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Abstract

 

Ataxia telangiectasia mutated (ATM) kinase is critical for initiating the signaling pathways that
lead to cell cycle checkpoints and DNA double strand break repair. In the absence of ATM,
humans and mice show a primary immunodeficiency that includes low serum antibody titers,
but the role of ATM in antigen-driven immunoglobulin gene diversification has not been defined.
Here, we show that although ATM is dispensable for somatic hypermutation, it is required for
efficient class switch recombination (CSR). The defect in CSR is not due to alterations in
switch region transcription, accessibility, DNA damage checkpoint protein recruitment, or
short-range intra-switch region recombination. Only long-range inter-switch recombination is
defective, indicating an unexpected role for ATM in switch region synapsis during CSR.

Key words: class switch recombination • somatic hypermutation • activation-induced 
cytidine deaminase • ATM • DNA repair

 

Introduction

 

In mature B cells responding to antigen, antibody genes are
diversified by somatic hypermutation (SHM; 1) and class
switch recombination (CSR; 2, 3). Both of these reac-
tions are initiated by activation-induced cytidine deaminase
(AID; 4, 5), an enzyme that deaminates cytidines in single
stranded DNA (6–13). SHM alters the antigen binding
specificity of antibodies by introducing point mutations in
Ig variable regions (1). CSR is a region-specific deletional
recombination reaction that joins large repetitive switch re-
gion sequences located upstream of each Ig constant region
(2, 3). CSR replaces the upstream constant region (C

 

�

 

)
with a downstream C

 

H 

 

gene (

 

�

 

, 

 

�

 

, or 

 

�

 

), thereby producing
an Ig with a new set of effector functions while retaining
the original antigen-binding specificity (2, 3).

Specific switch regions are targeted for recombination by
cytokine-induced transcription from intronic (I) promoters
located 5

 

� 

 

of each switch region. These promoters are essen-
tial for CSR (14–19), possibly because they facilitate switch
region accessibility to AID and expose single stranded DNA
during the transcription reaction (9–13, 20, 21). AID has
been proposed to initiate CSR by creating dU:dG mismatches

that are processed by uracyl-DNA glycosylase (6–8) and
mismatch repair enzymes (22–27) to produce DNA double
strand break (DSB) intermediates. However, the exact mech-
anism by which these lesions are generated remains unclear
(28). Ultimately, DNA breaks occurring in both donor and
acceptor S regions are repaired by nonhomologous end join-
ing (29–32), and the intervening DNA sequences are re-
leased as a circular episome (33–35).

Switch region DNA DSBs become associated with phos-
phorylated histone H2AX (

 

�

 

-H2AX; 32, 36, 37). This
modified histone forms foci at sites of CSR that are be-
lieved to facilitate the focal accumulation of several addi-
tional DNA repair factors (36) like 53BP1, which is re-
quired for CSR (38, 39). Although the role of these foci in
CSR has not been determined, efficient switching requires
H2AX (32, 36, 37).

H2AX is one of many substrates of the phosphatydil-
inositol-3 kinase-like kinase (PIKK) family of proteins that
includes ataxia telangiectasia mutated (ATM), ATM and
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class switch recombination; DNA-PK, DNA-dependent protein kinase;
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tol-3 kinase-like kinase; SHM, somatic hypermutation.
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Rad3-related (ATR), and DNA-dependent protein kinase
(DNA-PK; 40). These kinases are the prototype transduc-
ers of the DNA damage signal (40), and DNA-PK (consist-
ing of DNA-PK catalytic subunit [DNA-PKcs], Ku80 and
Ku70 subunits) is required for CSR (29–32), but the role
of ATM and ATR in CSR has not been determined. ATM
deficiency in humans and mice causes multi-organ pathol-
ogy, including a primary immunodeficiency characterized
by low serum levels of switched antibodies (41–45). Here,
we report that ATM is required for efficient joining of dis-
tal switch regions.

 

Materials and Methods

 

Mice and Immunizations.

 

WT (C57BL/6), ATM

 

�

 

/

 

� 

 

(43), Ku80

 

�

 

/

 

�

 

carrying prerearranged heavy and light chains (31), and H2AX

 

�

 

/

 

�

 

(37) mice were bred and maintained under specific pathogen-free
conditions. Age-matched 8–10-wk-old mice were immunized by
footpad injection with 50 

 

�

 

g NP-CGG (Biosearch Technolo-
gies) in complete Freund’s adjuvant. All work with mice was per-
formed under Rockefeller University Institutional Animal Care
and Use Committee–approved protocols.

 

Lymphocyte Cultures and Cell Sorting.

 

B lymphocytes were
isolated from the spleen using CD43 microbeads (Miltenyi Bio-
tec), labeled with 5 

 

�

 

M CFDA-SE for 10 min at 37

 

�

 

C (Molecu-
lar Probes), and cultured (10

 

6 

 

cells/ml) with 25 

 

�

 

g/ml LPS alone

or in combination with 5 ng/ml IL-4 for 5 d. Lymph nodes were
dissected before or after immunization. Germinal center B cells
were stained with APC anti-B220, FITC anti-GL7, and PE anti-
FAS monoclonal antibodies (BD Biosciences). In all cell sorting
experiments, 0.5 

 

�

 

g/ml propidium iodide was added immedi-
ately before laser excitation to exclude dead cells. Cell sorting was
performed on a FACSVantage (Becton Dickinson), and an ali-
quot of each of the sorted fractions was reanalyzed for purity on a
FACSCalibur (Becton Dickinson).

 

Hybridoma Analysis.

 

B cells were stimulated with LPS and
IL-4 for 72 h and fused to the SP2/0Ag-14 myeloma cell line.
IgM-secreting clones were selected by ELISA for further analysis.
Genomic DNA was prepared and Southern blot analysis was per-
formed as described previously (32).

 

PCR, Mutation Analysis, and Quantitative Real-Time RT-PCR.

