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Characterizing associations among multiple single-nucleotide polymorphisms (SNPs) within and across
genes, and measures of disease progression or disease status will potentially offer new insight into
disease etiology and disease progression. However, this presents a significant analytic challenge due to
the existence of multiple potentially informative genetic loci, as well as environmental and demographic
factors, and the generally uncharacterized and complex relationships among them. Latent variable
modeling approaches offer a natural framework for analysis of data arising from these population-
based genetic association investigations of complex diseases as they are well-suited to uncover si-
multaneous effects of multiple markers. In this manuscript we describe application and performance of
two such latent variable methods, namely structural equation models (SEMs) and mixed effects models
(MEMs), and highlight their theoretical overlap. The relative advantages of each paradigm are in-
vestigated through simulation studies and, finally, an application to data arising from a study of anti-
retroviral-associated dyslipidemia in HIV-infected individuals is provided for illustration.
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1 Introduction

The increased availability of data on single-nucleotide polymorphisms (SNPs) has led to heighten
interest in understanding how this genetic information correlates with measures of disease pro-
gression. One analytic challenge plaguing these genotype-trait association studies is the potential for
multiple SNPs to be implicated in complex diseases. In this manuscript, we describe applications
and performance of two latent variable paradigms, namely structural equation models (SEMs) and
mixed effects models (MEMs), for addressing this challenge.

SEMs constitute a broad range of multivariate regression models that allow complex
dependencies among multiple predictors and outcome variables and are widely used in economics,
sociology and psychology (Pugesek et al., 2003; Rabe-Hesketh et al., 2004; Skrondal and
Rabe-Hesketh, 2004). Several recent manuscripts extend the conventional measurement component
of an SEM, conditional on latent variables, to the generalized linear model setting, rendering these
models naturally conducive to continuous as well as categorical outcomes (Muthén, 1984; Muthén
and Muthén, 2007; Skrondal and Rabe-Hesketh, 2005, 2004; Lee and Shi, 2001; Reboussin and
Liang, 1998). Recent applications of SEMs to genetic data include those that aim to reconstruct the
linkage disequilibrium structure among genes (Lee et al., 2007) as well as one study to characterize
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associations between multiple SNPs, smoking, gender and rheumatoid arthritis (Nock et al., 2007).
MEMs, widely used to address correlations in repeated-measures and multi-level data (Laird and
Ware, 1982), are an alternative latent variable modeling strategy that has been described for
characterizing association between multiple SNPs, within and across genes, and a measured trait
(Foulkes et al., 2005; Goeman et al., 2004; Foulkes and De Gruttola, 2002).

A growing body of literature exists on the methods for analyzing data arising from candidate gene
association studies, including approaches targeted specifically at characterizing combinations of
SNPs and their association with a measure of disease status or disease progression. Among these are
most notably machine learning applications, including classification and regression trees (CART)
(Zhang and Singer, 1999; Breiman et al., 1993), random forests (Bureau et al., 2005; Segal et al.,
2004; Breiman, 2001), logic regression (Schwender and Ickstadt, 2008; Kooperberg and Ruczinski,
2005; Ruczinski et al., 2004, 2003; Kooperberg et al., 2001), lasso (Kooperberg et al., 2010; Wu et al.,
2009; Tibshirani, 1996), elastic net (Kooperberg et al., 2010; Zou and Hastie, 2005) and Bayesian
network (BN) analysis (Rodin and Boerwinkle, 2005; Pearl, 1988). The gains attributable to first-
stage creation of meta-variables within these frameworks are also described, for example in Foulkes
et al. (2004); Bastone et al. (2004) and Malovini et al. (2009). The former involves a first-stage,
unsupervised clustering of individuals based solely on genotype data, followed by application of
CART to characterize association, while the later involves a first-stage application of CART to
identify clusters, followed by application of BN analysis to characterize association. The latent class
approaches described herein similarly involve defining group indicators based on a collection of
SNPs and, in turn, relating these to a measured trait for characterizing association; however, both
the SEM and MEM approaches detailed below are distinct in that they involve fully parametric
modeling of association and corresponding parameter estimation and testing. The present manu-
script focuses on the overlap of these two specific latent class paradigms while additional details on
several of the alternative approaches listed above, including discussion of their relative merits, can be
found in Hastie et al. (2001); Gentleman et al. (2005); Schwender et al. (2008) and Foulkes (2009).

We begin by formalizing the SEM approach for genetic association studies and extend the
research of Nock et al. (2007), to characterize broadly the performance under a range of underlying
models of association (Section 2.1). Second, we present an extension of the MEM approach of
Foulkes et al. (2005), for this setting that offers additional flexibility in defining the model of
association through inclusion of cross-classified clusters (Section 2.2). We then highlight the the-
oretical overlap between SEMs and MEMs (Section 2.3) and explore, through simulation studies,
the relative advantages of each approach (Section 3.1). Specifically, we focus on the flexibility and
performance under model misspecification. Finally, we apply both approaches, as we as an alter-
native two-stage BN analysis, to data arising from a study of anti-retroviral therapy (ART)-asso-
ciated dyslipidemia in HIV (Section 3.2).

