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Abstract

Large efforts have been taken to search for genes responsible for type 2 diabetes (T2D), but have resulted in only about 20
in humans due to its complexity and heterogeneity. The GK rat, a spontanous T2D model, offers us a superior opportunity to
search for more diabetic genes. Utilizing array comparative genome hybridization (aCGH) technology, we identifed 137 non-
redundant copy number variation (CNV) regions from the GK rats when using normal Wistar rats as control. These CNV
regions (CNVRs) covered approximately 36 Mb nucleotides, accounting for about 1% of the whole genome. By integrating
information from gene annotations and disease knowledge, we investigated the CNVRs comprehensively for mining new
T2D genes. As a result, we prioritized 16 putative protein-coding genes and two microRNA genes (rno-mir-30b and rno-mir-
30d) as good candidates. The catalogue of CNVRs between GK and Wistar rats identified in this work served as a repository
for mining genes that might play roles in the pathogenesis of T2D. Moreover, our efforts in utilizing bioinformatics methods
to prioritize good candidate genes provided a more specific set of putative candidates. These findings would contribute to
the research into the genetic basis of T2D, and thus shed light on its pathogenesis.
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Introduction

Type 2 diabetes (T2D), formally known as non-insulin-

dependent diabetes, accounts for about 90% of the 180 million

diabetic cases around the world [1]. Characterized by defects in

both insulin secretion from pancreatic islet beta-cells and insulin

action in peripheral tissues, this chronic and complex disorder is

supposed to be predisposed by the combined action of multiple

genetic factors [2,3]. In the last two decades, large efforts including

traditional candidate gene mapping and recent high-throughput

genome-wide association studies were performed to unveil the

genetic basis of T2D, and have found nearly 20 human T2D genes

[3–8] and a number of related loci in human, mouse and rat

genomes [9,10]. However, the precise molecular pathogenesis of

this heterogeneous disease remains poorly characterized, and

more T2D-related genes are expected to be uncovered.

The Goto-Kakizaki (GK) rat, a nonobese animal model of T2D,

was developed by repeated inbreeding of glucose-intolerant Wistar

rats [11]. During their development, GK rats suffer from reduced

beta-cell mass and insulin resistance spontaneously, and thus

provide a feasible opportunity to search for susceptible loci,

investigate pathogenesis and develop therapeutic strategies

[12,13]. Several quantitative trait locus (QTL) analyses on this

model have already identified a number of genomic loci harboring

susceptible variants [14–16].

While most disease-association studies of genetic variation

focused on individual nucleotide sequences, large-scale changes

like copy number variations (CNVs), generally defined as the copy

number differences of DNA stretches larger than 1 Kb, have also

been linked to dozens of human diseases [17]. Among the most

well-known cases is the association of Down Syndrome with an

extra copy of chromosome 21 identified by karyotype technology

[18]. New high-throughput approaches like array-based compar-

ative genome hybridization (array CGH, or aCGH) have allowed

the identification of CNVs in the whole genome [19–21], and have

discovered that CNVs are extensively distributed along the

chromosomes. Some of the CNVs are found to be implicated in

complex diseases including neuropsychiatric, autoimmune diseases

and so on [22–25], but the association of CNVs with T2D remains

largely unexploited except that a very recent study confirmed the

implication of a previously identified human gene TSPAN8 [26].

In this work, we conducted a genome-wide screen for CNVs

between GK (T2D model) and Wistar rat (wild type) using array

CGH. A non-redundant set of CNV regions with the total length

of about 36 Mb was identified, including several novel T2D

susceptibility loci involving 16 protein-coding genes (Il18r1,

Cyp4a3, Sult2a1, Sult2a2, Sult2al1, Nos2, Pstpip1, Ugt2b, Uxs1,

RT1-A1, RT1-A3, RT1-Db1, RT1-N1, RT1-N3, RT1-O, and RT1-

S2) and two microRNA genes (rno-mir-30b and rno-mir-30d). It is so

far the first investigation of T2D in GK rats from the viewpoint of
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copy number variation on a genome-wide scale, and the CNVs

identified in GK rats are supposed to shed light on the genetic

basis and pathogenesis of T2D.

Results

Array Data Processing
The comparison between GK and Wistar rats had three

biological replicates (‘‘forward’’) with a dye swap (‘‘reverse’’) for

each, resulting in 6 arrays. The array data were processed

following the procedures described in Materials and Methods. In

the step of quality control, a set of data from a small region on the

sixth chip involving 1278 spots (,0.5%), in addition to 152, 157,

147, 143, 155, and 401 scattered spots of each chip respectively

(,0.08% on average), were filtered out due to poor qualities. To

detect the bias of dye labeling, we hierarchically clustered all 6

chips based on the logarithm ratios (M values). It turned out that

all ‘‘forward’’ chips were distinctly separated from ‘‘reverse’’ ones,

conflicting to the expectation that a dye-swap pair ought to be

grouped together (Figure S1A). Using a linear model, we found

that about 23.7% of the spots showed significant dye bias (p,0.05).