 

Genomic DNA was amplified by PCR using Pfu Turbo DNA
polymerase (Stratagene) from 5,000 sorted cell equivalents in four
independent reactions that were pooled for cloning experiments.
Total RNA was extracted with TRIzol (Invitrogen) and reverse
transcribed with random hexamers and superscript II reverse
transcriptase (Invitrogen). First strand cDNA was used for SYBR
Green fluorogenic dye real-time PCR (Applied Biosystems).
The primers and PCR conditions that were used have been de-
scribed (32).

 

53BP1 Focus Analysis.

 

After 48 h of stimulation, B cells were
spun onto coverslips and processed for immunocytochemistry-FISH
as described previously (36). Rabbit polyclonal anti-53BP1 antibod-

Figure 1. ATM is required for efficient
CSR, but not for SHM. Flow cytometry analysis
of WT and ATM��� B cells stimulated with
LPS plus IL-4 for 4 d (A) or LPS alone (B and
C) for 5 d. Cell division as measured by CFSE
dye dilution is shown on the top. The percent-
age of cells expressing (A) IgG1, (B) IgG2b, and
(C) IgG3 after a specific number of cell divi-
sions is indicated on the bottom. Cells were
stained with Topro-3 before acquisition and
analysis was performed on live B cells (Topro-3�).
(D) Mutation analysis in the JH4 intron (reference
46) of WT and ATM�/� germinal center B cells
(B220	 Fas	 GL-7	) obtained from the lymph
nodes of immunized mice. Segment sizes in the
pie charts are proportional to the number of
sequences carrying the number of mutations
indicated in the periphery of the charts. The
frequency of mutations per basepair sequenced
and the total number of independent sequences
analyzed is indicated underneath and in the
center of each chart, respectively. Statistical sig-
nificance was determined by a two-tailed t test
assuming unequal variance and comparing to
WT (P 
 0.914). Percent nucleotide substitu-
tions adjusted for base composition is shown to
the right of each pie chart. Percentage of muta-
tions within hotspot motifs (references 81–83)
is indicated underneath each panel. The total
number of mutations analyzed was as follows:
WT, 88 mutations/28,120 bp; ATM�/�, 63
mutations/20,920 bp.
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ies (provided by J. Chen, Mayo Clinic, Rochester, MN) were used
at a 1:1,000 dilution. The IgH-specific BAC probe spanned from
C

 

�

 

1 to 3

 

� 

 

of C

 

� 

 

(36).

 

Results

 

ATM Is Required for CSR, But Not SHM.

 

To deter-
mine whether ATM is required for CSR, we stimulated
ATM

 

��� 

 

and WT B cells in vitro with LPS alone or in
combination with IL-4. Cells were labeled with CFSE to
follow cell division, and CSR was measured by cell surface
expression of IgG1, IgG2b, and IgG3 (Fig. 1, A–C). De-
spite the reported growth defect in ATM

 

�

 

/

 

� 

 

mice (42–44),
we found that the rates of cell division and death in
ATM

 

�

 

/

 

� 

 

B cells were indistinguishable from WT (Fig. 1
A, top, and not depicted). Nevertheless, ATM

 

��� 

 

B cells
showed an average threefold reduction of CSR in all three
isotypes analyzed (Fig. 1, A–C, bottom; 

 

n 

 


 

 

7 experi-
ments). We conclude that ATM is required for normal
CSR, but not for B cell proliferation in response to LPS or
LPS and IL-4.

To determine whether ATM is required for SHM, we
immunized ATM

 

�

 

/

 

� 

 

and WT control mice with NP-CGG
and cloned and sequenced the J

 

H

 

4 intron (46) from sorted
germinal center B cells (the B220

 

	 

 

Fas

 

	 

 

GL-7

 

	 

 

population).
We found no differences in mutation frequencies (WT:
3.6 

 

� 

 

10

 

�

 

3 

 

vs. ATM

 

���

 

: 3.0 

 

� 

 

10

 

�

 

3

 

; P 

 


 

 

0.914) or in the
proportion of mutated clones (Fig. 1 D). Furthermore, there
was no significant bias in the nucleotide substitution patterns
found in J

 

H

 

4 sequences cloned from ATM

 

�

 

/

 

� 

 

germinal cen-
ter B cells (Fig. 1 D). Thus, ATM is dispensable for SHM.

 

Switch Region Transcription and Mutation.

 

Switch region
transcription plays an essential role in CSR (2, 3). To de-
termine whether ATM deficiency alters switch region tran-
scription, we measured S

 

� 

 

and S

 

�

 

1 sterile transcripts in B
cells stimulated with LPS and IL-4 by real-time RT-PCR
(Fig. 2 A). We found that S

 

� 

 

and S

 

�

 

1 sterile transcripts
were similar in ATM

 

�

 

/

 

� 

 

and control B cells (Fig. 2 A).
However, the IgG1 post-switch transcripts produced by
the circular episomes created by productive CSR (47) were
reduced an average of 2.3-fold in ATM-deficient B cells
(Fig. 2 A; 

 

n 

 


 

 

4 experiments). Thus, although sterile tran-
scription of IgM and IgG1 switch regions is not altered in
the absence of ATM, post-switch transcripts are reduced in
proportion to the reduced frequency of CSR.

DNA sequences located upstream of the Ig switch re-
gions are mutated by an AID-dependent mechanism in B
cells undergoing CSR (32, 36, 48, 49), and these mutations
have been used to measure AID targeting to switch region
DNA. To determine whether ATM is required for S

 

� 

 

mu-
tation, we analyzed mutation frequencies in B cells induced
to switch in vitro with LPS and IL-4. The analysis was per-
formed on sorted cells that were IgM

 

	 

 

and had completed
five cell divisions. We found similar levels of S

 

� 

 

mutation
in ATM

 

�

 

/

 

� 

 

and WT B cells (WT: 3.7 

 

� 

 

10

 

�

 

4 

 

vs. ATM

 

���

 

:
2.5 

 

� 

 

10

 

�

 

4

 

; P 

 


 

 

0.55; Fig. 2 B). We conclude that switch
regions are accessible to and targeted by AID in the absence
of ATM.