2 Methods

2.1 Structural equation model for genetic association studies

We begin by describing how the SEM framework can be applied for analysis of data derived from
genetic association studies, where the goal is to characterize associations between genotypes, within
and across multiple genetic loci, and a single measure of disease progression or disease status. An
extensive literature exists on SEMs, and correspondingly a variety of approaches to specifying the
model have been described (Joreskog, 1975; Bentler and Weeks, 1980; Muthén, 1984, 2002; Sanchez
et al., 2005; Skrondal and Rabe-Hesketh, 2005; Muthén and Muthén, 2007). Here, we use the
formulation given by Sanchez et al. (2005) and apply the measurement model described by Muthén
(1984); Skrondal and Rabe-Hesketh (2005); and Muthén and Muthén (2007).
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Let y; denote the trait under study, where i = 1,..., N represents individuals. Further suppose
X =(xi1,..., x,-s)T represents genotypes across S bi-allelic SNPs for individual i. Since each SNP is
bi-allelic, we have x;; € {44, Aa, aa}, where A and « represent the two possible nucleotides at site s
and s = 1,...,S. For simplicity of presentation, we drop the notational dependency of 4 and a on s.
Finally, let Z; = (z;, ... ,z,-p)T represent P measured covariates for individual i.

Similar to the approach described by Nock et al. (2007), we assume that each candidate gene has
a corresponding latent variable, representing an unobservable effect of the corresponding gene on
the trait. These latent variables are given for individual i by the vector U; = (u;, .. ., uiK)T where uj,
corresponds to gene k, k = 1,..., K. The measurement component of an SEM relates the observed
data components, X; and y;, to the latent variables, U,, while the structural component defines the
relationship among the latent variables. These are formulated as follows:

(Measurement Model) :  g(E(X;|U;)) = v, +AU;+ I\ Z;, (1)

yi= VJ,+AJ,U1‘+1—‘yZi+Sis (2)

where vy, v,, A, A, Iy and I'), are unknown parameters, and siiin(O, Gg). Here g(-) is used to
represent an appropriately defined link function, such as the probit or logit link for categorical and
binary outcomes, respectively

(Structural Model) :  U; = a+BU;+{,, ©)

where o, B are unknown parameters, the diagonal elements of B are identically equal to 0 and (/—B)
is invertible (Sanchez et al., 2005). Here we assume {; ~ MVN(0, V) and {; is independent of ¢;. In
the genetic association study setting, interest is in characterizing the association between the latent
variables, U,, and the measured trait, given by y;. Formally, a test of association is given by a Wald
test of the null hypothesis, Hy: A, = 0.

Notably, in the genetic association setting, where X; represents SNPs as described above, many of
the covariates represented in Z; will influence the trait y; but will not be directly predictive of X, as
described in Eq. (1). Covariates that are potentially relevant in this component of the measure
model include surrogates for population substructure, such as race and ethnicity, as well as mea-
sures of exposure to environmental toxins, such as smoking status, that may result in oncogenic
mutations within specific organ tissue. In this sense, Z; can be thought of as a partitioned matrix,
given by ZiT = [ZITI. Z;. ]', where only the covariates represented in Zj; are potentially predictive of
X, while the covariates given in both Z,; and Z,; are potentially predictive of y,. In turn, the element
of ', corresponding to Z,; is identically equal to 0.

Visual path diagram representations of this model with one and two latent variables are given in
Fig. 1A and B, respectively. Here, observed variables are represented by rectangles while latent
variables are given by ovals. Dashed lines represent fixed, independent variables, whereas solid lines
indicate dependent variables with corresponding distributional assumptions. Single-direction
arrows represent causal relationships among variables while double-headed arrows represent
non-zero correlations.

2.2 Mixed effect model for genetic association studies

Distinct from the SEM setting, application of an MEM to SNP data is a staged approach that
involves first assigning individuals to groups based on observed genotypes across multiple SNPs.
These genotype group assignments are then treated as cluster indicators in the usual mixed mod-
eling framework. While several approaches to the first-stage dimension reduction are tenable, such
as hierarchical or K-means clustering (Hartigan, 1975), here we apply the simple deterministic
approach of assigning individuals with identical multi-locus genotypes to the same genotype group,
as described by Foulkes et al. (2004).
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Figure 1 Sample SEM path diagrams for genetic association studies. (A) Single latent variable
SEM and (B) SEM with two latent variables.

Again, we begin by letting X; = (xil,...,x[S)T represent the multilocus genotype for individual i
across S bi-allelic SNPs. Now suppose g = {gi,...,gs} represents the J groups resulting from
assigning individuals with identical genotypes to the same group, that is i,i" € g; implies X; = Xj.
The MEM as described previously for this setting (Foulkes et al., 2005) can be formulated as
follows:

yi =v+C/b+TZ;+e;, “)
where v and T" are again unknown parameters, C; = (¢;, . ..,ciJ)T, ¢jj = licg; is an indicator for
individual i belonging to genotype group g;, b = (b1,...,b 7)! is a vector of corresponding random

effects of genotype groups on the trait under study, b; %N(O, oy forj=1,...,J,¢ %N(O, c2)and b,

and g; are independent. A likelihood ratio test of the null hypothesis Hy: 6, = 0 is applied to assess
the presence of a genotype-trait association.

