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Simultaneous determination of multiple weak chromatographic peaks via stochastic resonance algorithm attracts much attention
in recent years. However, the optimization of the parameters is complicated and time consuming, although the single-well potential
stochastic resonance algorithm (SSRA) has already reduced the number of parameters to only one and simplified the process
significantly. Even worse, it is often difficult to keep amplified peaks with beautiful peak shape. Therefore, multiobjective genetic
algorithm was employed to optimize the parameter of SSRA for multiple optimization objectives (i.e., S/N and peak shape) and
multiple chromatographic peaks. The applicability of the proposed method was evaluated with an experimental data set of Sudan
dyes, and the results showed an excellent quantitative relationship between different concentrations and responses.

1. Introduction

Stochastic resonance algorithm (SRA) [1] is established
based on a counterintuitive phenomenon that the signal-
to-noise ratio (S/N) of a weak signal can be amplified
significantly in a nonlinear system by making the best of
noise instead of filtering it [2]. The algorithm presents
the unique advantages for superior detection of useful
signal that submerged in heavy noise and provides an
entirely new way for the detection of weak chromatographic
peaks [3]. It has been successfully applied to many differ-
ent fields of analytical chemistry, such as pharmaceutical
analysis [4], food analysis, [5] and environmental analysis

[6].

A nonlinear system is one of the necessary elements of
SRA, and the one that is most frequently employed is a
bistable system described as double-well potential with two
system parameters. The optimization of the system param-
eters is essential for the application of SRA. The initial goal
of the optimization is to pursue the maximal signal-to-noise
ratio (S§/N) of the output peak, and, usually, the process of
optimization is to search the optimal value one by one within
a given range [7]. However, the ill-looking peak shape often
annoys the researchers. Therefore, some improved algorithms
with two or more parameters were developed to give attention
to both the S/N and the chromatographic peak shape [8, 9];
of course, the workload of parameter optimization inevitably
increased. In order to simplify the parameter optimization,
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Zhang and Xiang developed a single-well potential stochastic
resonance algorithm (SSRA) with only one parameter [10].
The algorithm works well in the application of quantitative
determination of single weak chromatographic peak [11].

In recent years, simultaneous determination of multiple
weak chromatographic peaks via SRA attracts much attention
[12,13], in which the optimization of the parameters becomes
even more complicated and time consuming [14]. Genetic
algorithms (GAs), which are inspired by the evolutionary
principle of “survival of the fittest, have been proposed as
powerful search strategies for tackling complex optimization
problems with high efficiencies and robustness [15, 16]. It is
desirable that GAs should be suitable for automatically and
rapidly optimizing the system parameters of SRA. Wang et al.
developed an adaptive single-well stochastic resonance algo-
rithm by applying GA, but only one chromatographic peak
of clenbuterol and a single optimization objective (i.e., S/N)
were concerned [17]. In this paper, a multiobjective GA [18]
was coupled to SSRA to optimize the system parameters
for multiple optimization objectives (i.e., S/N and peak
shape) and multiple chromatographic peaks, where single-
well potential was adopted to simplify the theoretical for-
malism of the algorithm. The applicability of the proposed
method was evaluated with an experimental data set of Sudan
dyes.

2. Theory and Algorithm

2.1. Single-Well Potential Stochastic Resonance Algorithm. A
simplified nonlinear Langevin equation is employed in the
algorithm of stochastic resonance [10, 19] as follows:

dx ]

7 - U 1), @
where I(t) denotes an input signal embedded in a noisy
environment, expressed as I(t) = S(t) + N(t). S(¢) is the
pure or real signal, and N(¢) is the intrinsic noise generated
by instrument. U(x) is a potential function of the nonlinear
system, and that used in SSRA can be expressed by the
following equation:

U(x)=-a+ %bxz. (2)

