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Abstract: We have previously shown the suitability of aerogels as scaffolds for neuronal cells.
Here, we report on the use of superelastic shape memory polyurethane aerogels (SSMPA).
SSMPA have a distinctly different stiffness than previously reported aerogels. The soft and deformable
nature of SSMPA allowed for radial compression of the aerogel induced by a custom designed
apparatus. This radial compression changed the pore diameter and surface roughness (Sa) of
SSMPA, while maintaining similar stiffness. Two varieties of SSMPA were used, Mix-14 and Mix-18,
with distinctly different pore diameters and Sa. Radial compression led to a decreased pore diameter,
which, in turn, decreased the Sa. The use of custom designed apparatus and two types of SSMPA
allowed us to examine the influence of stiffness, pore size, and Sa on the extension of processes
(neurites) by PC12 neuronal cells. PC12 cells plated on SSMPA with a higher degree of radial
compression extended fewer neurites per cell when compared to other groups. However, the average
length of the neurites was significantly longer when compared to the unrestricted group and to
those extended by cells plated on SSMPA with less radial compression. These results demonstrate
that SSMPA with 1.9 µm pore diameter, 1.17 µm Sa, and 203 kPa stiffness provides the optimum
combination of physical parameters for nerve regeneration.

Keywords: aerogel; scaffold; PC12 neuronal cells; superelastic shape memory polyutherane aerogel;
topography; stiffness

1. Introduction

Cells are surrounded by an intricate and ever-changing microenvironment that includes the
extracellular matrix (a complex heterogeneous 3-D network of extracellular proteins and glycoproteins),
neighboring cells and signaling molecules. Within this environment, cells are subjected to mechanical
forces that result from the stiffness and porosity of the extracellular matrix, body motions and
interactions with the surrounding environment [1]. The different components of the cell surroundings
affect cell behavior, such as adhesion to the substrate, cell morphology, differentiation, collective
organization with tissues, etc. [2]. Recent efforts have focused on devising materials suited to guide
cellular behavior to fit specific biomedical applications. The physical properties and microstructure of
biomaterials, such as stiffness, topography, porosity and size scale, are key to guide cell behavior in a
controlled manner [1]. Both the topography and stiffness of biomaterials have been shown to greatly
impact cell behavior by influencing a variety of cell functions, such as stem cell differentiation [3,4],
cell migration, spreading and shape [5], stimulation of osteoblasts promoting bone regeneration [6], etc.
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Biomaterials have been designed with specific physical properties and microstructures to understand
how these parameters influence cell behavior. The surface topography of biomaterials can include
grooves, grids and pillars [7–9]. However, these topographies differ from those found in tissues,
and, therefore, it is unclear if they are relevant to clinical applications.

Aerogels have been proven to be biocompatible materials that can be used for medical
applications, such as cardiovascular implantable devices [10] and implants for nerve repair [11–14].
In vitro experiments with cultured cells have also shown that aerogels can influence cell properties,
such as the extension of neurites by neuronal cells [15–17]. The potential of aerogels as scaffolds for
tissue engineering is due to their high porosity, good mechanical strength and biocompatibility [18–20].
Moreover, aerogel properties can be modified and tuned for specific biomedical applications [21,22].
The ability to tune aerogels’ properties enables a wide range of aerogel types, differing in their
surface topography and stiffness [13,23,24], to be synthesized. The outcome of peripheral nerve
repair is frequently poor, with a low percentage of patients recovering sensibility and motor function.
Ongoing efforts aim to improve current approaches to nerve repair to result in better sensibility and
motor recovery [25]. We have previously reported that aerogels promote the extension of long neurites
by neuronal cells and that this effect is increased by subjecting cells grown on aerogels to an electric
field [12,13,23,24].

In this study, we used superelastic shape memory polyurethane aerogels (SSMPA), which comprise
a recently developed soft and deformable type of polyurethane aerogel [26–29] with distinctly different
stiffness characteristics than previously studied polyurethane aerogels [30,31] or aerogels used as
scaffolds for neuronal cells [12,13]. All SSMPAs are linearly elastic materials, allowing for radial
compression while the stiffness remains practically constant. However, two specific types of SSMP
aerogels were chosen for this study, and, for cross-reference purposes with previous work [27], they are
referred to as Mix-14 and Mix-18; that choice was based on the similar densities and porosities of the
two types of aerogels (Mix-14: bulk density of 0.529 ± 0.009 g cm−3, porosity of 56.1 ± 0.8 v/v; Mix-18:
bulk density of 0.506 ± 0.006 g cm−3 and porosity of 57.7 ± 0.5 v/v) but primarily on their identical
bicontinuous morphologies, despite their different chemical compositions [27]. Radial compression
was carried out using a custom designed restrictor apparatus, inducing changes in the pore diameter
and the Sa of the materials. At that point, the interaction of PC12 neuronal cells with the surface of the
SSMPA at different stages of radial compression was investigated. The cellular response to the two
types of SSMPA chosen for this study, Mix-14 and Mix-18, at different radial compression states was
quantified as a function of pore size and surface topography to further understand the role of surface
topography in guiding the extension of neurites.