 

CSR Junctions.

 

Although CSR is inefficient in the ab-
sence of ATM, some cells do switch to IgG1 in response to
LPS and IL-4 (Fig. 1 A). To determine whether these CSR
junctions are normal, we cloned and sequenced IgG1 CSR
junctions from WT (

 

n 

 


 

 

40) and ATM

 

�

 

/

 

� 

 

(

 

n 

 


 

 

32) B cells.
Analysis of the ATM

 

�

 

/

 

� 

 

switch junctions revealed no sig-
nificant differences in the extent of donor/acceptor homol-
ogy at the junctions or the average length of overlap (1.9
bp in ATM

 

�

 

/

 

� 

 

and 2 bp in controls; Fig. 3 A). The only
notable difference was a slightly lower mutation frequency
in the vicinity of the junctions (

 

� 

 

50 bp) in ATM

 

�

 

/

 

� 

 

B
cells (WT: 3.2 

 

� 

 

10

 

�

 

2 

 

vs. ATM

 

���

 

: 2.0 

 

� 

 

10

 

�

 

2

 

; P 

 


 

 

0.01;
Fig. 3 B). We conclude that switch region joining is not
significantly altered in the absence of ATM.

 

Intra-Switch Region Recombination.

 

B cells stimulated to
undergo CSR suffer frequent internal deletions in S

 

� 

 

re-
gion DNA (15, 50–52). These deletions are AID depen-
dent (32, 53) and repaired like bona fide CSR through the
nonhomologous end joining pathway (32). To determine
whether ATM is required for this intra-switch region re-
combination, we examined S

 

� 

 

and S

 

�

 

1 switch regions
from IgM-expressing hybridomas derived from LPS plus
IL-4–stimulated ATM

 

�

 

/

 

� 

 

B cells. By Southern blotting, 11

Figure 2. Switch region accessibility in the absence of ATM. (A) Real-
time RT-PCR for � sterile transcript (� ST), �1 sterile transcript (�1
ST), and post-switch �1 circle transcript (�1 CT) in WT (closed bars) and
ATM�/� (open bars) B cells stimulated with LPS and IL-4 for 3 d. Mean
results from four independent cultures are expressed as fold induction rel-
ative to WT. (B) Mutations in S� determined in WT and ATM�/� B
cells sorted for five cell divisions and expressing IgM. The number of muta-
tions was as follows: WT, 31 mutations/83,773 bp; ATM�/�, 14 mutations/
55,069 bp. Pie charts are as in Fig. 1. Statistical significance was deter-
mined by a two-tailed t test assuming unequal variance and comparing to
background (resting B cells from WT mice) or WT. P-values are indi-
cated below each pie chart.
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out of 54 ATM�/� hybridomas showed internal deletions
in S� (Fig. 4 A), and only 1 of these also showed an inter-
nal deletion in S�1 (Fig. 4 B). The frequency of internal
deletions in S� (20%) and S�1 (2%) in the ATM�/� hy-
bridomas was similar to that found in hybridomas derived
from WT B cells (32). We conclude that in the absence of
ATM, intra-switch recombination proceeds normally. Fur-
thermore, because both intra-switch recombination and
CSR junctions appeared to be normal in ATM�/� B cells,
we conclude that switch DNA end joining is not impaired
in the absence of ATM. Consistent with this, ATM�/� cells
also support normal DNA end joining in V(D)J recombi-
nation (45, 54, 55).

ATM and DNA Repair Focus Formation. 53BP1 is a
DNA repair factor that like H2AX, is an ATM substrate
(56, 57) and is required for CSR (38, 39). In irradiated
cells, 53BP1 forms H2AX-dependent foci in areas of DNA
damage (37, 58, 59). To determine whether 53BP1 forms
CSR-associated foci and whether these are ATM depen-
dent, we examined B cells undergoing CSR using antibod-
ies to 53BP1 and a DNA probe spanning the IgH locus
(36). After 2 d of stimulation with LPS and IL-4, 18% of B
cells in a given optical section contained at least one 53BP1
focus and a signal from one or both IgH alleles (n 
 1,028
cells examined). Coincidence of these 53BP1 foci with one
or both IgH alleles was detected in 69% of the cells (n 

185 cells examined; Fig. 5). In contrast, 53BP1 foci were
absent from H2AX�/� B cells (n 
 1,014 cells examined;

Fig. 5), which is in agreement with the observation that
phosphorylation of H2AX is required for 53BP1 focus for-
mation in response to � irradiation (37, 58, 59). Thus,
53BP1 does accumulate at sites of DNA damage during
CSR and this accumulation is H2AX dependent.

To determine whether CSR foci are ATM or DNA-PK
dependent, we assayed for 53BP1 focus formation at the IgH
locus in ATM�/� and Ku80�/� B cells. In the absence of
Ku80, the catalytic subunit of DNA-PK is not targeted to
DSBs, leaving the DNA-dependent kinase inactive (60). In
contrast to H2AX�/� B cells, ATM�/� and Ku80�/� B cells
assembled CSR-associated 53BP1 foci (Fig. 5). The percent-
age of cells containing 53BP1/IgH foci that showed colocal-
ization was 57% in ATM�/� B cells (n 
 1,145 cells exam-
ined) and 66% in Ku80�/� B cells (n 
 1,273 cells examined).
We conclude that despite the requirement for both ATM and
DNA-PK in CSR, neither of these enzymes is essential for
CSR-associated repair protein focus formation.