The profile of U(x) is shown in Figure 1. As the physical
model of SR, the physical meaning of the equations can
be explained by the motion of a Brownian particle in the
single-well potential. The input signal I(¢) can be viewed
as fluctuating force that act upon the particle. The force
drives the particle to move along the brim of the single-
well potential, and the displacement of the particle, x, forms
the output signal of the system. In other words, the output
chromatogram of the algorithm can be considered as the
trajectory of the particle. According to (2), only the parameter
b affects the profile of the potential well; the parameter a
decides the vertical position of the well and will be eliminated
in the first-order derivative of U(x) (see (1)). When the
parameter b takes an appropriate value, the noise may
cooperate with the signal properly and the signal will extract
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F1GURE 1: The profile of the single-well potential function.

energy from the noise. As a result, in the output, the strength
of the signal will be increased while that of the noise will be
decreased, and the output signal could be driven to a height
that cannot be reached via the pure input signal. Finally, a
greater S/N could obtain from the output signal than from
the input one.

The analytic solution of Langevin equation is not avail-
able, and one has to use a numerical method to approximate
it [20]. In this work, a fourth-order Runge-Kutta method was
used to obtain the discrete solution [21].

2.2. Multiobjective Genetic Algorithm. Genetic algorithms
(GAs) are a particular class of evolutionary algorithms that
move from one population of “chromosomes” to a new
population by using a kind of natural selection together with
the genetic inspired operators of crossover, mutation, and
so on [22]. A selection operator chooses “chromosomes”
in the population that will be allowed to “reproduce” On
average, the fitter “chromosomes” produce more “offspring”
than the less fit ones. GAs can search for many noninferior
solutions in parallel by maintaining a population of solutions.
Therefore, GAs are very suitable for solving the problems of
multiobjective optimization [23].

Vector evaluated genetic algorithm (VEGA) is one of the
multiobjective GAs that was proposed by Schaffer [24]. In
VEGA, a number of subpopulations are generated by per-
forming proportional selection according to each objective
function z; in turn [25]. Assuming the population size of the
current generation is N, and the number of objectives is g,
then g subpopulations would be generated with the size of
N/q each. A new generation is then obtained by shuffling
these subpopulations together, and the operation of crossover
and mutation is applied. The flowchart of VEGA is shown in
Figure 2.

2.3. The Implementation of the Algorithm. As shown in
Section 2.1, the parameter b is very important for SSRA.
In order to get the satisfactory output for each peak,
multiobjective genetic algorithm was employed to perform
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FIGURE 2: The flowchart of VEGA.

the multiobjective optimization for the parameter b. The
objective function is defined as follows:

< SNR; (b
min fl (b) = _ZW}(‘W‘)

i=1

_ L SYN,; (b) 3)
p)y= Y21

min  f, (b) l; SYNF=

subject to 0<b<1,

where 7 is the number of peaks in the chromatogram. The
function consists of two terms: SNR and SYN, which denote
the signal-to-noise ratio and the degree of symmetry of the
output peaks, respectively. SNR;(b) in (3) is defined as the
ratio of the standard deviation of the signal range of the ith
peak to that of baseline range; that is,

Sle'Jeak (b)
SNR, (b) = —-———.
SD?OISQ (b)

SYN;(b) is defined as the ratio of the peak area of the left side
to that of the right side of the ith peak; that is,
LA, (b) 1‘
RA,(B) |
SNR™ and SYN!"™™ are the maximal values of SNR and SYN

of the ith peak at different parameter b, respectively.
The procedures of optimization are as follows.

(4)

SYN; (b) = l (5)

Step 1. Start with a random initial population P,. Set t = 0.
Step 2. 1f the ending criterion is satisfied, return P,.
Step 3. Randomly sort population P,.

Step 4. For each objective k (k = 1,2,...,q), perform the
following steps.

Step 4.1. For i = 1 + (k — 1)N,,...,kN, (N, denotes the
subpopulation size, N, = N/q), assign fitness value f(x;) =
z;(x;) to the ith solution in the sorted population.