After the correction of dye bias, the new clustering result agreed

with the expectation (Figure S1B). Three dye-swap pairs resulted

in three sets of M values, each of which corresponded to one GK

replicate. The chromosomes were then partitioned according to

the smoothed M values of the probes tiled on them, a process

formally termed as segmentation. The raw intensities and

processed data have been deposited in NCBI’s Gene Expression

Omnibus [27] and are accessible through GEO Series accession

number GSE21387.

CNVR Identification
According to our definition of CNV regions (CNVRs, see

Materials and Methods), we identified about 101 CNVRs in each

GK rat on average, covering approximately 26 M base pairs, i.e.,

about 1% of the rat genome (Table S1 and S2), whose order of

magnitude was the same as the overall length of published rat

CNVRs (22 Mb and 15.5 Mb on two different platforms) [21].

The comparison of the CNVRs identified from the 3 samples

turned out that the majority of them (greater than 70%) were

consistent among individuals (Table S2 and S3). We then merged

the CNVRs from all the 3 samples to a final non-redundant set,

comprising 137 CNVRs, covering 36.31 Mb (Table S4 and the

‘‘Non-redundant’’ column of Table S2). Follow-up investigations

were based on this non-redundant data set.

We plotted the GK/Wistar CNVRs along each chromosome

(Figure 1), and found that they were non-uniformly distributed

with the extreme cases that chromosome 12 and 18 contained

none, while chromosome 7 and 15 contained more CNVRs than

random (4.5 Mb and 2.7 Mb identified vs. only 1.8 Mb and

1.4 Mb expected, respectively). The non-uniform pattern of

CNVRs’ distribution was similar to some extent with the previous

report of rat CNVRs [21].

Investigation into CNVR
In order to mine the genetic variations underpinning the

phenotypic difference between GK and Wistar rats (i.e., diabetic

and non-diabetic), we investigated the CNVRs through examining

their overlapping with various genomic features such as protein-

coding genes and microRNAs. Genomic features covered by the

GK/Wistar CNVRs served as a valuable repository for exploring

genetic factors that play roles in pathogenesis of T2D through

altered copy numbers and thus abnormal expression levels. For a

CNV gene already reported to be T2D-related, our work could

help elucidate its underlying mechanisms, i.e., the gene dosage

effect via copy number variation. More importantly, CNV genes

that were not known to be related to T2D might contain novel

candidates, and it was supposed to be promising to sort out them

from unrelated ones by combining prior biological knowledge

using bioinformatics methods.

Gene and Intergenic Content of CNVRs
Gene and intergenic regions in the GK/Wistar CNVRs were

determined according to the chromosomal locations of rat genes

obtained from NCBI Entrez Gene. Taken together, regions of

3.22 Mb were annotated by Entrez Gene, accounting for only

8.87% of all CNVRs, much less than the proportion of gene

regions in the whole genome (21.35%, Table 1). It seemed that

copy number variation would preferentially reside in intergenic

regions. We further carried out a random simulation to test the

statistical significance (see Materials and Methods), and found that

the overlapping magnitude between randomized intervals and

genes was significantly larger than that between real CNVRs and

genes (7.84 Mb expected in random with a standard deviation of

1.13 Mb vs. 3.22 Mb in fact, p,1e-10), which supported our

inference about the preference of CNVRs to intergenic regions.

This could be partly explained by the purifying selection, which

probably acted on the GK/Wistar CNVs during the process of

selective breeding. Variations in most gene regions might be more

likely to have deleterious effects than those in intergenic regions,

and the stronger negative selection pressure on gene regions might

thus result in the lower observed frequency of CNVs in the gene

regions than in the intergenic regions.

Functional Analysis of CNV Genes
A total of 62 and 72 Entrez genes were identified in ‘‘gain’’ and

‘‘loss’’ CNVRs respectively (Table S4 and S5). We checked

whether these genes contained any of those previously reported to

be related to T2D. A list of 425 known T2D-related genes from

published sources was collected (see Materials and Methods) and

compared with these 134 GK/Wistar CNV genes, but none in

common was found. This result indicated that the potential CNV

factors behind the diabetic pathogenesis of GK rats might be other

genes whose relationships with T2D had not been observed. They

could be genes that had been annotated in NCBI Entrez Gene or

even loci that had never been identified before. In this work, we

focused on mining candidates from known genes (i.e., 134 CNV

genes) according to the aforementioned strategy of adopting prior

knowledge.