2. Materials and Methods

2.1. Superelastic Shape Memory Polyurethane Aerogels (SSMPA)

Superelastic shape memory polyurethane aerogels (SSMPA) designated as Mix-14 and Mix-18
were prepared before as part of a broader Design-of-Experiments (DoE) statistical study, the objective
of which was to probe the shape memory effect in poly(isocyanurate-polyurethane) aerogels (PIR-PUR
aerogels) as a function of the chemical composition [27]. The prefix “Mix” refers to the fact that the
DoE study utilized PIR-PUR formulations, where the polyurethane (PUR) part consisted, for the
most part, of mixed alcohols, as opposed to exclusively single-alcohol formulations that had been
described before [28,29]. Thus, Mix-14 was based on a high-concentration sol (25% w/w of monomers)
that included only triethylene glycol (TEG) as a diol for PUR, while Mix-18 was based on a mixture
of three diols (diethyene glycol, trietheylene glycol and tetraethylene glycol). In both Mix-14 and
Mix-18, the isocyanurate (PIR) part of the PIR-PUR was introduced as part of an aliphatic triisocyanate
(Desmodur N3300A [31]). Wet gels of both Mix-14 and Mix-18 were prepared in CH3CN/acetone
mixtures (7:1 v/v) at room temperature (RT) using dibutyltin dilaurate as the catalyst. Further synthesis
details are given in Reference [27].
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2.2. Compression of SSMPA

The SSMPA used here were cylindrically shaped (d0 = 1.5 cm, in original form). The cylinders
were sliced into thinner sections to create discs for PC12 cell plating. Controlled radial compression was
achieved by placing the aerogels in a custom-designed, ring-shaped apparatus with an adjustable width,
fabricated from Sylgard 184 Silicone Elastomer (Dow Corning, Midland, MI, USA). Custom-cut circular
metal disks of the desired diameter (d1 = 1.4 cm and d2 = 1.3 cm) formed the base of the compression
apparatus. Figure 1 shows a schematic diagram of the assembly used in this study to create the
substrates needed.
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Figure 1. Diagram showing the setup used to build the custom designed radial compression apparatus.
Left: unrestricted (control or d0 = 1.5 cm) shape memory polyurethane aerogels (SSMPA). Center and
right: SSMPA with increased degrees of radial compression and final diameters of d1 = 1.4 cm and
d2 = 1.3 cm, respectively. Top: SSMPA Mix-14. Bottom: SSMPA Mix-18.

2.3. Cell Culture

The PC12 neural cell line obtained from the American Type Culture Collection (ATCC,
Manassas, VA, USA) was used in this investigation (see Figure S1) and has been the basis of several past
publications by the authors [12,13,23,24]. Briefly, PC12 cells were primed in complete culture medium
(RPMI 1640 medium supplemented with GlutaMax, HERPES buffer, 10% horse serum, 5% fetal bovine
serum and penicillin/streptomycin) with nerve growth factor (NGF) for 8 days with the medium being
replaced every 2–3 days. The cells were harvested by trypsin treatment and frozen in liquid nitrogen
until the time of the experiment. After thawing, PC12 cells were plated on collagen I coated SSMPA
Mix-14 and Mix-18. Prior to coating the aerogels with collagen, they were sterilized for 30 min with
ultra-violet light (λ = 254 nm). After sterilization, the aerogel discs were coated with 4 µg of collagen
per cm2, which translated into 0.05 mg/mL rat tail type I collagen (Invitrogen, Carlsbad, CA, USA)
concentration. After 1 h of RT incubation, the excess solution was removed by rinsing the aerogels with
serum free RMPI 1640 medium. The cells were seeded at a density of 1 × 104 cells/cm2 and incubated
in a tissue culture incubator (5% CO2 and 37 ◦C) for 24 h. The incubation period was previously
optimized by the authors and reported elsewhere [12,13,23,24].
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2.4. Scanning Electron Microscopy

SSMPA containing cells were prepared for Scanning Electron Microscopy (SEM) by fixation
for 2 h in 2.5% glutaraldehyde (Tousimis, Rockville) in 0.1 M sodium phosphate buffer. After a
series of washes in 0.1 M sodium phosphate buffer, the cells were further fixed for 30 min with an
aqueous solution of 1% osmium tetroxide (OsO4) (Electron Microscopy Sciences, Hatfield, PA, USA).
The cells were then dehydrated with a graded alcohol series (10%, 30%, 50%, 70%, 90% and
100% ethanol, 10 min for each wash). The samples were fully air dried and then sputter coated
with a 10 nm film of gold-palladium using the Anatech Aummer 10.2 for 1–3 min at 3–5 mA
(SemiStar Corp, Morgan Hill, CA, USA), as reported previously [12,13,23,24]. Phenom Pure Desktop
SEM (PhenomWorld, Eindhoven, Netherlands) was used to image the samples using a backscatter
electron detector (BSD), the high-resolution mode (10 kV) and a working distance of 5mm.

2.5. Cell Response Measurement

The SEM images were then analyzed with ImageJ, version 1.53d, an NIH (National Institutes
of Health) open-source image analysis software (NIH, Bethesda, MD, USA). This software was used
to quantify neurite length, the number of neurites per cell and cell area, as described in previous
works [12,13,23,24]. Briefly, for each SEM image, a superimposed scale bar was used as the reference to
calibrate the measurement tools in ImageJ. Neurite length was measured using the segmented line
tool and using a series of segmented lines to follow the longest cytoplasmatic extension extending
out of the cell body. The number of neurites per cell was calculated by measuring the number of
cytoplasmatic extensions extending out of each cell body. Cell spreading was measured by using the
free hand selection to outline each cell body. These three parameters were measured for each SSMPA
(Mix-14 and Mix-18) in each radial compression state.

2.6. Pore Diameter Measurement

To measure the diameter of the superficially positioned pores at the surface of the aerogels,
the aerogels were first sputter coated with a 10 nm film of gold-palladium and SEM imaging was
performed. The NIH open source software ImageJ was used to measure the diameter of the pores at
the surface of the aerogel. Each SEM image had an overlaid scale bar, which was used as reference
to calibrate the measurement tools from ImageJ. The pore diameter was treated as the longest
horizontal opening in each pore. The straight-line tool was used to measure the diameter of the pores.
Three independent trials (N = 3) were performed for each SSMPA substrate and each final diameter.
In each case, over 100 cells were investigated (n > 100).

