRs. Curve A 
and B are transmission spectra of samples without overlayer and with overlayer.
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