We first utilized the knowledgebase of KEGG pathways so as to

identify potential novel candidates that are supposed to be related

to the characteristics of diabetes. After mapping the 134 CNV

genes to KEGG, we found 41 pathways were associated with those

genes (Table S6). The CNV genes falling in the T2D-related

pathways were then selected for further analysis (Table 2). Since

T1D shares some characteristics with T2D, and the involvement

of sulfur metabolism in diabetes has been reported previously

[28,29], the CNV genes (RT1-A1, RT1-A3, RT1-Db1, RT1-N1,

RT1-N3, RT1-O, RT1-S2, Sult2al1, Sult2a1, and Sult2a2) in

pathways of ‘‘type I diabetes mellitus (04940)’’ and ‘‘sulfur

metabolism (00920)’’ were prioritized. Sugar or fatty acid

metabolisms and PPAR signaling pathways are well known to be

T2D-relevant [2], and thus the CNV genes (Uxs1, Ugt2b, and

Cyp4a3) in pathways of ‘‘starch and sucrose metabolism (00500)’’,

‘‘pentose and glucuronate interconversions (00040)’’, ‘‘fatty acid

metabolism (00071)’’, and ‘‘PPAR signaling (03320)’’ were

preferentially selected as well. We also found that Ugt2b, Cyp4a3,

and sulfur metabolism-related CNV genes (Sult2a1, Sult2a2, and

Putative T2D Loci in CNV
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Sult2al1) overlapped the T2D QTLs of Niddm37, Niddm25 and

Niddm44, respectively, strengthening the hypothesis that these

genes may confer susceptibility to T2D.

We noticed that the GK/Wistar CNV genes were significantly

overrepresented in the pathways of olfactory transduction (04740),

immune response (05332, 05330, 05320, and 04612), and cell

adhesion molecule (04514) (Table S6). They were reminiscent of

the functional enrichment results previously reported in CNV

genes of human, mouse and rat, indicating that the bias towards

these functional categories might be a common overall character-

istic of CNV genes [19,21,30].

Since there are complex relationships between diseases,

constituting a ‘‘diseasome’’ [31], diseases directly related to T2D

(‘‘near-T2D’’) could help understand the relatedness of GK/

Wistar CNV genes to T2D. A total of 1097 ‘‘near-T2D’’ genes

were retrieved following the procedure described in Materials and

Methods. Due to the complexity and heterogeneity of diabetes, we

speculated that a part of these genes might also contribute to some

extent to T2D. In fact, five ‘‘near-T2D’’ genes including Pstpip1,

Il18r1, Sult2a1, Nos2, and RT1-Db1, occurred in the GK/Wistar

CNV gene list (Table S7). We checked the relationship between

them and rat QTLs as well, and found that they overlapped QTLs

of ‘‘blood pressure’’, ‘‘serum triglyceride’’, ‘‘serum cholesterol’’, or

‘‘body weight’’. Specifically, Pstpip1, Il18r1, Sult2a1 overlapped the

QTLs of ‘‘Non-insulin dependent diabetes mellitus (Niddm)’’.

There are several web tools for prioritizing human disease

candidate genes from given genomic intervals [32]. The

comparison between our 134 rat CNV genes and the 103 human

T2D genes prioritized by Tiffin et al. [33] found one common

Figure 1. Chromosomal distribution of GK/Wistar CNVRs. Green bars on the left and red bars on the right of chromosomal axes represent CNV
‘‘loss’’ and ‘‘gain’’, respectively. Chromosome ‘‘Un’’ represents the pseudo-chromosome consisting of contigs that can not be confidently mapped to a
specific chromosome.
doi:10.1371/journal.pone.0014077.g001

Table 1. Gene and intergenic constitution in CNVRs and
whole genome.

Status All Gene Region Intergenic Region

CNVR (Mb) Gain 22.75 (100%) 1.91 (8.40%) 20.84 (91.60%)

Loss 13.56 (100%) 1.31 (9.66%) 12.25 (90.34%)

Total 36.31 (100%) 3.22 (8.87%) 33.09 (91.13%)

Genome (Gb) 2.83 (100%) 0.60 (21.35%) 2.23 (78.65%)

doi:10.1371/journal.pone.0014077.t001

Table 2. Selected GK/Wistar CNV genes involved in
diabetes-related pathways.

KEGG pathway (ID) Status CNV Gene

Type I diabetes mellitus (04940) Gain RT1-A1, RT1-A3, RT1-Db1

Loss RT1-N1, RT1-N3,
RT1-O, RT1-S2

Sulfur metabolism (00920) Gain Sult2al1, Sult2a1, Sult2a2

Starch and sucrose metabolism (00500) Gain Uxs1

Loss Ugt2b

Pentose and glucuronate
interconversions (00040)

Loss Ugt2b

Fatty acid metabolism (00071) Loss Cyp4a3

PPAR signaling pathway (03320) Loss Cyp4a3

doi:10.1371/journal.pone.0014077.t002

Putative T2D Loci in CNV
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gene, Uxs1, which was also sorted out by our T2D-relevant

pathway mapping.

Taken together, the above analysis highlighted 16 GK/Wistar

CNV genes, providing a valuable collection of most likely disease

candidates to be prioritized for further experiments (Table S8).

These genes are unequally distributed on several different

chromosomes and different CNV regions. Among them, all the

7 RT1 genes are clustered in two regions of chromosome 20, i.e.,

RT1-A1, RT1-A3, and RT1-Db1 in one cluster (the gap between

cnv.gain.54 and cnv.gain.53 is only ,345 Kb according to Table

S4) while RT1-N1, RT1-N3, RT1-O, and RT1-S2 in the other one.