2.7. Surface Roughness (Sa) Measurement

The surface roughness of all samples (control and increased degree of radial compression)
was measured using a Profilm3D profilometer (Filmetrics Inc, San Diego, CA, USA) in an area of
200 µm × 200 µm. The arithmetic mean height indicated the surface roughness (Sa). Once again
three independent measurements (N = 3) were performed for each SSMPA and each radial
confinement condition.

2.8. Stiffness Measurement

The aerogel stiffness (Young’s modulus) was measured at RT by means of an ESM303 Series 5,
digital Force Gauge (Mark-10 Corp, Copiague, NY, USA). The accessories used were the extension rod
(G1024) and a compression plate (G1009) attached to the 25 N gauge. Experiments were performed at
a compression rate of 0.5 mm/min. From the instrument, the Load (F in N) and travel (l in mm) was
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acquired and the Young’s modulus was calculated using the following formula as well as the sample’s
thickness (l) and cross-sectional area (A):

Young’ smodulus =
stress (σ)
strain (ε)

where:

stress (σ) =
F(N)

A (m2)

strain (ε) =
∆l(m)

l (m)

2.9. Statistical Analysis

Statistical analysis of the data was performed using a two-tailed Student’s t-test. Significance (*)
is defined as p < 0.05, as in previous works [21,22]. For each parameter measured (neurite length,
number of neurites per cell, cell area, pore diameter, Sa and Young’s modulus), the error bars represent
the standard error of the mean. Each of the cell measurement results (neurite length, number of neurites
per cell and cell area) were calculated using three independent trials (N = 3), with the measurements
being carried out on at least 100 cells (n > 100).

To measure the pore diameter, three independent trials (N = 3) of three separate specimens were
performed for each trial; more than 100 measurements (n > 100) were carried out. The average of each
independent trial and the standard deviation were used for the results in Section 3.3. Sa averages
were calculated based on three independent trials (N = 3) of three different specimens in each
category. For each aerogel type, thirty different locations were sampled, and the results were averaged.
The Young’s modulus was calculated for each type of aerogel, and, once again, three independent
measurements were performed in each case (N = 3).

3. Results

3.1. Effect of Radial Compression on the SSMPA Properties

SSMPA properties, including pore diameter, Sa and Young’s modulus, were measured to determine
correlations with the response of neural cells plated on these SSMPA. These properties were measured
for each SSMPA (Mix-14 and Mix-18), which were subjected to different degrees of radial compressions
(unrestricted or control, d0 = 1.5 cm, and increasing degrees of radial compression, d1 = 1.4 cm and
d2 = 1.3 cm,) and the details have been reported below.

3.1.1. Pore Diameter

Figure 2 shows representative SEM images of each aerogel type with increasing degrees of
radial compression (d0 = 1.5 cm, d1 = 1.4 cm, d2 = 1.3 cm). The average pore size of unrestricted
(control, d0 = 1.5 cm) Mix-14 aerogel was 0.77-fold smaller than that of Mix-18 unrestricted (control or
d0 = 1.5 cm) (Figure 2a,d). For both aerogels, controlled radial compression led to a decrease in pore
size by ~0.9-fold between unrestricted (control, d0 = 1.5 cm) and lesser degree of radial compression
(d1 = 1.4 cm). A decrease of ~0.76-fold was observed between the lesser and higher degree of radial
compression (d1 = 1.4 cm and d2 = 1.3 cm). The measured pore diameters have been summarized in
Table 1, showing a reduction in pore size as the degree of radial compression is increased.
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Figure 2. SEM images of SSMPA unrestricted (control or d0 = 1.5 cm) and different degrees of radial
compression (d1 = 1.4 cm and d2 = 1.3 cm). SEM images of bare aerogels (i.e., not coated with collagen
nor plated with cells). (a–c) SSMPA Mix-14 and (d–f) SSMPA Mix-18; (a,d) unrestricted (control or d0 =

1.5 cm); (b,e) lesser degree of radial compression (d1 = 1.4 cm); (c,f) higher degree of radial compression
(d2 = 1.3 cm).

Table 1. Effect of radial compression on SSMPA pore size.

Aerogel Type Degree of Radial Compression Pore Diameter (µm) Label

Mix-14
d0 = 1.5 2.05 ± 0.16 1
d1 = 1.4 1.81 ± 0.10 2
d2 = 1.3 1.38 ± 0.06 3

Mix-18
d0 = 1.5 2.67 ± 0.19 4
d1 = 1.4 2.50 ± 0.18 5
d2 = 1.3 1.90 ± 0.10 6

3.1.2. Surface Roughness (Sa)

The effect of controlled radial compression on the Sa of Mix-14 and Mix-18 aerogels was evaluated.
Table 2 shows the Sa values for Mix-14 and Mix-18 with increasing radial compression (d0 = 1.5 cm,
d1 = 1.4 cm, d2 = 1.3 cm). Figure 3 shows 3-D images of the Sa of unrestricted (control or d0 = 1.5 cm)
Mix-18 and Mix-14, with a color scale bar demonstrating the different height (z axis) throughout the
surface. Mix-18 inherently has a higher Sa value compared to Mix-14 as evidenced by the data shown in
Table 2 and Figure 3. SSMPA Mix-14 had a ~0.87-fold lower Sa compared to Mix-18 in the unrestricted
(control or d0 = 1.5 cm) state. As the degree of radial compression was increased, the Sa for both aerogel
types decreased. SSMPA Mix-14 showed a decrease of ~0.86-fold between unrestricted (control-d0 =

1.5 cm) and the lesser degree of radial compression (d1 = 1.4 cm), as well as the lesser and higher degree
of radial compression (d1 = 1.4 cm and d2 = 1.3 cm). SSMPA Mix-18 showed a decrease of ~0.92-fold in
Sa between unrestricted (control-d0 = 1.5 cm) and lesser degree of radial compression and a decrease
of ~0.79-fold between lesser and higher degree of radial compression (d1 = 1.4 cm and d2 = 1.3 cm).
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Table 2. Surface roughness (Sa) of each SSMPA used in this study.