Discussion
We found that ATM, a central regulator of the DNA

damage response, is required for efficient CSR. ATM does
not regulate transcription of donor and acceptor switch re-
gions, nor switch region accessibility to AID. It is not
required for DNA repair protein focus formation or intra-
switch region recombination. Analysis of switch recombi-
nation junctions revealed only a small decrease in the mu-

Figure 3. CSR junctions in the absence of
ATM. (A) Histogram depicting the percentage
of sequences with the indicated length of mi-
crohomologies at S�/S�1 junctions in WT
(closed bars) and ATM�/� (open bars) B cells.
Overlap was determined by identifying the
longest region at the switch junction of perfect
uninterrupted donor/acceptor identity. (B) Muta-
tions in the vicinity of the junctions obtained
from WT and ATM�/� B cells. Pie charts are as
in Fig. 1. Statistical significance was determined
by a two-tailed t test assuming unequal variance
and comparing to WT. P-values are indicated
below each pie chart.

Figure 4. Intra-switch region recombination
in the absence of ATM. Southern blot analysis
of (A) S� and (B) S�1 regions in IgM-secreting
hybridomas derived from ATM�/� B cells. Re-
striction enzymes and probes used are indicated
in the top panels. , deletions. Control digests
performed on tail DNA (ATM���) and the
SP2/0Ag-14 (SP2) fusion partner were loaded
on lanes 1 and 2. The SP2 cell line has a dele-
tion in C� and no hybridization is observed.
The same deletions in S� were found using an
E� probe (not depicted). Number of deletions
over hybridomas screened is indicated below
each panel. Molecular weight markers in kilobase
pairs are indicated on the left side of each panel.
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tation frequency in the vicinity of CSR junctions, which
was also found in ATM-deficient human B cells (61).
Therefore, ATM is entirely dispensable for targeting, lesion
formation, and intra-switch region recombination during
CSR. Our results are consistent with a role for ATM in
promoting joining between distant switch regions.

CSR is a deletional recombination reaction with double
strand DNA break intermediates resolved by the non-
homologous end joining DNA repair pathway (29–32).
However, DNA damage in CSR is not limited to DSBs
and is thought to include U:G mismatches, single strand
DNA produced during lesion processing, R loops, and sin-
gle strand nicks (2, 3, 6–8, 21, 62). Although evidence for
the involvement of base excision repair and mismatch re-
pair enzymes in the processing of AID-induced lesions has
been provided (7, 22–27), it remains unclear how DSBs are
generated (28). Single and double strand DNA breaks trig-
ger repair pathways that depend on activation of PIKK ki-
nases ATM and ATR. These kinases recognize DNA dam-
age in conjunction with additional DNA binding proteins:
replication protein A, a single strand DNA binding protein
that recruits ATR (63) and has been implicated in targeting
AID to Ig genes (64), and the complex of Mre11, Rad50,
and Nbs1 (MRN), which is required for maximal activa-
tion of ATM (65). Consistent with the idea that ATM is
dependent on MRN, mutations in Nbs1 or Mre11 pro-
duce human disease phenotypes similar to mutations of
ATM (66–68).

Once activated, PIKK kinases phosphorylate numerous
cellular substrates (40), including histone H2AX and
53BP1 (56, 57, 69–71). H2AX and 53BP1 play important
roles in DSB repair because deletion of either gene leads to

irradiation sensitivity, genomic instability, increased tumor
susceptibility, and a decrease in CSR (32, 36, 37, 72–75).
�-H2AX spreads over megabase domains that flank the
break facilitating DNA repair by remodeling chromatin
and tethering additional repair factors such as MRN and
53BP1 to damaged DNA (76, 77). In the absence of
�-H2AX, these factors recognize and bind damaged DNA,
but they are not retained at the site of DNA damage and do
not appear to spread along the chromosome as evidenced
by lack of DNA damage–associated focus formation (58,
59). Thus, DNA damage–associated chromatin remodeling
is impaired in the absence of H2AX. Aberrant chromatin
remodeling may also account for the specific defect in join-
ing of distant switch regions in the absence of H2AX (32).

We have found that CSR-associated 53BP1 foci are de-
pendent on �-H2AX, but form independently of ATM
and DNA-PK activity. Therefore, during CSR, H2AX
must be phosphorylated by a PIKK kinase with overlapping
specificity, which could be ATM, DNA-PK, or ATR (39).
Indeed, in irradiated fibroblasts, ATM and DNA-PK func-
tion redundantly in �-H2AX focus formation (78). If
�-H2AX is phosphorylated by a redundant kinase and
53BP1 is recruited, why is there a defect in distal switch re-
gion joining in the absence of ATM? One possibility is that
ATM, like DNA-PKcs, has a structural role in CSR in ad-
dition to its catalytic function. DNA-PKcs catalytic mu-
tants have a milder CSR phenotype than complete deletion
of DNA-PKcs (79, 80). A second possibility is that addi-
tional ATM kinase substrates involved in CSR are uniquely
phosphorylated by ATM and are required for switch region
synapsis. In conclusion, ATM deficiency leads to a primary
defect in CSR that may account for the low serum anti-
body levels seen in A-T patients.

We thank members of the Michel and André Nussenzweig labora-
tories and E. Besmer for discussions, K. Velinzon for cell sorting, F.
Weiss-Garcia for hybridoma fusions, and P. Stavropoulos for
screening and maintenance of hybridomas.

This work was supported in part by grants from National Insti-
tutes of Health to M.C. Nussenzweig. M.C. Nussenzweig is a
Howard Hughes Medical Institute (HHMI) investigator. B. Reina-
San-Martin is an HHMI postdoctoral associate.

The authors have no conflicting financial interests.

Submitted: 11 June 2004
Accepted: 23 August 2004

References
1. McKean, D., K. Huppi, M. Bell, L. Staudt, W. Gerhard, and

M. Weigert. 1984. Generation of antibody diversity in the
immune response of BALB/c mice to influenza virus hemag-
glutinin. Proc. Natl. Acad. Sci. USA. 81:3180–3184.