However, the 3 genes in the first cluster are only supported by one

sample, which reduced our confidence that these genes are likely

to contribute to susceptibility to T2D. The three Sult2a genes are

clustered in a gain region on chromosome 1, and are supported by

all three samples. The other six genes are distributed on six

different chromosomes respectively, with Uxs1, Cyp4a3, and Nos2

identified in all three samples. These data will offer additional

clues for the follow-up prioritization of these 16 genes.

Ultraconserved Elements and MicroRNAs
According to the aforementioned analysis, more than 90% of

the CNVRs were intergenic regions. Although the intergenic

regions, as well as non-coding gene regions such as introns and

UTRs, may not involve as many functional features as coding

regions, recent studies demonstrated that some of non-coding

regions can play important regulatory roles. We therefore

extended our focus beyond coding regions to include ultracon-

served elements and microRNAs.

Ultraconserved elements are defined as stretches of DNA

(longer than 200 bp) which are extremely conserved in ortholo-

gous regions of the human, rat and mouse genomes. It has been

speculated that they are under strong purifying selection, and may

play important roles in DNA binding, RNA processing and

transcriptional regulation [34]. We compared the GK/Wistar

CNVRs and 481 published ultraconserved elements (126.7 Kb in

total mapped to rat genome assembly rn4), but no overlap was

found, while ,1.5 Kb would be expected by chance (p = 0.027),

consistent with the conclusions reported in other studies [21,35].

These results in combination with the above gene and intergenic

content of CNVRs, supported the opinion that, as a global trend,

most GK/Wistar CNVs were found in non-functional rather than

functional regions, probably due to the purifying selection during

the selective breeding.

Considering the significant contributions of microRNAs to

development processes and the pathogenesis of diseases at the

post-transcriptional level [36–37], we examined if there were any

microRNA genes in our GK/Wistar CNVRs. By comparing the

genomic positions of known rat microRNA genes with those of

GK/Wistar CNVRs, we found that rno-mir-30b and rno-mir-30d

were simultaneously covered by a ‘‘gain’’ region on chromosome 7

in all three samples (Table S9) within a region of only 3.8 Kb.

Interestingly, several T2D QTLs and various relevant QTLs

including body weight, blood pressure, and serum triglyceride level

QTLs were also located in this region, implying that copy number

variation of these microRNA genes could be correlated to these

quantitative traits (Figure 2). A recent publication reported that

altered expression of mir-30d, as a response to glucose, influences

insulin gene expression in mouse Min6, a pancreatic island cell

line [38]. Although further investigations are still needed, we

obtained additional evidence supporting the involvement of mir-

30b/30d in T2D pathogenesis by means of copy number variation.

To further elucidate the putative roles of mir-30b/30d, we

looked at their predicted targets using MicroCosm [39]. Taken

together, there were 1868 and 1776 targets for rno-mir-30b and rno-

mir-30d, respectively. Like the analysis performed on CNV genes,

we compared these target genes with the 425 T2D-related genes.

It turned out that 39 and 35 targets of mir-30b and mir-30d

occurred in this T2D gene list respectively, and were both

significantly overrepresented (p = 0.000273 and 0.00152, detailed

targets listed in Table 3), supporting the hypothesis of mir-30b and

mir-30d’s involvement in T2D. Among them, Pparg and Akt2

(targets of mir-30b), Hnf1b, Hnf4a, and Lmna (targets of mir-30d), are

well-known genes implicated in T2D or insulin resistance. We

then mapped these microRNA targets to KEGG pathways, and

found that 5(2), 12(6), 10(4), 14(12), 4(5) and 1(3) targets of mir-

30b(mir-30d) belonged to the pathways of ‘‘type II diabetes

(04930)’’, ‘‘Type I diabetes (04940)’’, ‘‘pancreatic cancer

(05212)’’, ‘‘insulin signaling (04910)’’, ‘‘PPAR signaling (03320)’’

and ‘‘maturity onset diabetes of the young (04950)’’, respectively

(Table 4). Moreover, several fatty acid or sugar-related metabolism

pathways (00010, 00030, 00512, 00051, 00071, and 01030) were

enriched with these predicted targets with considerably low p

values (Table S10 and Table S11). These results provided extra

evidence of a role for mir-30b/30d in diabetes pathogenesis.

Discussion

In this study, we identified a catalogue of CNVRs between GK

and Wistar rats using tiling array CGH. Given the hypothesis that

the phenotypic difference between GK and Wistar (diabetic and

non-diabetic) ought to be attributed in a large part to their

genomic variations, we carried out a series of bioinformatics

functional analysis on these GK/Wistar CNVRs to narrow down

the scope for further exploration of T2D candidate genes. A total

of 16 protein-coding genes and 2 microRNA genes were

prioritized for further analysis (Table S8 and Table 3), which

might in combination or alone contribute to the pathogenesis of

diabetes on the basis of varied copy number in the genomic level.