Aerogel Type Degree of Radial Compression Sa (µm) Label

Mix-14
d0 = 1.5 1.39 ± 0.17 1
d1 = 1.4 1.20 ± 0.25 2
d2 = 1.3 1.03 ± 0.12 3

Mix-18
d0 = 1.5 1.59 ± 0.17 4
d1 = 1.4 1.47 ± 0.23 5
d2 = 1.3 1.17 ± 0.10 6
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3.1.3. Young’s Modulus

The last aerogel property measured was the stiffness of the substrate. Table 3 shows the change in
stiffness of each aerogel type with increasing radial compression. In their relaxed unrestricted forms,
Mix-14 and Mix-18 had distinctly different stiffness values (255 vs. 182 kPa), with Mix-18 being less
stiff. However, the controlled radial compression did not affect the aerogel stiffness substantially,
though small changes in Young’s modulus (increase) were observed for both aerogel types.

Table 3. Young’s modulus (kPa) for each SSMPA type and condition.

Aerogel Type Degree of Radial Compression Young’s Modulus (kPa) Label

Mix-14
d0 = 1.5 255 ± 33 1
d1 = 1.4 269 ± 65 2
d2 = 1.3 298 ± 19 3

Mix-18
d0 = 1.5 182 ± 18 4
d1 = 1.4 199 ± 78 5
d2 = 1.3 203 ± 83 6

3.1.4. Comparison of Pore Diameter and Surface Roughness

Figure 4 shows the relationship between the pore diameter and the Sa for SSMPA Mix-14 and
Mix-18 subjected to different degrees of radial compression (d0 = 1.5 cm, d1 = 1.4 cm, d2 = 1.3 cm).
As indicated earlier, for both SSMPA Mix-14 and Mix-18, pore diameter and Sa decreased with increased
radial compression. There is a decrease in pore diameter between 0.7-fold and 0.96-fold, showing that
increased radial compression significantly reduces the SSMPA pore diameter. Moreover, with increased
radial compression, the Sa also decreased by 0.86–0.97-fold.
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pore diameter on surface roughness (Sa). As the pore diameter decreases (due to increased radial
compression), the surface roughness also decreases. Labels 1–6 correspond to those identified in
Tables 1 and 2.

3.2. Impact of SSMPA Properties on Cell Shape and Neurite Extension

The impact of SSMPA substrate properties on PC12 neuronal cell response was evaluated and is
discussed below. The cell properties that were investigated and that have been fully characterized
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included neurite length, the number of neurites per cell and cell body area. SSMPA Mix-14 and Mix-18
with increasing amounts of radial compression (d0 = 1.5 cm, d1 = 1.4 cm, d2 = 1.3 cm) altered the
behavior of the cells, and the results are presented below.

3.2.1. Neurite Length

Figure 5 shows the neurite length in SSMPA Mix-14 (Figure 5a) and Mix-18 (Figure 5b) with
increasing degrees of radial compression (d0 = 1.5 cm, d1 = 1.4 cm, d2 = 1.3 cm). Increasing the degree
of radial compression for both aerogel types resulted in an increase in the average neurite length after a
24 h period of incubation. In the case of Mix-18 (Figure 5b), the average neurite length was greater than
what was measured on Mix-14, almost double the length (Figure 5a). When compared to unrestricted
(control d0 = 1.5 cm) and the higher degree of radial compression (d2 = 1.3 cm), the maximum neurite
length increase was ~1.8-fold for cells plated on SSMPA Mix-18, while for Mix-14 the increase was
~2-fold.
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Figure 5. Neurite length averages of PC12 cells plated on SSMPA. (a) Mix-14; (b) Mix-18 with a different
extent of radial compression (the highest radial compression is achieved for a smaller diameter aerogel).
For each condition, averages were obtained from the results of three independent trials (N = 3) in which
over 100 measurements (n > 100) were performed. Error bars correspond to the standard error of the
mean. Asterisks (*) denote values that are statistically significant (p < 0.05). The results indicate that,
for both Mix-14 and Mix-18, radial compression significantly increased neurite length by 1.8-fold and
2-fold, respectively.

3.2.2. Number of Neurites per Cell Body

Figure 6 shows the number of neurites extended per neuronal cell with increasing degrees of
radial compression (d0 = 1.5 cm, d1 = 1.4 cm, d2 = 1.3 cm) for both types of aerogels Mix-14 (Figure 6a)
and Mix-18 (Figure 6b). The number of neurites extended per neuronal cell decreased with increasing
degrees of radial compression for both types of aerogels. The degree of decrease is more pronounced
for Mix-14 (Figure 3a) than for Mix-18 (Figure 3b). The maximum decrease in neurites per neuronal
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cell (d2 = 1.3 cm), when compared to the unrestricted (control or d0 = 1.5 cm), is a ~1.4-fold decrease in
Mix-14, while the decrease was ~1.2-fold in Mix-18.
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Figure 6. Average number of neurites per cell. For both SSMPA (a) Mix-14 and (b) Mix-18,
compression decreased the number of processes extended by the cells. However, this decrease
was more pronounced for Mix-14 with a decrease of ~1.4-fold, while Mix-18 shows a decrease of
~1.2-fold. Averages were measured with three independent (N = 3) trials with over 100 measurements
(n > 100). Error bars represent the standard error of the mean within these different trials. Asterisks (*)
denote values that are statistically significant (p < 0.05).