More generally, a grouping variable can be defined for each of multiple genes. To see this,
suppose now that X; represents a vector of S SNPs across K genes. We assume 7, SNPs are
measured within gene &, such that >, n, = S. Now g, = {g1,...,8}x represents the groups cor-
responding to gene k where J; is the number of such groups. Notably, in the setting of three-level
SNPs, we have J; < 3", while for binary SNPs, J; < 2", The MEM for such cross-classified data is
then given by

K
yi=v+ Y Cipb+TZ+e, Q)
k=1

where Cy, = (¢;1,, ¢ jk)z is a vector of group membership indicators, by = (b1, ..., b Jk)T is defined as
the genotype group random effects on y; for gene k, by; ~ N(O, Gik) and g; YN (0, Gf,). In this setting, a
likelihood ratio test can again be applied to test the null hypothesis Hy : 6, = 0 for each gene k.
Visual representations of the MEM:s for single- and multi-level clustering are given in Fig. 2A and
B, using the same notation as described above for Fig. 1. Here, the broken lines indicate a
deterministic relationship between SNPs — represented by x;1,...,x;s — and cluster assignments —
represented by C;. A few notable distinctions can be discerned by comparing Figs. 1 and 2. Most
notably, in the SEM framework, we see that the SNP variables are treated as random, and modeled
as a function of the latent variables, u;. In the MEM setting, on the other hand, these are treated as
fixed and inform cluster assignments deterministically. Additionally, in the SEM setting, the latent
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Single level clustering MEM. MEM with multi-level clustering.

Figure 2 Sample MEM path diagrams for genetic association studies. (A) Single level clustering
MEM and (B) MEM with multi-level clustering.

variables — given by u;; and u;; — are person-specific and potentially correlated, while in the MEM
framework the latent effects — given by b; and b,y — correspond to genotype groups and are
independent. Further discussion of theoretical overlap between the two modeling approaches is
given in Section 2.3.

2.3 A comparison of the SEM and MEM approaches

Both the SEM and MEM approaches, as formulated in Sections 2.1 and 2.2, involve modeling
underlying latent variables that represent unobservable effects of genes on the trait under study.
Indeed, it is straightforward to show that the SEM can be reduced to an MEM for this setting. To
begin, consider the simple case of a single gene, and thus a single latent variable. We first omit the
regression of X; on the latent variable — Eq. (1) of the SEM — as the MEM treats the X; as fixed. For
the single gene setting, the models of Egs. (2) and (3) reduce to

yi= V),y+7\,yui+Fij+8i, (6)
up = o+, (7
where A, = A, is now a scalar and, because there is only one assumed latent variable, B is identically

equal to 0 and ¢; M (0, V). In order for this SEM to reduce to the MEM, we let A, equal the vector
C! and replace the individual level latent variable u; with the vector of random cluster effects

b = (by,...,b,)". Importantly, this is equivalent to making the assumption that the latent effects on
the trait are the same for those individuals with the same observed genetic profile. Finally, we set
o= 0 and, together, these restrictions yield Eq. (4).

In the case of K= 2 genes, we note that Eqgs. (2) and (3) can be written as:

Yi=Vypt(hy 7‘)»2)(22) t1,Zi+e;, ®

ui\ 0 Bl uy
(u2i> = [le 0 ] (“21’) o ©
Now we replace A,; and A, with the vectors C;; and Cp and replace u1; and wuy; with blT and bg,

respectively. Notably, as the lengths of C;; and C;, (as well as by and b,), given by J; and J», are not
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necessarily equal, these vectors need to be concatenated with vectors of 0 of appropriate length.
That is, Eq. (8) is replaced with:

(OF
e[ (§) <

where, without loss of generality, we assume J, <J, and 0 is defined as a vector of length (J,—J)
with all 0 elements. In order for this SEM to simplify to the MEM with two levels of clustering, we
additionally need to assume o =0 and B, = By; = 0. In other words, we must assume that the
latent variables are uncorrelated and centered at 0.

In summary, and more generally for K> 2 genes, we make the following three assumptions for the
SEM to reduce to the MEM: (i) SNPs, represented by X,, are fixed, so that the model of Eq. (1) is
omitted; (ii) A, U; is given by C;b, that is individual level latent variables are the same for individuals
within the same defined genotype group and (iii) o = B = 0, that is latent variables across genes are
mutually independent and centered at 0. In the MEM setting, the cluster random effects are
assumed independent, although a correlation structure between b; and b; could be imposed.