We believe that the list of GK/Wistar CNVRs is a valuable

repository for mining genetic factors that play roles in pathogenesis

of T2D through altered copy numbers. In the bioinformatics

analysis, we focused on the Entrez protein-coding genes and

microRNAs with known genomic locations, and found 134

protein-coding genes and 2 microRNAs implicated in GK/Wistar

CNVRs. By integrating available knowledge about T2D, we

prioritized 16 protein-coding genes and 2 microRNAs as good

candidates for further experiments for validating their contribution

to the pathogenesis of T2D by means of dosage effect. In addition,

CNVRs without annotations of Entrez genes or microRNAs may

also be worth further investigation. We checked other gene

annotations from UCSC ‘‘KnownGene’’, ‘‘RefGene’’, ‘‘mRNA’’,

‘‘EST’’, and ‘‘EnsemblGene’’, and found various coding signals

outside the scope of Entrez gene annotations (Table S12). They

could be novel genes, but additional evidence is needed.

Among the preferentially selected protein-coding genes, Il18r1

was previously identified as a T2D candidate gene in a cohort of

African American families [40]. The gene Cyp4a3 is involved in

fatty acid metabolism and Pparg signaling, disorders of which are

closely related to the pathogenesis of T2D [2,41]. As mentioned in

the results, several sulfur-containing compounds are used in the

therapy of diabetes while the therapeutic mechanism is not yet

clear. Thus the identification of sult2a1, sult2a2 and sult2al1 echoes

the beneficial effects of sulfur-containing compounds, and further

study might provide insights into the mechanism.

We analyzed a public dataset GSE13271 [42], currently the

only GK/Wistar differential expression dataset in NCBI GEO,

and identified 30 sets of differentially expressed genes (DEGs)

Putative T2D Loci in CNV
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between GK and Wistar rats corresponding to different tissues,

time points, and feeding conditions. When comparing these DEGs

with the GK/Wistar CNV genes identified in this work, we found

that some of them showed consistency in certain tissues (Table

S13), including RT1-N1 in muscle, Ugt2b in liver, RT1-A3 in all

three tissues (liver, fat, and muscle). There was also inconsistency

between CNV and differential expression, including Sult2al1,

Sult2a1, Sult2a2, Uxs1, RT1-Db1, Cyp4a3, Pstpip1, and Il18r1 in

certain conditions. Generally speaking, it is reasonably supposed

that the consistent genes may be more likely involved in T2D, but

we cannot exclude the possibilities of other genes also being

involved.

There have been multiple reports concerning the implications of

microRNAs in diabetes, but almost all of them focused on the

expression profiling, which are mainly related to the intermediate

process of disease development [38,43–46]. Here, for the first time

we found evidence that microRNAs might be related to T2D by

means of copy number variation. We proposed that the altered

copy number of mir-30b and mir-30d in GK rats could contribute

to the pathogenesis of T2D. It might occur at the stage of disease

initiation: compared with normal Wistar rat, varied copy number

of mir-30b and mir-30d in GK might result in altered expression

level at some specific developmental stages and at some specific

tissues, and the altered expression of mir-30b and mir-30d might

then lead to dysfunction of some specific targets, contributing to

the development of T2D. All these predisposing factors might act

in combination as they are involved in this complex disease. In

addition to the aforementioned study of the expression of mir-30d,

there were several other expression profiling reports suggesting the

involvement of mir-30 family in diabetes or adipogenesis [47–49].

We re-analyzed a public microRNA expression dataset

GSE13920, currently the only one microRNA profiling in GK

Figure 2. The microRNA rno-mir-30b and rno-mir-30d located in T2D QTLs. The QTLs of Niddm (Non-insulin dependent diabetes mellitus) 14
and 19 cover these 2 microRNAs. In addition, there are many other QTLs like ‘‘serum triglyceride 14’’, ‘‘serum cholesterol 3’’, ‘‘blood pressure 181/215/
216/265/266’’, ‘‘body weight 9/12/17’’ in this region, and these traits are known to be related to diabetes. This figure was prepared using UCSC
genome browser.
doi:10.1371/journal.pone.0014077.g002

Table 3. Targets of rno-mir-30b and rno-mir-30d in T2D-related genes.

microRNA Predicted targets

rno-mir-30b Aire, Akt2*, Bud13, Cblb, Cdc123, Eif4e, Elf1, Fgb, Gcg, Hdac3, Irf4, Kcnj5, Klrg1, Mapk8, Med14, Mgea5, Mttp, Neurod1, Nfkb1, Nmu, Parl, Pbx1, Pfkl,
Pik3r2, Pparg*, Ppargc1b, Prkce, Prmt2, Rapgef4, Rpa2, Rrad, Serpine1, Slc2a10, Socs1, Srebf1, Tlr4, Ubl5, Ucp2, Wdr42a

rno-mir-30d Ace, Cblb, Cdh15, Cp, Cyb5r4, Egfr, Foxo1, Hdac3, Hnf1b*, Hnf4a*, Inpp5k, Irf4, Lgr5, Lmna*, Neurod1, Nfkb2, Nfkbia, Nr1i3, Nr4a1, Parl, Pbx1,
Pik3r2, Ppargc1b, Ppp1r3d, Prkar2b, Ptf1a, Rbp4, Rrad, Sell, Sirt1, Slc2a10, Socs1, Sorcs1, Srebf1, Tlr4