2. Stavnezer, J. 1996. Immunoglobulin class switching. Curr.
Opin. Immunol. 8:199–205.

3. Manis, J.P., M. Tian, and F.W. Alt. 2002. Mechanism and
control of class-switch recombination. Trends Immunol. 23:
31–39.

4. Muramatsu, M., K. Kinoshita, S. Fagarasan, S. Yamada, Y.
Shinkai, and T. Honjo. 2000. Class switch recombination

Figure 5. Activation of 53BP1 in response to CSR-associated DSBs.
Distribution of 53BP1 in activated B cells from WT, ATM�/�, Ku80�/�,
and H2AX�/� mice. B cells were stained with anti-53BP1 antibodies fol-
lowed by DNA FISH detection of the CH region. Fluorescent images
represent a single optical section.



Class Switch Recombination and Somatic Hypermutation in the Absence of ATM1108

and hypermutation require activation-induced cytidine deam-
inase (AID), a potential RNA editing enzyme. Cell. 102:
553–563.

5. Revy, P., T. Muto, Y. Levy, F. Geissmann, A. Plebani, O.
Sanal, N. Catalan, M. Forveille, R. Dufourcq-Labelouse, A.
Gennery, et al. 2000. Activation-induced cytidine deaminase
(AID) deficiency causes the autosomal recessive form of the
Hyper-IgM syndrome (HIGM2). Cell. 102:565–575.

6. Petersen-Mahrt, S.K., R.S. Harris, and M.S. Neuberger.
2002. AID mutates E. coli suggesting a DNA deamination
mechanism for antibody diversification. Nature. 418:99–103.

7. Rada, C., G.T. Williams, H. Nilsen, D.E. Barnes, T. Lin-
dahl, and M.S. Neuberger. 2002. Immunoglobulin isotype
switching is inhibited and somatic hypermutation perturbed
in UNG-deficient mice. Curr. Biol. 12:1748–1755.

8. Di Noia, J., and M.S. Neuberger. 2002. Altering the pathway
of immunoglobulin hypermutation by inhibiting uracil-DNA
glycosylase. Nature. 419:43–48.

9. Bransteitter, R., P. Pham, M.D. Scharff, and M.F. Goodman.
2003. Activation-induced cytidine deaminase deaminates de-
oxycytidine on single-stranded DNA but requires the action
of RNase. Proc. Natl. Acad. Sci. USA. 100:4102–4107.

10. Ramiro, A.R., P. Stavropoulos, M. Jankovic, and M.C. Nus-
senzweig. 2003. Transcription enhances AID-mediated cyti-
dine deamination by exposing single-stranded DNA on the
nontemplate strand. Nat. Immunol. 4:452–456.

11. Chaudhuri, J., M. Tian, C. Khuong, K. Chua, E. Pinaud,
and F.W. Alt. 2003. Transcription-targeted DNA deamina-
tion by the AID antibody diversification enzyme. Nature.
422:726–730.

12. Dickerson, S.K., E. Market, E. Besmer, and F.N. Papavasil-
iou. 2003. AID mediates hypermutation by deaminating sin-
gle stranded DNA. J. Exp. Med. 197:1291–1296.

13. Larson, E.D., and N. Maizels. 2004. Transcription-coupled
mutagenesis by the DNA deaminase AID. Genome Biol. 5:211.

14. Stavnezer-Nordgren, J., and S. Sirlin. 1986. Specificity of im-
munoglobulin heavy chain switch correlates with activity of
germline heavy chain genes prior to switching. EMBO J.
5:95–102.

15. Gu, H., Y.R. Zou, and K. Rajewsky. 1993. Independent
control of immunoglobulin switch recombination at individ-
ual switch regions evidenced through Cre-loxP-mediated
gene targeting. Cell. 73:1155–1164.

16. Jung, S., K. Rajewsky, and A. Radbruch. 1993. Shutdown of
class switch recombination by deletion of a switch region
control element. Science. 259:984–987.

17. Seidl, K.J., J.P. Manis, A. Bottaro, J. Zhang, L. Davidson, A.
Kisselgof, H. Oettgen, and F.W. Alt. 1999. Ponatsition-depen-
dent inhibition of class-switch recombination by PGK-neor
cassettes inserted into the immunoglobulin heavy chain con-
stant region locus. Proc. Natl. Acad. Sci. USA. 96:3000–3005.

18. Xu, L., B. Gorham, S.C. Li, A. Bottaro, F.W. Alt, and P.
Rothman. 1993. Replacement of germ-line epsilon pro-
moter by gene targeting alters control of immunoglobulin
heavy chain class switching. Proc. Natl. Acad. Sci. USA. 90:
3705–3709.

19. Zhang, J., A. Bottaro, S. Li, V. Stewart, and F.W. Alt. 1993.
A selective defect in IgG2b switching as a result of targeted
mutation of the I gamma 2b promoter and exon. EMBO J.
12:3529–3537.

20. Nambu, Y., M. Sugai, H. Gonda, C.G. Lee, T. Katakai, Y.
Agata, Y. Yokota, and A. Shimizu. 2003. Transcription-cou-
pled events associating with immunoglobulin switch region

chromatin. Science. 302:2137–2140.
21. Yu, K., F. Chedin, C.L. Hsieh, T.E. Wilson, and M.R. Lieber.

2003. R-loops at immunoglobulin class switch regions in the
chromosomes of stimulated B cells. Nat. Immunol. 4:442–451.

22. Ehrenstein, M.R., and M.S. Neuberger. 1999. Deficiency in
Msh2 affects the efficiency and local sequence specificity of
immunoglobulin class-switch recombination: parallels with
somatic hypermutation. EMBO J. 18:3484–3490.