(bf 0)
by

+F},Z,-+8,»

3 Applications

In the following sections we report the results of a simulation study and an application to a study of
anti-retroviral-associated dyslipidemia in HIV. Restricted maximum likelihood is used to derive
point estimates of parameters in the MEMs. A likelihood ratio test of Hy : o, = 0, comparing the
full (mixed effects) and reduced (fixed effects only) model, is used to investigate the association
between genotype groups and a measured trait. As this involves testing a parameter at a boundary,
a mixture of a x> with 1 and 0 degrees of freedom is assumed for the resultant test statistic. All
MEMs are fitted with the 1me () function within the nlme package in R, Version 2.9.1. In the
context of fitting SEMs, weighted least squares is applied to derive parameter estimates and a Wald
test of the null hypothesis Hy : &, = 0, is reported. SEMs are fitted using Mplus Version 5.21.

3.1 Simulation studies

In this section we explore, through simulation studies, the relative practical performance of SEMs
and MEMs under a range of underlying models of association. In each simulation, we generate 500
sets of data, each of size n = 1000, for each combination of true parameter values. SEM data are
simulated using the MONTECARLO Command in Mplus Version 5.21 (Muthén, 1984; Muthén and
Muthén, 2007).

We begin by simulating data under an SEM with a single latent variable, according to Egs. (1)
and (6)—(7), where for simplicity of presentation, we let I', = 0. In scalar notation, this model can be
rewritten as:

8(E(xislui)) = Vg hysutj,
Vi= V},+>\,_‘;M,'+’Y}.Zj+8,j,
up = otg;
where we assume s = 1,...,4, x;j is a binary SNP indicator, z; ~ N(0, 1), g; ~ N(0, csf,), &~ N@O,\)
and ¢;1(;. For identifiability, o is set to 0 and A, is restricted to 1. Furthermore, we define a
threshold model in Mplus such that P(x; = 1) = 0.50. It is straightforward to show that the
covariance between any two SNPs is then given by . Finally, we set v,y =0, Axo = A3 = Ay = 1

and v, = 0, while the values of the remaining parameters, A,, v,, G?, and \, vary as described in
Table 1. )
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Table 1 Simulation results under SEM with one latent variable.

Data True value SEMs MEMs

Bias CR CI Power Bias CR CIl Power

1 ol =1 0.00 0.95 0.23 - 0.13 0.24 0.20 -
V=02 0.01 0.96 0.21 - - - - -
Yy =1 0.00 0.95 0.14 - 0.00 0.96 0.13 -
Ao=1 —0.02 0.94 0.73 1.00 - - - 1.00
2 o2=1 0.00 0.95 0.23 - 0.18 0.06 0.21 -
Yy =04 0.01 0.96 0.20 - - - - -
Y, =1 0.00 0.95 0.15 - 0.00 0.96 0.14 -
Ay=1 —0.01 0.95 0.37 1.00 - - - 1.00
3 o2=1 0.00 0.94 0.22 - 0.19 0.03 0.21 -
Yy =0.6 0.01 0.96 0.17 - - - - -
v, =1 0.00 0.95 0.16 - 0.00 0.95 0.14 -
A =1 0.00 0.97 0.25 1.00 - - - 1.00
4 ol=1 0.00 0.94 0.19 - 0.04 0.85 0.18 -
V=04 0.01 0.95 0.22 - - - - -
vy =1 0.00 0.96 0.13 - 0.00 0.96 0.13 -
A, =0.5 —0.01 0.96 0.30 1.00 - - - 1.00
5 ol =1 0.01 0.95 0.39 - 0.69 0.00 0.30 -
V=04 0.00 0.96 0.18 - - - - -
Yy =1 0.00 0.95 0.20 - 0.00 0.95 0.16 -
Ay=2 —0.02 0.95 0.56 1.00 - - - 1.00

(a) Median estimates are reported from 500 sets of data. (b) Absolute difference between Est. and true value. (c) Coverage
rate, the percentage of confidence intervals (Cls) that cover true value among 500 CIs. For the CR of variance, the CIs that
contain negative values are excluded for consideration. (d) Median length among the 500 length of CIs. (e) Wald test statistics
of Hy: L, =0 1is used to test the association between latent variable and measured trait. (f) Likelihood ratio test (LRT) of
H, : o, =0 is applied to investigate the association between genotype groups and measured trait. Here the approximate
distribution of LRT under null hypothesis is 50:50 mixture of 33 and y3.

The results of fitting both SEMs and MEMs to these data are provided in Table 1. In general,
both approaches have high power for detecting association, but the SEM approach performs better
in terms of bias and coverage for the variance component, 2. As { and A, increase while o2
remains fixed, the absolute bias associated with o2 for the MEM increases and the corresponding
coverage rate (CR) is low. Notably, the type-1 error rate (under the model in which A, = 0) is 0.03
for both the SEM and MEM approaches.

Second, we simulate data according to an SEM with two uncorrelated latent variables. That is, we
let the data arise from Egs. (1) and (8)—(9) with B=0. In this case, our model can be written as:

g(B(xislu1)) = Vgt Ayt
S(E(xif|u2i)) = Vst Aystta,
Vi = Vythauithpouty,zite;,
uy; = o+
Uy = CX2+C2,—,
where s =1,...,4and r = 5,...,8, that is we have 8 SNPs with 4 in each of two genes. We further
assume g; ~ N(0, 03), Cii ~ N(0,Vry), &y; ~ N(0, V), all mutually independent and z; ~ N(0, 1). For
identification, o; and o, are set to 0 and we restrict A,; = A,5 = 1. For the simulation, we set
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Table 2 Simulation results under SEM with two uncorrelated latent variables.