3.2.3. Cell Body Area

Figure 7 shows the cell body area measurements under different degrees of radial compression
collected from cells cultured on SSMPA Mix-14 and Mix-18. The results indicate that, for both
substrate types, the cell body area increased with an increased degree of radial compression.
However, this increase was much more pronounced on Mix-18. A ~4-fold increase between unrestricted
(control-d0 = 1.5 cm) and the higher degree of radial compression (d1 = 1.4 cm) was observed for Mix-18
(Figure 7b). To the contrary, Mix-14 showed a ~1.5-fold increase between unrestricted (control-d0 = 1.5
cm) and the higher degree of radial compression (d2 = 1.3 cm) (Figure 7a).
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Figure 7. Comparison of cell body area on Mix-14 and Mix-18 aerogels. In the relaxed form, the PC12
cells plated on (a) Mix-14 had similar areas to those measured on (b) Mix-18. As the substrate received
an increasing degree of radial compression, the cell area was affected more significantly for cells plated
on Mix-18. Average was calculated from three independent trials (N = 3) with over 100 measurements
(n > 100) each. Error bars represent the standard error of the mean. Asterisks (*) denote values that are
statistically significant (p < 0.05).

3.3. Nerve Response to Sa

The neuronal response to Sa was compared to get an overall understanding of the impact of Sa on
PC12 cells. Figure 8 shows the relationship between neurite length and Sa for SSMPA Mix-14 (1,2,3)
and Mix-18 (4,5,6), as labeled in Table 2. In Figure 9, the correlation between the number of neurites per
cell body and Sa for both types of aerogels is provided. Greater surface roughness (Sa) led to shorter
neurite lengths for both Mix-14 and Mix-18 (Figure 8), while it led to an increase in neurite density
(Figure 9). An overall increase in neurite length of 1.05–1.28-fold was observed for each aerogel type
(Figure 8). On the other hand, an overall decrease in neurite density of 0.76–0.92-fold was observed for
each aerogel type with decreasing Sa (Figure 9).

Polymers 2020, 12, x FOR PEER REVIEW 2 of 15 

 

 

Figure 8. Relationship between Sa and neurite length. As the degree of surface roughness increased, 

the average neurite length decreased. Labels correspond to those in Tables 1 and 2. 

 

Figure 8. Relationship between Sa and neurite length. As the degree of surface roughness increased,
the average neurite length decreased. Labels correspond to those in Tables 1 and 2.



Polymers 2020, 12, 2995 12 of 15

Polymers 2020, 12, x FOR PEER REVIEW 2 of 15 

 

 

Figure 8. Relationship between Sa and neurite length. As the degree of surface roughness increased, 

the average neurite length decreased. Labels correspond to those in Tables 1 and 2. 

 

Figure 9. Relationship between Sa and number of neurites per cell body. As the degree of surface
roughness increased, the number of neurites per cell body also increased. Labels correspond to those
indicated in Tables 1 and 2.

4. Discussion

PC12 neuronal cells are a model of peripheral neurons because they are derived from a tumor of the
peripheral nervous system and because, under in vitro conditions, they extend long cellular processes.
As such, PC-12 cells are accepted as a good model for nerve regeneration in studies investigating the
effect of different in vitro conditions on the length of neurites. In previous studies, we have shown that
aerogel substrates enhance neurite outgrowth [12,13,23,24]. The aerogels investigated in our earlier
studies include polymer-crosslinked silica aerogel (PCSA) [11,12,14,19,20] and carbon aerogel (CA) [13],
both of which are significantly stiffer than the aerogels investigated in this study [12,13,23]. Our earlier
studies showed that, compared to PC12 plated on glass or plastic substrates, PC12 cells plated on
aerogels extended longer neurite lengths. This result served as a strong motivator to explore the response
of PC12 cells plated on other aerogel types exhibiting various properties. The SSMP aerogels used
here offered bulk and surface properties distinctly different from those studied previously [12,13,23,24]
and hence were chosen for this investigation. The use of SSMP aerogels as a neuronal scaffold has
not been investigated previously. The results of the biomedically relevant investigation reported here
show that SSMP aerogels have biomedical promise as materials for nerve regeneration because the
length of the neurites extended by PC12 cells grown on SSMP aerogels is greater than that of PC12 cells
grown on polymer-crosslinked silica aerogels and carbon aerogels, which were used in our previous
studies [12,13,23].

The pore size, and hence the surface roughness (Sa), of SSMP aerogels could be incrementally
modified by varying the conditions used to prepare the aerogels, and these two parameters could
be further modified by applying controlled amounts of radial pressure. Interestingly, our Young’s
modulus measurements show that these changes in pore size and Sa were accomplished without
significantly affecting the stiffness of the aerogel. This enabled us to evaluate PC12 neurite extension
as a function of two key parameters of SSMP aerogels, pore diameter and Sa, while keeping the
surface stiffness constant. The results show that SSMPA Mix-14 and Mix-18 not only supported PC12
neuronal cell attachment and neurite outgrowth but also affected cell body area, neurite length and
neurite density. Using SEM imaging and profilometry, we demonstrated that radially compressing
SSMP aerogels in our custom-built apparatus uniformly reduced pore diameters. Cells in general,
and particularly neurons such as PC12 cells, are very sensitive to surface roughness (Sa) [32,33].

First, we compared the behavior of PC12 cells on SSMPA Mix-14 and Mix-18 in their relaxed,
unrestricted (control) state. Mix-14 and Mix-18 differ in Sa (1.39 vs. 1.59 µm), Young’s modulus
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(255 vs. 182 KPa) and pore size (3.05 vs. 2.64 µm) in an unrestricted state (control-d0 = 1.5 cm). The cell
body area was not affected by the inherent differences between Mix-14 and Mix-18 (Figure 7).
However, PC12 cells extended longer neurites (Figure 5) and had a greater neurite density on Mix-18
when compared to Mix-14 (Figure 6).