Step 4.2. Based on the fitness values assigned in Step 4.1,
select N, solutions between the (1 + (k—1)N,)th and (kN,)th
solutions of the sorted population to create subpopulation P,.
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FIGURE 3: The typical chromatogram of Sudan dyes. (1: Para Red; 2:
Sudan I; 3: Sudan II; 4: Sudan III; 5: Sudan IV).

Step 5. Combine all subpopulations P,, P,,. .., P, and apply
crossover and mutation on the combined population to create
P, of size N.Sett =t + 1, and then go to Step 2.

The algorithm was implemented in Matlab 7 (Mathworks,
Natick, MA, USA) by the authors, and the calculations were
carried out on an IBM-PC compatible computer (Intel Core
Duo CPU 1.83 GHz, memory 1 GB).

3. Experimental

3.1. Reagents and Standards. All of the Sudan dyes (lot num-
ber 40517) and Para Red (lot number 50506) were purchased
from Dr. Ehrenstorfer GmbH (Augsburg, Germany), and
their chemical purities were 97.5% (Sudan I), 90.0% (Sudan
1I), 97.0% (Sudan III), 91.0% (Sudan IV), and 95.5% (Para
Red), respectively. HPLC grade acetonitrile was purchased
from Merck Company (Darmstadt, Germany). Acetic acid
(analytical grade) was purchased from Guangdong Xilong
Chemical Co., Ltd. (Shantou, Guangdong Province, China).
Distilled water was used throughout the study.

Stock solutions (Para Red: 0.515mgmL™'; Sudan
. 0.732mgmL™"; Sudan II: 0.697mgmL™"; Sudan III:
0.823 mgmL™"; Sudan IV: 0.721 mgmL™") were prepared in
acetonitrile, and working solutions of a series concentration
were prepared by diluting the appropriate volumes of the
primary stock solutions in acetonitrile. All of the solutions
were stored at 4°C.

3.2. Chromatographic Conditions. The chromatographic sys-
tem was the Shimadzu (Tokyo, Japan) LC-10AT vp HPLC
system equipped with an LC-10AT vp pump, a 7725 man-
ual injector, and an SPD-10A vp UV-VIS detector. An
N2000 chromatography data system (Zhejiang University
Star Instrument Technology Co., China) was used, at a
sampling frequency of 10 Hz. Separation was carried out at
room temperature on a reversed-phase Dikma Diamonsil
C18 (150 mm x 4.6mm id., 54m) column. The mobile
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FIGURE 4: The weak peaks of Sudan dyes were amplified by SSRA with the parameters optimized via multiobjective genetic algorithm.
(a) The chromatogram of Sudan dyes solution at extreme low concentrations (I: Para Red, 5.76 ngmL'; 2: Sudan I, 8.16 ngmL'; 3: Sudan II,
20.08 ng mL7}; 4: Sudan 111, 19.76 ng mL7}; 5: Sudan 1V, 48.48 ng mL™); (b) the chromatogram obtained via SSRA.
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FIGURE 5: The original chromatograms from Para Red (1), Sudan I
(2), Sudan II (3), Sudan III (4), and Sudan IV (5). (a) 14.4, 20.4, 50.2,
49.4, and 121.2ngmL"'; (b) 21.6, 30.6, 75.3, 74.1, and 181.8 ngmL™';
(c) 28.8, 40.8, 100.4, 98.8, and 242.4 ngmL""; (d) 36.0, 510, 125.5,
123.5,and 303 ng mL7}; (e) 43.2, 61.2,150.6,148.2, and 363.6 ng mL 7}
(f) 57.6, 81.6, 200.8, 197.6, and 484.8 ng mL™; (g) 72.0, 102, 251, 247,
and 606 ngmL™".

phase consisted of acetonitrile/acidified water (165 mL acetic
acid plus 1000 mL water) (15:85, v/v). The flow rate was
1.0mL min~" from 0 to 20 min and 2.0 mL min~" from 20
to 25min. The detection wavelength was 478 nm and the
injection volume was 20 pL.