Data True value SEMs MEMs

Bias CR CI Power Bias CR CI Power

1 o2=1 —0.01 094 030 - 025 000 022 -
U =02 0.00 095 021 - - - - -
U, =02 0.00 094 021 - - - - -
v, =1 0.00 094 015 - 0.00 095 014 -
Ay =1 0.00 096 081  1.00 ~ - = 1.00
Ao =1 0.00 096 082  1.00 - - - 1.00
2 ol=1 0.00 094 028 - 034 000 024 -
U, =04 0.00 096 020 - - - - -
U, =04 0.00 094 020 - - - - -
¥, =1 0.00 095 017 - 0.00 093 015 -
A =1 0.00 097 04l 1.00 - - - 1.00
Ao =1 0.00 094 041 1.00 - - - 1.00
3 ol=1 0.00 093 027 - 037 000 024 -
U, =06 0.00 094 018 - - - - -
U, = 0.6 0.00 094 017 - - - - -
¥, =1 0.00 095 018 - 0.00 094 015 -
Ay =1 0.00 097 027  1.00 - - - 1.00
Ao =1 0.00 093 027  1.00 - - - 1.00
4 o2=1 0.00 094 061 - 137 000 042 -
U, =04 0.00 095 019 - - - - -
U, =04 0.00 093 019 - - - = -
y, =1 0.00 096 025 - 0.00 094 019 -
Ay =2 —0.01 096 067 100 - - - 1.00
Ao =2 -0.01 094 066 100 - - - 1.00
5 o2=1 0.00 095 041 - 072 000 031 -
U, =04 0.00 095 022 - - = - -
U, =04 0.00 094 018 - - - - -
y, =1 0.00 095 020 - 0.00 095 016 -
Ay =05 0.00 097 041 1.00 - - - 1.00
Mo =2 -0.01 093 057  1.00 - - - 1.00

Vi =V =0, A0 =Ag3 =ky = A=Ay =Ag =1, v, =0, and define a threshold in Mplus such
that P(x;; = 0) = P(x;; = 0) = 0.5. Finally, the values of A,i, X2, v, 05, \rq, and s, are assumed to
vary as described in Table 2.

The results of fitting the SEM and MEM to these data are given in Table 2. The results are similar
to those we saw with a single latent variable, with more extreme biases associated with o2 using the
MEM approach. The type-1 error rates in the SEM setting are 0.05 and 0.06 for A, and A,
respectively, while the type-1 error rates in the MEM setting are 0.04 and 0.05 for o7, and o7,,
respectively.

Finally, we simulate data according to an SEM with two correlated latent variables, where the
model is the same as described above for two uncorrelated latent variables, with the exception that it
is assumed cov({;;, (y;) = V5. Data are simulated under two models specified by \{;, =0.1 and
V1> = 0.2, where in both cases y; =, = 0.4. These models correspond to correlations between
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Table 3 Simulation results under SEM with two correlated latent variables.

Data True value SEMs MEMs

Bias CR CI Power Bias CR CIl Power

1 ol=1 0.00 093 028 - 037  0.00 024 -
V=04 0.00 095 020 - - - - -
U, =04 0.00 094 020 - - - - -
7, =1 0.00 095 018 - 0.00 093 015 -
A =1 0.00 094 042  1.00 - - - 1.00
Ao =1 —-0.01 093 042  1.00 - - - 1.00
12 =0.1 0.00 096 009 - - - - —
2 ol=1 0.00 093 028 - 040  0.00 025 -
VU, =04 0.00 094 020 - - - - -
U, =04 0.00 094 020 - - - - -
v, =1 0.00 095 0.8 - 0.00 094 015 -
Ay = 1 0.00 095 049  1.00 - - - 1.00
Ao =1 0.00 095 049  1.00 - - - 1.00
Yy, =02 0.00 095 010 - - - - -

Table 4 Simulation results under MEM with single-level clustering.

Data True value SEMs MEMs

Bias CR CI Power Bias CR Cl Power

1 cl=1 0.12 0.42 0.21 - 0.00 0.96 0.18 -
o7 =02 - - - 0.65 —0.01 0.94 0.33 1.00
y=1 0.00 0.93 0.13 - 0.00 0.94 0.13 -

2 ol=1 0.22 0.23 0.25 - 0.00 0.94 0.18 -
c; =04 - - - 0.76 0.00 0.95 0.65 1.00
y=1 0.00 0.94 0.15 - 0.00 0.95 0.13 -

3 o2 =1 0.33 0.17 0.28 - 0.00 0.94 0.18 -
o7 =06 - - - 0.77 —0.02 0.95 0.94 1.00
y=1 0.00 0.95 0.15 - 0.00 0.94 0.12 -

latent variables of 0.25 and 0.5, respectively. The results are reported in Table 3. Again power is
high under both the SEM and MEM, and similar bias is observed under the MEM for 2. The
corresponding type-1 error rates are 0.05 and 0.06 for both SEM parameters, A,; and A)», and 0.04
and 0.05 for the two MEM variance parameters.