When Mix-14 and Mix-18 were compressed to a final diameter of d1 = 1.4 cm, the cell body area,
neurite length and neurite density of PC12 cells were all affected to various degrees. Compared to the
uncompressed aerogels, this compression increased significantly the cell area on Mix-18 (2.7-fold) and
also on Mix-14 (1.5-fold), albeit to a lesser degree. The compression also increased neurite length on
both Mix-14 and Mix-18 to a similar degree (1.47-fold and 1.41-fold, respectively). Neurite density,
however, decreased nearly equally on Mix-14 and Mix-18 (0.76-fold and 0.87-fold, respectively)
compared to the uncompressed aerogels.

When Mix-14 and Mix-18 were compressed to a final diameter of d2 = 1.3 cm, the changes observed
at d1= 1.4 cm compared to uncompressed were more pronounced. The cell area increased 1.02-fold
and 1.40-fold on Mix-14 and Mix-18, respectively. Neurite length also further increased 1.89-fold and
1.74-fold on Mix-14 and Mix-18, respectively, while neurite density continued to decrease steadily
0.68-fold and 0.81-fold on Mix-14 and Mix-18, respectively.

The conditions tested in this investigation demonstrate that increased surface roughness and pore
size induce PC12 cells to assume morphological features characteristic of differentiated neurons; that is,
an extended cell body from which originate fewer but longer neurites. This finding supports the notion
that cells are very sensitive to surface roughness [32,34]. However, finding difference with the studies
of Brunetti et al. (2010) and Pennisi et al. (2011), which found that increased surface roughness had a
somewhat deleterious effect on cells, our results indicate a positive effect represented by increased
differentiation. This could be due to the fact that the surfaces used in the studies of Brunetti et al. (2010)
and Pennisi et al. (2011) were metallic (gold or platinum) and non-porous, which differs from the
porous, organic aerogels used here.

Therefore, our results demonstrate that SSMPA aerogels have a great potential for biomedical
applications such as nerve regeneration. This potential is due to the facts that SSMPA aerogels are
materials with a surface topography that includes pores in addition to raised features (mounds) and
that their chemistry, unlike that of metallic surfaces, appears to be well tolerated by cells. In addition,
the Sa and pore size of SSMPA aerogels can be tuned after their synthesis by subjecting the aerogels
to radial compression. Future studies will thoroughly investigate the relationship between SSMPA
aerogel chemistry, Sa and pore size on the one hand and neural differentiation on the other hand to
identify the optimal parameter for neural differentiation.

In conclusion, our study shows that the surface roughness and pore size of SSMPA aerogels can
be tuned after their synthesis by radial compression to values supporting neuronal differentiation.
These characteristics make SSMPA aerogels a potential material for the repair of nerve injuries.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/12/12/2995/s1,
Figure S1: SEM image of PC12 cell with lines representing the neurite length and orientation measured using
ImageJ. The yellow line represents the measurement of neurite length. The blue line shows the cell body area
measurement.

Author Contributions: Conceived, supervised and funded the project and wrote the manuscript (with support
from O.S., N.L., and M.R.S.), F.S.; performed the experiments and was responsible for most of the data
analysis, M.R.S.; contributed reagents/materials/analysis tools and contributed to interpretation of results,
O.S.; contributed reagents/materials/analysis tools, N.L. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded in part by FedEx Institute of Technology Innovation Grants at the University
of Memphis.

Conflicts of Interest: The authors declare no conflict of interest.

http://www.mdpi.com/2073-4360/12/12/2995/s1


Polymers 2020, 12, 2995 14 of 15

References

1. Van Helvert, S.; Storm, C.; Friedl, P. Mechanoreciprocity in cell migration. Nat. Cell Biol. 2018, 20, 8–20.
[CrossRef] [PubMed]

2. Li, X.; Wang, X.; Yao, D.; Jiang, J.; Guo, X.; Gao, Y.; Li, Q.; Shen, C. Effects of aligned and random fibers with
different diameter on cell behaviors. Colloids Surf. B Biointerfaces 2018, 171, 461–467. [CrossRef] [PubMed]

3. Lv, H.; Li, L.; Sun, M.; Zhang, Y.; Chen, L.; Rong, Y.; Li, Y. Mechanism of regulation of stem cell differentiation
by matrix stiffness. Stem Cell Res. Ther. 2015, 6, 1–11. [CrossRef]

4. Eroshenko, N.; Ramachandran, R.; Yadavalli, V.K.; Rao, R.R. Effect of substrate stiffness on early human
embryonic stem cell differentiation. J. Biol. Eng. 2013, 7, 7. [CrossRef] [PubMed]

5. Pathak, A.; Kumar, S. Independent regulation of tumor cell migration by matrix stiffness and confinement.
Proc. Natl. Acad. Sci. USA 2012, 109, 10334–10339. [CrossRef]

6. Su, W.-T.; Liao, Y.-F.; Wu, T.-W.; Wang, B.-J.; Shih, Y.-Y. Microgrooved patterns enhanced PC12 cell growth,
orientation, neurite elongation, and neuritogenesis. J. Biomed. Mater. Res. Part A 2012, 101, 185–194.
[CrossRef]

7. Britland, S.; Perridge, C.; Denyer, M.; Morgan, H.; Curtis, A.; Wilkinson, C. Morphogenetic guidance cues
can interact synergistically and hierarchically in steering nerve cell growth. Exp. Biol. Online 2013, 1, 1–15.
[CrossRef]

8. Li, W.; Tang, Q.Y.; Jadhav, A.D.; Narang, A.; Qian, W.X.; Shi, P.; Pang, S.W. Large-scale Topographical Screen
for Investigation of Physical Neural-Guidance Cues. Sci. Rep. 2015, 5, 8644. [CrossRef]

9. Hanson, J.N.; Motala, M.J.; Heien, M.L.; Gillette, M.; Sweedler, J.V.; Nuzzo, R.G. Textural guidance cues for
controlling process outgrowth of mammalian neurons. Lab Chip 2009, 9, 122–131. [CrossRef]