*Well-known genes implicated in T2D or insulin resistance.
doi:10.1371/journal.pone.0014077.t003

Putative T2D Loci in CNV
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and Wistar rats [43], and found that the expression levels of mir-

30b/30d in muscle cells were strikingly different between normal

rat and T2D rat (Figure S2). The expression change was, however,

contradictory to the direction of copy number variation detected

here. We noticed that there was a protein-coding gene named Zfat

which is located at the same gain CNVR as mir-30b and mir-30d

are positioned in. By inspecting the dataset of GSE13271, we

found that Zfat was up-regulated in liver, but down-regulated in

adipose tissues and muscles (Table S13). The down-regulation of

Zfat in muscles is consistent with that of mir-30b and mir-30d, that

is, all of them are inconsistent with the CNV gain, suggesting

further investigations are still needed to confirm these results and

to unveil detailed mechanisms.

Although we aimed to find diabetes-specific variants, we noticed

that the GK/Wistar CNVRs identified in this work shared quite a

few global characteristics with previously reported CNV investi-

gations [19,21,30]. For example, our CNVRs from one GK

sample accounted for about 1% of the whole genome, non-

randomly distributed on the chromosomes, and enriched with

genes concerning olfactory transduction and immune response

(Table S6), suggesting possible common factors involved in the

genesis or maintenance of CNVs. The preference of the GK/

Wistar CNVRs for intergenic regions was in accordance with

several published reports [19,50], while some others declared the

opposite [21,51]. It might be due to the distinctiveness of different

study subjects or other reasons not revealed currently.

We attempted to explore the causes of T2D of GK rats from

CNV data in this study. Admittedly, there were still several aspects

not covered here. T2D is a heterogeneous disease, and it may be

caused by multiple factors including genetic variations (point

variations, structural variations like inversion, translocation, small

indels and CNVs) and environmental effects. It is also reported

that epigenetic factors may be implicated in the T2D of GK rats

[12]. In the present work, only CNVs are concerned, and future

studies concerning all these points and validation of the candidates

are thus highly anticipated. Array probe design with higher

density, hybridizations with more GK individuals, and rat genome

annotation with better accuracy will improve the quality of the

CNVR data and subsequent analyses. It will be even more

promising if next-generation sequencing technology is adopted for

CNV discovery, since it can not only define the CNV boundaries

more accurately, but also detect inversions or translocations that

cannot otherwise be detected by array CGH. In addition,

sequencing can identify novel sequence stretches that are not

presented in the current reference genome assembly, paving a

broader way to identifying T2D and other disease genes.

Materials and Methods

Sample Preparation, Array Hybridization and Data
Extraction

Three male Goto-Kakizaki rats and 8 male Wistar rats were

obtained from SLAC Co., Ltd (Shanghai, China). The rats were

anesthetized by formalin at the age of 8 weeks, and the blood was

taken from the pericardia and anticoagulated. Genomic DNA was

then isolated using DNeasy Blood & Tissue Kit (Qiagen, p/n

69504). All animal experiments were approved by the Biomedical

Research Ethics Committee of Shanghai Institutes for Biological

Table 4. The targets of rno-mir-30b and rno-mir-30d involved in diabetes-related pathways.

KEGG pathway microRNA Targets

* Glycolysis/Gluconeogenesis rno-mir-30b Aldoc, Gapdh, Ldhb, Pgm1, Aldh3a1, Pfkl, Aldh1a3, LOC291543, Gpi, LOC294844, Aldh2,
RGD1561178, Adh4, Aldh1a7, LOC303448, RGD1563446, LOC366864, RGD1566272, RGD1564688,
RGD1565928, RGD1562758, RGD1559704, LOC499896, LOC500912, RGD1565368, LOC680538,
LOC682005, LOC685186, LOC688677, Gapdh-ps2

rno-mir-30d Fbp2, Adh7, Adh1, Ldhb, Pgk1, Pgm1, Aldh3a1, LOC291543, RGD1561881, Aldh2, Adh4, RGD1565238

* Pentose phosphate pathway rno-mir-30b Aldoc, Pgm1, Pfkl, Gpi, Tkt

O-Glycan biosynthesis rno-mir-30b Ogt, Galnt13, Galnt3, Galnt1

rno-mir-30d Ogt, Galnt13, Galnt3, C1galt1

Fructose and mannose metabolism rno-mir-30b Aldoc, Pfkfb1, Pfkl, Mpi, Fpgt

Fatty acid metabolism rno-mir-30d Adh7, Adh1, Cpt2, Aldh2, Adh4, Dci, Acox3

Glycan structures - biosynthesis 1 rno-mir-30d Ogt, Man1a1, Chst1, Ext1, B4galt4, Galnt13, Ddost, Galnt3, C1galt1, Mgat5, Hs3st1, Chst3, Mgat2