Next we simulate data under an MEM with a single clustering variable, as described by Eq. (4).
We again assume S =4 SNPs, each coded as binary indicators with P(x;; = 1) = 0.5 and minimal
correlation induced by the assumption P(x;+; = 1]x;; = 1) = 0.6 and P(x;4+; = 1|x;; = 0) = 0.4 for
s=1,2,3. A single continuous covariate z; ~ N(0, 1) is generated and we set v=0. The remaining
parameters, 62, ci and vy are varied across the simulations as given in Table 4. The results of fitting
SEMs and MEMs to these data are reported in Table 4. In this setting, a test of A, = 0 has reduced
power for detecting association. The type-1 error rates are 0.05 and 0.03 for the SEM and MEM
approaches, respectively.
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Table 5 Simulation results under MEM with two-level clustering.

Data True value SEMs MEMs

Bias CR CI Power Bias CR CIl Power

1 o2 =1 031 003 023 - 000 095 018 -
6, =02 - - - 0.65 —0.01 098 045 097
65,=02 - - - 0.68 —0.01 096 044 097
v, =1 0.00 094 015 - —0.01 094 025 -

2 o2=1 059 000 029 - 0.00 094 018 -
oy, =04 - - - 0.78 —0.01 095 079 099
o5, =04 - - - 0.79 —0.02 096 077  1.00
y=1 0.00 094 016 - 0.00 094 025 -

3 o2 = 095 000 036 - 0.00 095 0.8 -
o2, =06 - - - 0.77 —0.03 095 110  1.00
o5, =06 - - - 0.77 0.00 095 LIl 099
v, =1 0.00 095 018 - 0.00 094 025 -

4 o2=1 047 000 027 - 0.00 097 018 -
67, =02 - - - 0.73 —0.01 097 048 097
o, =04 - - - 0.74 —0.02 096 073  1.00
v, =1 0.00 096 015 - 0.00 096 025 -

Finally, we generate data according to a two-level clustering MEM, as described by Eq. (5). Here
we again assume that we observe 4 SNPs in each of 2 genes. The corresponding results of fitting
SEMs and MEMs to these data are given in Table 5. Again the power for the SEM approach to
detect association based on a test of A, is relatively small in all cases while the power for the MEM
approach is reasonable (>90%) for 6127 / c? > 0.16. The estimated type-1 error rates are 0.03 and
0.05 for the SEM parameters and 0.01 for both of the MEM parameters.

3.2 Genetics of therapy-associated lipid abnormalities in HIV

In this section we apply the SEM and MEM frameworks to data arising from the New Works
Concept Sheet (NWCS) 224 study, an investigation of genetic factors that contribute to anti-
retroviral-associated dyslipidemia in HIV-1l-infected individuals. This cross-sectional study is
comprised of n =626 HIV-infected participants enrolled in 5 AIDS Clinical Trials Group (ACTG)
trials who agreed to genetic testing. A complete discussion of the study design and patient demo-
graphics is given in Foulkes et al. (2006). Here we focus on 7 SNPs — rs1045642, rs2032582,
rs2235035, rs11772987, rs10256836, rs9282564 and rs2157926 — within the ATP-binding cassette,
sub-family B (MDR/TAP), member 1 (ABCBI1) gene, a gene involved in transporting substrates,
including Protease Inhibitors (PIs) across the cell membrane, and an additional 3 SNPs — rs2854117,
rs4520 and rs2070669 — in apolipoprotein C-1I1 (APOC3), a gene involved in inhibiting hepatic
uptake of triglyceride-rich particles. All SNPs are treated as binary indicators for the presence of at
least one variant allele. Interest is in characterizing association between these SNPs and high-density
lipoprotein cholesterol (HDL-C). White/non-Hispanic, Hispanic and Black/non-Hispanic subjects
(n = 532) with complete data, including known drug exposure histories, are included in analysis.
The results of fitting unadjusted models are reported in Table 6. Here we consider three models:
two single-gene models (that include either ABCB1 or APOC3) and one two-gene model (that
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Table 6 Application to study of therapy-associated lipid abnormalities in HIV.