23. Schrader, C.E., W. Edelmann, R. Kucherlapati, and J. Stav-
nezer. 1999. Reduced isotype switching in splenic B cells
from mice deficient in mismatch repair enzymes. J. Exp.
Med. 190:323–330.

24. Ehrenstein, M.R., C. Rada, A.M. Jones, C. Milstein, and
M.S. Neuberger. 2001. Switch junction sequences in PMS2-
deficient mice reveal a microhomology-mediated mechanism
of Ig class switch recombination. Proc. Natl. Acad. Sci. USA.
98:14553–14558.

25. Schrader, C.E., J. Vardo, and J. Stavnezer. 2002. Role for
mismatch repair proteins Msh2, Mlh1, and Pms2 in immu-
noglobulin class switching shown by sequence analysis of re-
combination junctions. J. Exp. Med. 195:367–373.

26. Martin, A., Z. Li, D.P. Lin, P.D. Bardwell, M.D. Iglesias-
Ussel, W. Edelmann, and M.D. Scharff. 2003. Msh2 ATPase
activity is essential for somatic hypermutation at A-T base-
pairs and for efficient class switch recombination. J. Exp.
Med. 198:1171–1178.

27. Bardwell, P.D., C.J. Woo, K. Wei, Z. Li, A. Martin, S.Z.
Sack, T. Parris, W. Edelmann, and M.D. Scharff. 2004. Al-
tered somatic hypermutation and reduced class-switch re-
combination in exonuclease 1-mutant mice. Nat. Immunol.
5:224–229.

28. Honjo, T., M. Muramatsu, and S. Fagarasan. 2004. AID:
how does it aid antibody diversity? Immunity. 20:659–668.

29. Rolink, A., F. Melchers, and J. Andersson. 1996. The SCID
but not the RAG-2 gene product is required for S mu-S ep-
silon heavy chain class switching. Immunity. 5:319–330.

30. Manis, J.P., Y. Gu, R. Lansford, E. Sonoda, R. Ferrini, L.
Davidson, K. Rajewsky, and F.W. Alt. 1998. Ku70 is re-
quired for late B cell development and immunoglobulin
heavy chain class switching. J. Exp. Med. 187:2081–2089.

31. Casellas, R., A. Nussenzweig, R. Wuerffel, R. Pelanda, A.
Reichlin, H. Suh, X.F. Qin, E. Besmer, A. Kenter, K. Ra-
jewsky, and M.C. Nussenzweig. 1998. Ku80 is required for
immunoglobulin isotype switching. EMBO J. 17:2404–2411.

32. Reina-San-Martin, B., S. Difilippantonio, L. Hanitsch, R.F.
Masilamani, A. Nussenzweig, and M.C. Nussenzweig. 2003.
H2AX is required for recombination between immunoglobu-
lin switch regions but not for intra-switch region recombina-
tion or somatic hypermutation. J. Exp. Med. 197:1767–1778.

33. Iwasato, T., A. Shimizu, T. Honjo, and H. Yamagishi. 1990.
Circular DNA is excised by immunoglobulin class switch re-
combination. Cell. 62:143–149.

34. Matsuoka, M., K. Yoshida, T. Maeda, S. Usuda, and H. Sa-
kano. 1990. Switch circular DNA formed in cytokine-treated
mouse splenocytes: evidence for intramolecular DNA dele-
tion in immunoglobulin class switching. Cell. 62:135–142.

35. von Schwedler, U., H.M. Jack, and M. Wabl. 1990. Circular
DNA is a product of the immunoglobulin class switch rear-
rangement. Nature. 345:452–456.

36. Petersen, S., R. Casellas, B. Reina-San-Martin, H.T. Chen,
M.J. Difilippantonio, P.C. Wilson, L. Hanitsch, A. Celeste,
M. Muramatsu, D.R. Pilch, et al. 2001. AID is required to
initiate Nbs1/gamma-H2AX focus formation and mutations



Reina-San-Martin et al.1109

at sites of class switching. Nature. 414:660–665.
37. Celeste, A., S. Petersen, P.J. Romanienko, O. Fernandez-

Capetillo, H.T. Chen, O.A. Sedelnikova, B. Reina-San-
Martin, V. Coppola, E. Meffre, M.J. Difilippantonio, et al.
2002. Genomic instability in mice lacking histone H2AX.
Science. 296:922–927.

38. Ward, I.M., B. Reina-San-Martin, A. Olaru, K. Minn, K.
Tamada, J.S. Lau, M. Cascalho, L. Chen, A. Nussenzweig, F.
Livak, et al. 2004. 53BP1 is required for class switch recom-
bination. J. Cell Biol. 165:459–464.

39. Manis, J.P., J.C. Morales, Z. Xia, J.L. Kutok, F.W. Alt, and
P.B. Carpenter. 2004. 53BP1 links DNA damage-response
pathways to immunoglobulin heavy chain class-switch re-
combination. Nat. Immunol. 5:481–487.

40. Shiloh, Y. 2003. ATM and related protein kinases: safeguard-
ing genome integrity. Nat. Rev. Cancer. 3:155–168.

41. Savitsky, K., A. Bar-Shira, S. Gilad, G. Rotman, Y. Ziv, L.
Vanagaite, D.A. Tagle, S. Smith, T. Uziel, S. Sfez, et al.
1995. A single ataxia telangiectasia gene with a product simi-
lar to PI-3 kinase. Science. 268:1749–1753.

42. Xu, Y., T. Ashley, E.E. Brainerd, R.T. Bronson, M.S.
Meyn, and D. Baltimore. 1996. Targeted disruption of ATM
leads to growth retardation, chromosomal fragmentation dur-
ing meiosis, immune defects, and thymic lymphoma. Genes
Dev. 10:2411–2422.

43. Barlow, C., S. Hirotsune, R. Paylor, M. Liyanage, M. Eck-
haus, F. Collins, Y. Shiloh, J.N. Crawley, T. Ried, D. Tagle,
and A. Wynshaw-Boris. 1996. Atm-deficient mice: a para-
digm of ataxia telangiectasia. Cell. 86:159–171.