4. Results and Discussion

4.1. The Optimization of System Parameter b. The typical
chromatogram of Sudan dyes is presented in Figure 3. The
retention times of Para Red and Sudan I~IV were around 4.5,
6.0, 10.4, 15.8, and 25.9 min, respectively. In order to avoid
from being affected by the peaks of foreign components,
which will also absorb energy from noise, a section of signal
during the period of 2 to 29 min was chosen as the input for
SSRA.

Figure 4(a) shows the chromatogram of Sudan dyes at
extreme low concentrations; the peaks were too weak to meet
the requirement of analysis. Therefore, SSRA was employed
to enhance the peaks, where the parameter b was optimized
by multiobjective genetic algorithm (VEGA). The parameters
that were used in VEGA are as follows:

Time (min)

FIGURE 6: The chromatograms obtained via SSRA.

(1) number of individuals: 100;
(2) maximum number of generations: 100;
(3) precision of variables: 20;

(4) generation gap: 0.9.

The objective function reached the minimum at the 49th
iteration, and the satisfied value of the parameter b (b =
0.0171) is obtained. Figure 4(b) illustrates how the peaks were
enhanced and the chromatogram was improved by SSRA.

4.2. Quantitative Analysis of Sudan I~IV. Figure 5 presents
the original chromatograms of Sudan dyes at different con-
centrations. SSRA was used to amplify the chromatographic
peaks present at each concentration. Although all samples
have different strengths in different concentrations, the same
value of the parameter b (b = 0.0171) will be used for them
to keep the quantitative relationship of the output signals.
Figure 6 shows how the peaks of all the 5 components at
different concentrations can be processed and improved by
SSRA; the peaks were amplified obviously and the shape of
the peaks was satisfactory. Table 1 lists the chromatographic
areas of Sudan dyes at different concentrations obtained
using SSRA; the linearity was excellent over the experimental
concentration ranges.
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TABLE 1: Calibration curves of Sudan dyes obtained via SSRA.

a b c d e f g Linear regression curve

Para Red
Conc! 144 216 28.8 36 432 576 72 A = (156.1 + 6.999) ¢ + (1231 + 303.6)
A? 2916.6 46918 6107.6 7119.1 8108.6 100872 123017 r=0.9950, SD = 348.1

Sudan I
Conc. 204 30.6 40.8 51 61.2 816 102 A = (125.5 + 3.575) ¢ + (1599 + 219.6)
A 43409  5189.6 7012.2 7959.4 8931.8 118777 14510 r=0.9980, SD = 251.9

Sudan II
Conc. 502 75.3 100.4 1255 150.6 200.8 251 A =(96.20 +2.178) ¢ + (3150 + 329.2)
A 8201 10266 12857 148522 180522 219735  27599.5 r=0.9987,SD = 377.6

Sudan III
Conc. 494 74.1 98.8 123.5 148.2 197.6 247 A= (161.1 + 5.481) ¢ — (307.1 + 815.5)
A 71711 115394 168259  18473.6 245829 309157  39575.2 r=0.9971,SD = 935.2

Sudan IV
Conc. 1212 181.8 242.4 303 363.6 4848 606 A= (61.77 +2.273) ¢ + (1171 + 829.8)
A 73679 128839 169855  20513.8 239141 299374 388455 r = 0.9966, SD = 951.6

!Conc.: concentration; 2A: peak area obtained via SSRA.

5. Conclusion

Multiobjective genetic algorithm is competent for the multi-
objective parameter optimization of SSRA. It not only endow
SSRA with the ability of detecting multiple weak chromato-
graphic peaks simultaneously, but also can give attention to
both the S/N and peak shape; the process of the parameter
optimization is easy and rapid. It can be expected that SSRA
should become a promising tool for multicomponent trace
analysis with the help of multiobjective genetic algorithm.
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