ABCBI1 — model APOC3 — model (ABCBI1, APOC3) — model
SEM MEM SEM MEM SEM MEM
Est Est Est Est Est Est
(p-value) (p-value) (p-value) (p-value) (p-value) (p-value)
A, —0.06(0.002) - 0.02 (0.53) — —0.06 (0.003); -
0.01 (0.84)
] 0.78 - 0.18 - 0.78, 0.28 -
o7 - 0.004 (0.02) — 0.00 (0.50) - 0.004 (0.02);
0.00 (0.50)
o2 0.097 0.096 0.099 0.099 0.097 0.096

includes both ABCBI and APOC3). The SEM and MEM results are consistent with one
another, suggesting that ABCBI is associated with HDL-C, as measured by A, = —0.06 (p = 0.002
and p=0.003) in the SEM and o, =0.004 (p =0.02) in the MEM for both the single-gene
and two-gene models. These effects are attenuated (and no longer statistically significant)
in adjusted models and may represent spurious associations resulting from population-
admixture, i.e. confounding by race/ethnicity and study site. Adjusted models also included PI
exposure as a three-level factor — no current PI exposure; currently exposed to a non-RTV-con-
taining PI regimen; and currently exposed to an RTV-containing PI regimen — gender, race/ethnicity
and study. N

To further explore the results of this model fitting procedure, we consider A, from the SEM and
the empirical Bayes estimates of the random effects from the MEM. For illustration, we focus on
the unadjusted model with the single-gene ABCBI1. Based on the SEM, the relationship between the
SNPs and the latent gene variable, u;, is estimated by A, = (1.00, 1.15,—0.07, —0.50, 0.04, 0.85, —0.54)
corresponding to rs1045642, 1s2032582, rs2235035, rs11772987, 1s10256836, 1s9282564
and rs2157926, respectively. Associated p-values based on a Wald test are given by
p = (—,0.00,0.329,0.00,0.569, 0.00, 0.00) where p-values of "0" are less than 1 x 107%. Recall the
first element of A is fixed at 1 for identifiability. These results suggest variant alleles at rs2032582
(p<1x107%) and 159282564 (p<1 x 107%) are significantly positively associated with u,, while
variant alleles at rs11772987 (p<1 x 107%) and rs2157926 (p<1 x 10~®) are significantly negatively
associated with u;. Further, A, = —0.06, suggesting an inverse relationship between u; and HDL-C.

In total there are 46 observed genotype groups and the corresponding empirical Bayes estimates
based on the MEM range from —0.097 to 0.074, as illustrated in Figure 3. All corresponding 95%
prediction intervals for the genotype groups cover zero, with the exception of the group with at least
one variant allele at each of the three SNPs, rs1045642, rs2032582 and rs11772987 and homozygous
for the common allele at all other SNPs. Membership to this group is inversely associated with
HDL-C with a corresponding empirical Bayes estimate of —0.097 and a 95% prediction interval of
(—0.185,—0.009).

3.3 An alternative Bayesian network analysis framework

BN analysis is an alternative analysis framework that similarly aims to identify and characterize
association among combinations of potential predictor variables and an observed trait. In this
section, we briefly describe the application of one such approach, proposed by Malovini et al.
(2009). This strategy is comprised of two stages: First, meta-variables are created based on fitting a
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Figure 3 Empirical Bayes (EB) estimates of latent genotype group effects.

classification or regression tree to the trait under study where SNPs and other potentially relevant
variables are treated as potential predictor variables; and second, a BN is learned based on these
meta-variables and the trait under study. Analysis is based on application of the rpart () and
network () functions within the R rpart and deal packages, respectively.

The results of applying the approach of Malovini et al. (2009), to the SNPs within ABCBI1 and
APOC3 separately, and in combination, are provided in Fig. 4. To begin, we fitted a regression tree
to the log transformed quantitative trait, HDL-C separately for each gene. For ABCBI, a single
split is observed, as illustrated in Fig. 4A, where ABCB1.S7 corresponds to rs2157926, and a cost
complexity parameter (cp) of 0.01 is applied for first-stage pruning. This constitutes the meta-
variable used for the second-stage BN analysis of ABCB1. For APOC3, no splits result in an
increase of more than cp = 0.01 in the overall R-squared value, and thus individual SNP variables
for this gene are used in the second-stage BN analysis. The resulting directed acyclic graphs (DAGs)
illustrated in Fig. 4B-D are consistent with the results presented in Table 6 based on the SEM and
MEM analyses. Again, an association between ABCB1 and HDL-C is observed (Fig. 4B), while
associations between SNPs within APOC3 and HDL-C are not detectable (Fig. 4C). The DAG
based on both genes (Fig. 4D) additionally identifies an association between ABCBI and the first
SNP within APOC3.

Finally, as a case study, we applied the two-stage BN approach to a single randomly selected
simulated data set from each of the scenarios (i.e. combinations of parameters) described in Tables
1-5. The results are presented in Fig. 5. In-line with the finding presented in Table 1 of consistently
high power of the SEM and MEM under the SEM model with a single latent variable, Fig. 5A
illustrates that all five corresponding DAGs identify association between the gene metavariable and
the trait. Under the SEMs with two uncorrelated latent variables, the BN analysis consistently
identifies at least one of the two gene metavariables; however, in 3 of the 5 cases only one gene is
identified, as shown in Fig. 5B. The association between the two genes under the SEM with
correlated latent variables is detected with higher correlation, as illustrated in Fig. 5C. Finally, the
BN analysis appropriately identifies the gene metavariable for the MEM with single-level clustering,
and, in 3 of the 4 cases, was able to identify both gene metavariables under the MEM with two-level
clustering.
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A ABCB1.S7< 0.5 B
i Score: —446.8673
Relscore: 1
ABCB1
3.616 3.724
Score: ~1031.4 : ~1031. : ~1031. .
e S S Score: ~1336.633
Relscore: 1