44. Elson, A., Y. Wang, C.J. Daugherty, C.C. Morton, F. Zhou,
J. Campos-Torres, and P. Leder. 1996. Pleiotropic defects in
ataxia-telangiectasia protein-deficient mice. Proc. Natl. Acad.
Sci. USA. 93:13084–13089.

45. Borghesani, P.R., F.W. Alt, A. Bottaro, L. Davidson, S. Ak-
soy, G.A. Rathbun, T.M. Roberts, W. Swat, R.A. Segal,
and Y. Gu. 2000. Abnormal development of Purkinje cells
and lymphocytes in Atm mutant mice. Proc. Natl. Acad. Sci.
USA. 97:3336–3341.

46. Jolly, C.J., N. Klix, and M.S. Neuberger. 1997. Rapid meth-
ods for the analysis of immunoglobulin gene hypermutation:
application to transgenic and gene targeted mice. Nucleic Ac-
ids Res. 25:1913–1919.

47. Kinoshita, K., M. Harigai, S. Fagarasan, M. Muramatsu, and
T. Honjo. 2001. A hallmark of active class switch recombina-
tion: transcripts directed by I promoters on looped-out circu-
lar DNAs. Proc. Natl. Acad. Sci. USA. 98:12620–12623.

48. Nagaoka, H., M. Muramatsu, N. Yamamura, K. Kinoshita,
and T. Honjo. 2002. Activation-induced deaminase (AID)-
directed hypermutation in the immunoglobulin Smu region:
implication of AID involvement in a common step of class
switch recombination and somatic hypermutation. J. Exp.
Med. 195:529–534.

49. Schrader, C.E., S.P. Bradley, J. Vardo, S.N. Mochegova, E.
Flanagan, and J. Stavnezer. 2003. Mutations occur in the Ig
Smu region but rarely in Sgamma regions prior to class
switch recombination. EMBO J. 22:5893–5903.

50. Hummel, M., J.K. Berry, and W. Dunnick. 1987. Switch re-
gion content of hybridomas: the two spleen cell Igh loci tend
to rearrange to the same isotype. J. Immunol. 138:3539–3548.

51. Winter, E., U. Krawinkel, and A. Radbruch. 1987. Directed
Ig class switch recombination in activated murine B cells.
EMBO J. 6:1663–1671.

52. Bottaro, A., F. Young, J. Chen, M. Serwe, F. Sablitzky, and

F.W. Alt. 1998. Deletion of the IgH intronic enhancer and
associated matrix-attachment regions decreases, but does not
abolish, class switching at the mu locus. Int. Immunol. 10:
799–806.

53. Dudley, D.D., J.P. Manis, A.A. Zarrin, L. Kaylor, M. Tian,
and F.W. Alt. 2002. Internal IgH class switch region dele-
tions are position-independent and enhanced by AID expres-
sion. Proc. Natl. Acad. Sci. USA. 99:9984–9989.

54. Pergola, F., M.Z. Zdzienicka, and M.R. Lieber. 1993. V(D)J
recombination in mammalian cell mutants defective in DNA
double-strand break repair. Mol. Cell. Biol. 13:3464–3471.

55. Hsieh, C.L., C.F. Arlett, and M.R. Lieber. 1993. V(D)J re-
combination in ataxia telangiectasia, Bloom’s syndrome, and
a DNA ligase I-associated immunodeficiency disorder. J.
Biol. Chem. 268:20105–20109.

56. Anderson, L., C. Henderson, and Y. Adachi. 2001. Phos-
phorylation and rapid relocalization of 53BP1 to nuclear foci
upon DNA damage. Mol. Cell. Biol. 21:1719–1729.

57. Rappold, I., K. Iwabuchi, T. Date, and J. Chen. 2001. Tu-
mor suppressor p53 binding protein 1 (53BP1) is involved in
DNA damage-signaling pathways. J. Cell Biol. 153:613–620.

58. Fernandez-Capetillo, O., H.T. Chen, A. Celeste, I. Ward,
P.J. Romanienko, J.C. Morales, K. Naka, Z. Xia, R.D.
Camerini-Otero, N. Motoyama, et al. 2002. DNA damage-
induced G2-M checkpoint activation by histone H2AX and
53BP1. Nat. Cell Biol. 4:993–997.

59. Celeste, A., O. Fernandez-Capetillo, M.J. Kruhlak, D.R.
Pilch, D.W. Staudt, A. Lee, R.F. Bonner, W.M. Bonner,
and A. Nussenzweig. 2003. Histone H2AX phosphorylation
is dispensable for the initial recognition of DNA breaks. Nat.
Cell Biol. 5:675–679.

60. Finnie, N.J., T.M. Gottlieb, T. Blunt, P.A. Jeggo, and S.P.
Jackson. 1995. DNA-dependent protein kinase activity is ab-
sent in xrs-6 cells: implications for site-specific recombina-
tion and DNA double-strand break repair. Proc. Natl. Acad.
Sci. USA. 92:320–324.

61. Pan, Q., C. Petit-Frere, A. Lahdesmaki, H. Gregorek, K.H.
Chrzanowska, and L. Hammarstrom. 2002. Alternative end
joining during switch recombination in patients with ataxia-
telangiectasia. Eur. J. Immunol. 32:1300–1308.

62. Tian, M., and F.W. Alt. 2000. Transcription-induced cleavage
of immunoglobulin switch regions by nucleotide excision re-
pair nucleases in vitro. J. Biol. Chem. 275:24163–24172.

63. Zou, L., D. Liu, and S.J. Elledge. 2003. Replication protein
A-mediated recruitment and activation of Rad17 complexes.
Proc. Natl. Acad. Sci. USA. 100:13827–13832.