Insulin signaling pathway rno-mir-30b Braf, Mapk8, Eif4e, Cblb, Pygm, Akt2, Socs1, Pfkl, Pik3r2, Calml3, Cep152, Rps6kb2, Srebf1, Pik3cb

rno-mir-30d Fbp2, Cblb, Calm1, Calm3, Prkar2b, Pygm, Socs1, Pik3r2, Phkb, Calm2, Srebf1, Foxo1

PPAR signaling pathway rno-mir-30b Pparg, Slc27a6, Gk, Cyp8b1

rno-mir-30d Cpt2, Slc27a6, Gk, Fabp4, Acox3

Type II diabetes mellitus rno-mir-30b Mapk8, Socs1, Prkce, Pik3r2, Pik3cb

rno-mir-30d Socs1, Pik3r2

Pancreatic cancer rno-mir-30b Braf, Mapk8, Erbb2, Akt2, Pik3r2, Brca2, Rac2, Rad51, Nfkb1, Pik3cb

rno-mir-30d Egfr, Pik3r2, Brca2, Rad51

Maturity onset diabetes of the young (MODY) rno-mir-30b Neurod1

rno-mir-30d Hnf1b, Hnf4a, Neurod1

Type I diabetes mellitus rno-mir-30b RT1-A1, RT1-A2, RT1-Cl, RT1-CE12, RT1-CE1, RT1-A3, RT1-M6-2, RT1-CE14, RT1-CE4, RT1-M6-1, RT1-
CE16, Ica1

rno-mir-30d Gzmb, Il1a, Ifng, RT1-Db1, H2-Ob, Cd86

*Significantly or nearly significantly enriched, p,0.10.
doi:10.1371/journal.pone.0014077.t004
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Sciences, Chinese Academy of Sciences (IRB00005813). DNA

from 3 individuals of GK rat was used as test sample separately,

while DNA pooled from 8 Wistar rats served as a common

reference.

We used rat genome CGH 244A (Agilent, p/n G4435A) as our

oligo aCGH platform, which comprises about 240 K 60-mer

probes tiled over the rat genome with the median probe spacing of

7.9 Kb (4.7 Kb in gene regions). Labeling of genomic DNA and

hybridization to tiling arrays were performed according to

standard Agilent protocols. In brief, 2 mg of genomic DNA from

test sample (GK) and 2 mg from reference (Wistar) were digested

by AluI/RsaI and labeled by random primer, incorporating Cy5

(red) and Cy3 (green) fluorescent dyes. Test and reference were co-

hybridized to the Agilent 244A microarray in the hybridization

chamber (Agilent, p/n G2545A) at 65 degrees Centigrade and

20 rpm for 40 hours. For each sample, a dye-swap labeling and

hybridization was carried out. In a ‘‘forward’’ hybridization, test

and reference samples were dyed with Cy5 and Cy3 respectively,

while in the corresponding ‘‘reverse’’ hybridization, test and

reference were dyed with Cy3 and Cy5 respectively.

Following hybridization and wash, arrays were imaged using the

US80803205 high-resolution scanner (Agilent, p/n G2505B).

Fluorescence intensities were extracted using Agilent’s Feature

Extraction software and used for follow-up processing procedures.

Data Processing
The data were processed in the R programming environment

(2.9.0), and the snapCGH (1.12.0), limma (1.18.0), MANOR

(1.16.0) and DNAcopy (1.18.0) packages from bioconductor

project (http://www.bioconductor.org/), and several in-house

scripts were adopted for quality control, normalization and

segmentation. The data processing framework was mainly based

on snapCGH [52], and some necessary modifications were made

to fit the requirements of quality control and the dye-swap design.

The whole pipeline involving data processing and CNVR

identification is illustrated in Figure 3. The signal intensities from

the two channels (Cy5 and Cy3) were transformed to the form of

logarithm ratios (M values), and were then input to MANOR for

quality assessment, especially for adjusting potential global

gradient and detecting chip regions with low quality [53]. After

that, all M values were normalized with the ‘‘loess’’ coefficients

calculated from the M values between 21 and 1 (‘‘weighted loess’’)

[54], and those from ‘‘reverse’’ hybridizations were multiplied by

21 to make them comparable with those from ‘‘forward’’ ones

(i.e., M values of Wistar vs GK converted to M values of GK vs

Wistar).