Score: ~1031.057 Score: ~1031.057 Score: ~1031.057
Relscore: 1 Relscore: 1 Relscore: 1

Figure 4 Bayesian networks of ABCB1, APOC3 and HDL-C. (A) Fitted regression tree using all
SNPs within ABCB1 (coded as binary indicators for the presence of at least one variant allele) as
potential predictor variables and log-transformed HDL-C as the outcome. (B) DAG based on
ABCBI metavariable and log-transformed HDLC. (C) DAGs with highest scores based on in-
dividual SNPs within APOC3 and log-transformed HDL-C. (D) DAG based on ABCBI1 meta-
variable, individuals SNPs within APOC3 and log-transformed HDL-C.

4 Discussion

In this manuscript we describe the application of two related latent variable modeling approaches,
MEMs and SEMs, for identifying and characterizing genetic contributors to complex diseases.
While these two frameworks have some important commonalities, several notable differences
emerged during our investigation. These are highlighted by the assumptions listed in Section 2.3,
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under which the SEM reduces to the MEM as described for this setting. Importantly, in the context
of an SEM, the test of association is based on a fixed effect coefficient (1) relating the latent gene
variable to the trait. In the MEM context, on the other hand, the test of association is based on a
variance parameter (c7) of the latent gene effects.

Interestingly, our simulation studies reveal that the performance of the two modeling approaches
is comparable under the SEMs in terms of power and type-1 error rates; however, when the data
arise from an MEM, power for the SEM approach is lower than the corresponding power for
detecting association using the MEM approach. Also of note, when data are simulated under the
SEM model, the estimates of the nuisance parameter, o,, under the MEM exhibit substantial bias.
In these cases, the estimate of o, is also estimated poorly (results not shown). Notably, for Tables 1
and 2, var(y) = A2y+02 and an estimate of this variance under the MEM is 62+67. For example,
for the first scenario in Table 1, we have var(y) = ki\l/-i-csg =1x0.2+1=1.2 and the estimate
under the MEM is var(y) = 8?4—82 = 1.13+0.06 = 1.19 (results not shown). In general, these are
not as closely aligned; however, there appears to be a tradeoff between the two parameters. In turn,
estimation of v, depends on var(y). Further research on sensitivity to alternative underlying model
specifications may further elucidate the relative merits of each approach. Specifically, SEMs may be
more conducive to testing specific hypotheses involving multiple genes and their relationships to one
another in a pathway to disease.

A notable limitation of both the MEM and SEM approaches is their potential inability to handle
a large number of SNPs. In the context of the MEM, the number of genotype groups can become
unwieldy as the number of SNPs increases, as described by Foulkes et al. (2008). Interestingly,
inclusion of highly correlated SNPs in the MEM approach results in fewer genotype groups but
does not otherwise effect model performance. Furthermore, our preliminary research suggests that
iteratively sampling a subset of SNPs and fitting the MEM, and then combining results over the
multiple samples (Efron, 1979, 1981; Good, 2005), performs reasonably well (results not shown) in
terms of the overall power for detecting association in the setting of a large number of SNPs. The
extension of the MEM approach to more than one clustering variable, as described in Section 2.2,
also offers the advantage of reducing the total number of genotype groups. For example, if we
observe r SNPs in one gene and s SNPs in a second gene, the original formulation of the MEM
approach involves 20+ genetic groups while the proposed extension involves only (2"+2°) genetic
groups (across two clustering variables). Additional research is needed to evaluate the performance
of this extended MEM approach with multiple SNPs across a larger number of genes.

We also presented the results of applying an alternative two-stage BN analysis approach to the
NWCS224 data, as well as to randomly selected simulated data sets. In the real data example, we
were unable to fit a regression tree with splits beyond the root node subject to the specified pruning
criterion for one of the genes under study. In this case, the analysis reduced to fitting a BN to single
SNP variables rather than metavariables as described by Malovini et al. (2009). On the other hand,
for the ABCBI1 gene, a metavariable did emerge, albeit based on a single SNP, and an association
was detected. Importantly, the structure of association that CART is designed to detect, namely
conditional associations (Foulkes, 2009), may explain why only a single SNP emerged while for the
SEM four SNPs within this gene were identified as statistically relevant. Although our case studies
of simulated data suggest that the BN analysis generally (though not always consistently) identified
relevant genes, further investigation is needed to characterize the overall performance and type-1
error rates.

Finally, further research is needed to characterize the performance of both the SEM and MEM
frameworks in the context of more complex structures of association and underlying genetic models.
In a recent manuscript, we describe application of a mixture modeling approach that may be more
appropriate than the single normal prior assumption on the random effects under a dominant or
recessive genetic model (Au et al., 2010). While the inclusion of cross-classified clusters, as proposed
in Section 2.2, allows for consideration of more SNPs through reduction in the number of genotype
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groups, this approach assumes an additive model of association. More generally, it is of interest to
characterize interactions among genes in their effect on the trait under study, an area of on-going
research.
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