64. Chaudhuri, J., C. Khuong, and F.W. Alt. 2004. Replication
protein A interacts with AID to promote deamination of so-
matic hypermutation targets. Nature. 430:992–998.

65. Lee, J.H., and T.T. Pull. 2004. Direct activation of the ATM
protein kinase by the Mre11/Rad50/Nbs1 complex. Science.
304:93–96.

66. Carney, J.P., R.S. Maser, H. Olivares, E.M. Davis, M. Le
Beau, J.R. Yates III, L. Hays, W.F. Morgan, and J.H. Petrini.
1998. The hMre11/hRad50 protein complex and Nijmegen
breakage syndrome: linkage of double-strand break repair to
the cellular DNA damage response. Cell. 93:477–486.

67. Varon, R., C. Vissinga, M. Platzer, K.M. Cerosaletti, K.H.
Chrzanowska, K. Saar, G. Beckmann, E. Seemanova, P.R.
Cooper, N.J. Nowak, et al. 1998. Nibrin, a novel DNA dou-
ble-strand break repair protein, is mutated in Nijmegen
breakage syndrome. Cell. 93:467–476.

68. Stewart, G.S., R.S. Maser, T. Stankovic, D.A. Bressan, M.I.



Class Switch Recombination and Somatic Hypermutation in the Absence of ATM1110

Kaplan, N.G. Jaspers, A. Raams, P.J. Byrd, J.H. Petrini, and
A.M. Taylor. 1999. The DNA double-strand break repair
gene hMRE11 is mutated in individuals with an ataxia-telan-
giectasia-like disorder. Cell. 99:577–587.

69. Rogakou, E.P., D.R. Pilch, A.H. Orr, V.S. Ivanova, and
W.M. Bonner. 1998. DNA double-stranded breaks induce
histone H2AX phosphorylation on serine 139. J. Biol. Chem.
273:5858–5868.

70. Paull, T.T., E.P. Rogakou, V. Yamazaki, C.U. Kirchgessner,
M. Gellert, and W.M. Bonner. 2000. A critical role for his-
tone H2AX in recruitment of repair factors to nuclear foci af-
ter DNA damage. Curr. Biol. 10:886–895.

71. Burma, S., B.P. Chen, M. Murphy, A. Kurimasa, and D.J.
Chen. 2001. ATM phosphorylates histone H2AX in re-
sponse to DNA double-strand breaks. J. Biol. Chem. 276:
42462–42467.

72. Bassing, C.H., K.F. Chua, J. Sekiguchi, H. Suh, S.R. Whit-
low, J.C. Fleming, B.C. Monroe, D.N. Ciccone, C. Yan, K.
Vlasakova, et al. 2002. Increased ionizing radiation sensitivity
and genomic instability in the absence of histone H2AX.
Proc. Natl. Acad. Sci. USA. 99:8173–8178.

73. Ward, I.M., K. Minn, J. van Deursen, and J. Chen. 2003.
p53 Binding protein 53BP1 is required for DNA damage re-
sponses and tumor suppression in mice. Mol. Cell. Biol. 23:
2556–2563.

74. Morales, J.C., Z. Xia, T. Lu, M.B. Aldrich, B. Wang, C.
Rosales, R.E. Kellems, W.N. Hittelman, S.J. Elledge, and
P.B. Carpenter. 2003. Role for the BRCA1 C-terminal re-
peats (BRCT) protein 53BP1 in maintaining genomic stabil-
ity. J. Biol. Chem. 278:14971–14977.

75. Fernandez-Capetillo, O., A. Lee, M.C. Nussenzweig, and A.
Nussenzweig. 2004. H2AX: the histone guardian of the ge-

nome. DNA Repair (Amst.). 3:959–967.
76. Downs, J.A., N.F. Lowndes, and S.P. Jackson. 2000. A role

for Saccharomyces cerevisiae histone H2A in DNA repair. Na-
ture. 408:1001–1004.

77. Fernandez-Capetillo, O., S.K. Mahadevaiah, A. Celeste, P.J.
Romanienko, D.R. Camerini-Otero, W. Bonner, K. Man-
ova, P.S. Burgoyne, and A. Nussenzweig. 2003. H2AX is re-
quired for chromatin remodeling and inactivation of sex
chromosomes in male meiosis. Dev. Cell. 4:497–508.

78. Stiff, T., M. O’Driscoll, N. Rief, K. Iwabuchi, M. Lobrich,
and P.A. Jeggo. 2004. ATM and DNA-PK function redun-
dantly to phosphorylate H2AX after exposure to ionizing ra-
diation. Cancer Res. 64:2390–2396.

79. Bosma, G.C., J. Kim, T. Urich, D.M. Fath, M.G. Cotticelli,
N.R. Ruetsch, M.Z. Radic, and M.J. Bosma. 2002. DNA-
dependent protein kinase activity is not required for immu-
noglobulin class switching. J. Exp. Med. 196:1483–1495.

80. Manis, J.P., D. Dudley, L. Kaylor, and F.W. Alt. 2002. IgH
class switch recombination to IgG1 in DNA-PKcs-deficient
B cells. Immunity. 16:607–617.

81. Rogozin, I.B., and N.A. Kolchanov. 1992. Somatic hyper-
mutagenesis in immunoglobulin genes. II. Influence of neigh-
bouring base sequences on mutagenesis. Biochim. Biophys.
Acta. 1171:11–18.

82. Shapiro, G.S., K. Aviszus, D. Ikle, and L.J. Wysocki. 1999.
Predicting regional mutability in antibody V genes based
solely on di- and trinucleotide sequence composition. J. Im-
munol. 163:259–268.

83. Pham, P., R. Bransteitter, J. Petruska, and M.F. Goodman.
2003. Processive AID-catalysed cytosine deamination on sin-
gle-stranded DNA simulates somatic hypermutation. Nature.
424:103–107.