10. Yin, W.; Venkitachalam, S.M.; Jarrett, E.; Staggs, S.; Leventis, N.; Lu, H.; Rubenstein, D.A. Biocompatibility of
surfactant-templated polyurea-nanoencapsulated macroporous silica aerogels with plasma platelets and
endothelial cells. J. Biomed. Mater. Res. Part A 2009, 92, 1431–1439. [CrossRef]

11. Sabri, F.; Boughter, J.D., Jr.; Gerth, D.; Skalli, O.; Phung, T.-C.N.; Tamula, G.-R.M.; Leventis, N.
Histological Evaluation of the Biocompatibility of Polyurea Crosslinked Silica Aerogel Implants in a
Rat Model: A Pilot Study. PLoS ONE 2012, 7, e50686. [CrossRef] [PubMed]

12. Lynch, K.J.; Skalli, O.; Sabri, F. Investigation of surface topography and stiffness on adhesion and neurites
extension of PC12 cells on crosslinked silica aerogel substrates. PLoS ONE 2017, 12, e0185978. [CrossRef]
[PubMed]

13. Sala, M.R.; Lynch, K.J.; Chandrasekaran, S.; Skalli, O.; Worsley, M.; Sabri, F. PC-12 cells adhesion and
differentiation on carbon aerogel scaffolds. MRS Commun. 2018, 8, 1426–1432. [CrossRef]

14. Sabri, F.; Sebelik, M.E.; Meacham, R.; Boughter, J.D.; Challis, M.J.; Leventis, N. In Vivo Ultrasonic Detection
of Polyurea Crosslinked Silica Aerogel Implants. PLoS ONE 2013, 8, e66348. [CrossRef]

15. Allison, S.W.; Baker, E.S.; Lynch, K.J.; Sabri, F. In vivo X-Ray excited optical luminescence from
phosphor-doped aerogel and Sylgard 184 composites. Radiat. Phys. Chem. 2017, 135, 88–93. [CrossRef]

16. Allison, S.W.; Baker, E.S.; Lynch, K.J.; Sabri, F. In Vivo X-Ray Imaging of Phosphor-Doped PDMS and
Phosphor-Doped Aerogel Biomaterials. Int. J. Polym. Mater. 2015, 64, 823–830. [CrossRef]

17. Sabri, F.; Lynch, K.J.; Allison, S.; Allison, S.W. Polymer-Encapsulated Phosphor Particles for In Vivo Phosphor
Luminescence Applications. Int. J. Polym. Mater. 2015, 64, 690–694. [CrossRef]

18. Yin, W.; Rubenstein, D.A. Biomedical Applications of Aerogels. In Aerogels Handbook; Advances in Sol-Gel
Derived Materials and Technologies; Springer: New York, NY, USA, 2011; pp. 683–694.

19. Hadley, J.; Hirschman, J.; Morshed, B.I.; Sabri, F. RF Coupling of Interdigitated Electrode Array on Aerogels
for in vivo Nerve Guidance Applications. MRS Adv. 2019, 4, 1237–1244. [CrossRef]

20. Sabri, F.; Gerth, D.; Tamula, G.-R.M.; Phung, T.-C.N.; Lynch, K.J.; Boughter, J.D., Jr. Novel Technique for Repair
of Severed Peripheral Nerves in Rats Using Polyurea Crosslinked Silica Aerogel Scaffold. J. Investig. Surg.
2014, 27, 294–303. [CrossRef]

21. Bai, S.; Han, H.; Huang, X.; Xu, W.; Kaplan, D.L.; Zhu, H.; Lu, Q. Silk scaffolds with tunable mechanical
capability for cell differentiation. Acta Biomater. 2015, 20, 22–31. [CrossRef]

22. Sabri, F.; Cole, J.A.; Scarbrough, M.C.; Leventis, N. Investigation of Polyurea-Crosslinked Silica Aerogels as a
Neuronal Scaffold: A Pilot Study. PLoS ONE 2012, 7, e33242. [CrossRef] [PubMed]

http://dx.doi.org/10.1038/s41556-017-0012-0
http://www.ncbi.nlm.nih.gov/pubmed/29269951
http://dx.doi.org/10.1016/j.colsurfb.2018.07.045
http://www.ncbi.nlm.nih.gov/pubmed/30077146
http://dx.doi.org/10.1186/s13287-015-0083-4
http://dx.doi.org/10.1186/1754-1611-7-7
http://www.ncbi.nlm.nih.gov/pubmed/23517522
http://dx.doi.org/10.1073/pnas.1118073109
http://dx.doi.org/10.1002/jbm.a.34318
http://dx.doi.org/10.1007/s00898-996-0002-3
http://dx.doi.org/10.1038/srep08644
http://dx.doi.org/10.1039/B803595D
http://dx.doi.org/10.1002/jbm.a.32476
http://dx.doi.org/10.1371/journal.pone.0050686
http://www.ncbi.nlm.nih.gov/pubmed/23251378
http://dx.doi.org/10.1371/journal.pone.0185978
http://www.ncbi.nlm.nih.gov/pubmed/29049304
http://dx.doi.org/10.1557/mrc.2018.206
http://dx.doi.org/10.1371/journal.pone.0066348
http://dx.doi.org/10.1016/j.radphyschem.2017.01.045
http://dx.doi.org/10.1080/00914037.2015.1030652
http://dx.doi.org/10.1080/00914037.2014.1002096
http://dx.doi.org/10.1557/adv.2019.141
http://dx.doi.org/10.3109/08941939.2014.906688
http://dx.doi.org/10.1016/j.actbio.2015.04.004
http://dx.doi.org/10.1371/journal.pone.0033242
http://www.ncbi.nlm.nih.gov/pubmed/22448239


Polymers 2020, 12, 2995 15 of 15

23. Lynch, K.J.; Skalli, O.; Sabri, F. Growing Neural PC-12 Cell on Crosslinked Silica Aerogels Increases Neurite
Extension in the Presence of an Electric Field. J. Funct. Biomater. 2018, 9, 30. [CrossRef] [PubMed]

24. Sala, M.R.; Peng, C.; Skalli, O.; Sabri, F. Tunable neuronal scaffold biomaterials through plasmonic
photo-patterning of aerogels. MRS Commun. 2019, 9, 1249–1255. [CrossRef]

25. Fornasari, B.E.; Carta, G.; Gambarotta, G.; Raimondo, S. Natural-Based Biomaterials for Peripheral Nerve
Injury Repair. Front. Bioeng. Biotechnol. 2020, 8, 554257. [CrossRef]

26. Malakooti, S.; Zhao, E.; Tsao, N.; Bian, N.; Soni, R.U.; Doulah, A.S.U.; Sotiriou-Leventis, C.; Leventis, N.; Lu, H.
Synthesis of aerogel foams through a pressurized sol-gel method. Polymer 2020, 208, 122925. [CrossRef]

27. Donthula, S.; Mandal, C.; Schisler, J.; Leventis, T.; Meador, M.A.B.; Sotiriou-Leventis, C.; Leventis, N.
Nanostructure-Dependent Marcus-Type Correlation of the Shape. ACS Appl. Mater. Interfaces 2018, 10,
23321–23334. [CrossRef]

28. Malakooti, S.; Rostami, S.; Churu, H.G.; Luo, H.; Clark, J.; Casarez, F.; Rettenmaier, O.; Daryadel, S.;
Minary-Jolandan, M.; Sotiriou-Leventis, C.; et al. Scalable, hydrophobic and highly-stretchable
poly(isocyanurate–urethane) aerogels. RSC Adv. 2018, 8, 21214–21223. [CrossRef]

29. Donthula, S.; Mandal, C.; Leventis, T.; Schisler, J.; Saeed, A.M.; Sotiriou-Leventis, C.; Leventis, N.
Shape Memory Superelastic Poly(isocyanurate-urethane) Aerogels (PIR-PUR) for Deployable Panels and
Biomimetic Applications. Chem. Mater. 2017, 29, 4461–4477. [CrossRef]

30. Bang, A.; Buback, C.; Sotiriou-Leventis, C.; Leventis, N. Flexible Aerogels from Hyperbranched Polyurethanes:
Probing the Role of Molecular Rigidity with Poly(Urethane Acrylates) Versus Poly(Urethane Norbornenes).
Chem. Mater. 2014, 26, 6979–6993. [CrossRef]

31. Chidambareswarapattar, C.; McCarver, P.M.; Luo, H.; Lu, H.; Sotiriou-Leventis, C.; Leventis, N.
Fractal Multiscale Nanoporous Polyurethanes: Flexible to Extremely Rigid Aerogels from Multifunctional
Small Molecules. Chem. Mater. 2013, 25, 3205–3224. [CrossRef]

32. Brunetti, V.; Maiorano, G.; Rizzello, L.; Sorce, B.; Sabella, S.; Cingolani, R.; Pompa, P.P. Neurons sense
nanoscale roughness with nanometer sensitivity. Proc. Natl. Acad. Sci. USA 2010, 107, 6264–6269. [CrossRef]
[PubMed]

33. D’Amato, A.R.; Puhl, D.L.; Ziemba, A.M.; Johnson, C.D.L.; Doedee, J.; Bao, J.; Gilbert, R.J. Exploring the
effects of electrospun fiber surface nanotopography on neurite outgrowth and branching in neuron cultures.
PLoS ONE 2019, 14, e0211731. [CrossRef] [PubMed]

34. Pennisi, C.P.; Dolatshahi-Pirouz, A.; Foss, M.; Chevallier, J.; Fink, T.; Zachar, V.; Besenbacher, F.; Yoshida, K.
Nanoscale topography reduces fibroblast growth, focal adhesion size and migration-related gene expression
on platinum surfaces. Colloids Surf. B Biointerfaces 2011, 85, 189–197. [CrossRef] [PubMed]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/jfb9020030
http://www.ncbi.nlm.nih.gov/pubmed/29677113
http://dx.doi.org/10.1557/mrc.2019.143
http://dx.doi.org/10.3389/fbioe.2020.554257
http://dx.doi.org/10.1016/j.polymer.2020.122925
http://dx.doi.org/10.1021/acsami.8b06234
http://dx.doi.org/10.1039/C8RA03085E
http://dx.doi.org/10.1021/acs.chemmater.7b01020
http://dx.doi.org/10.1021/cm5031443
http://dx.doi.org/10.1021/cm401623h
http://dx.doi.org/10.1073/pnas.0914456107
http://www.ncbi.nlm.nih.gov/pubmed/20308580
http://dx.doi.org/10.1371/journal.pone.0211731
http://www.ncbi.nlm.nih.gov/pubmed/30716106
http://dx.doi.org/10.1016/j.colsurfb.2011.02.028
http://www.ncbi.nlm.nih.gov/pubmed/21435850
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Superelastic Shape Memory Polyurethane Aerogels (SSMPA) 
	Compression of SSMPA 
	Cell Culture 
	Scanning Electron Microscopy 
	Cell Response Measurement 
	Pore Diameter Measurement 
	Surface Roughness (Sa) Measurement 
	Stiffness Measurement 
	Statistical Analysis 

	Results 
	Effect of Radial Compression on the SSMPA Properties 
	Pore Diameter 
	Surface Roughness (Sa) 
	Young’s Modulus 
	Comparison of Pore Diameter and Surface Roughness 

	Impact of SSMPA Properties on Cell Shape and Neurite Extension 
	Neurite Length 
	Number of Neurites per Cell Body 
	Cell Body Area 

	Nerve Response to Sa 

	Discussion 
	References