We further developed a linear model using limma to correct the

spot-specific dye bias [55]. For each feature spot, we had 6 M

values corresponding to 6 arrays. In our model, each measured M

value was written as:

Mi~a:GkWisizb:Dyeizei

where i took values from 1 to 6, representing different arrays. The

item of a was used to model the contribution of genomic

difference between GK and Wistar rats, while the item of b was

for dye bias. The item of e represented the contribution of other

factors including difference between GK individuals and random

errors. In all hybridizations (i = 1, …, 6), GkWis took the value of

1. The Dye took the value of 1 for ‘‘forward’’ hybridizations (i = 1,

2, 3) and 21 for ‘‘reverse’’ ones (i = 4, 5, 6), indicating the

different direction of dye bias in ‘‘forward’’ and ‘‘reverse’’

hybridizations. The dye bias correction was to subtract the

component of b?Dyei from M values. By minimizing the sum of

square of e, we were able to obtain the estimates of a and b in

limma. The dendrograms used to illustrate the necessity of spot-

specific dye bias correction were generated by hierarchical

clustering with Ward’s minimum variance method using Euclid-

ean distances.

After correction of the dye bias, 6 arrays were merged into 3

independent datasets corresponding to 3 GK samples. M values

from probe replicates were also averaged. And then segmentation

was carried out using DNAcopy package, which aims to fragment

the chromosomes into intervals according to the smoothed M

values of probes tiled alongside the genome, i.e., the copy number

status of the corresponding genome regions [56].

CNVR Identification
In this work, a CNV region (CNVR) was defined based on the

smoothed M values: three or more consecutive probes whose M

values were all greater than 0.5 (‘‘gain’’) or all less than 20.5

(‘‘loss’’) delineated a core region, which extended additional 5 Kb

at both sides to define a CNVR. When comparing two diploids,

the M value of 0.5 suggests that one of the two alleles is duplicated

(log2(3/2)<0.58). That was why 0.5 was set as the M cutoff. The

extension of CNVRs for 5 Kb at both sides was due to that 5 Kb is

similar to half of the median spacing between consecutive probes

on Agilent 244A platform, approximately representing the

coverage of a probe at one single side.

When merging CNVRs of multiple samples to a non-redundant

set, the criterion was that the region which was detected by at

least 1 sample was supposed to be kept in the final set, and

overlapped regions be merged, similar to ‘‘union’’ in set

operations. Although ‘‘union’’ of 3 samples inevitably resulted in

higher false positive rate of CNVR identification, we still preferred

high coverage to high precision. The genomic coordinates of

CNVRs were referred to the UCSC rn4 assembly (based on

RGSC 3.4), and their chromosomal distribution was plotted using

Caryoscope [57].

Figure 3. The pipeline of microarray data processing. The shapes
bordered by dash-line represent the steps specifically implemented for
this study.
doi:10.1371/journal.pone.0014077.g003
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Investigation into CNVRs
The analyses were also conducted in the R programming

environment. The chromosomal locations of NCBI Entrez genes

were obtained from the package org.Rn.eg.db (2.2.11) in

Bioconductor. Coordinates of genomic features adopted in this

work were all referred to the UCSC rn4 assembly, in consistence

with those of CNVRs. The CNV genes were identified through

genomic interval overlapping, i.e., if one overlapped any of the

GK/Wistar CNVRs, it was counted in. In the calculation of the

length of gene regions in the CNVRs or in the whole genome,

overlapping gene regions were merged to non-redundant intervals

to avoid duplicated counting.

The random simulation for estimating the statistical significance

of CNVRs’ preference to intergenic regions was designed as

follows. The same counts of genomic intervals as CNVRs (137 in

this study) were randomly chosen from the rat chromosomes, and

their lengths were also the same as the corresponding CNVRs.

The summed length of the overlaps between them and Entrez

gene regions was then calculated as the statistic. After 1000 rounds

of this process, an empirical distribution representing the overlap

magnitudes between gene regions and random genomic intervals

was obtained. And thus the probability of the overlap length less

than that between real CNVRs and gene regions (3.22 Mb in this

study) could be estimated.

The T2D-related gene list was compiled from an article which

collected 172 human T2D-related genes [10] and the T2D-DB

database [9] which contained 330, 60, and 36 genes from human,

mouse and rat, respectively. Using NCBI HomoloGene Release 64

(http://www.ncbi.nlm.nih.gov/homologene), we obtained the

corresponding rat homologues of human and mouse genes. A

total of 425 non-redundant rat genes turned out to form the T2D-

related gene list.

In addition to org.Rn.eg.db (2.2.11), the bioconductor packages

including KEGG.db (2.2.11), and GOstats (2.10.0) were used to

obtain the gene to pathway mappings, and to test the significance

of pathway enrichments. The ‘‘near-T2D’’ gene set was prepared

from a study on human ‘‘diseasome’’ [31], where all the diseases

were organized in a inter-connected network. We collected all the

diseases that directly connected to T2D in this network, and then

all the genes corresponding to these diseases were retrieved as the

‘‘near-T2D’’ gene set. The rat homologues of ‘‘near-T2D’’ human

genes were also obtained from the NCBI HomoloGene release 64,

resulting in 1097 rat ‘‘near-T2D’’ genes. The rat QTL data were

from the source of RGD [58], and their overlap with CNV genes

were checked through navigating the UCSC genome browser

manually [59]. Tiffin’s human T2D gene set [33] were originally

represented by Ensembl gene IDs and were converted to Entrez

gene IDs using org.Hs.eg.db (2.2.11). The human homologues of

the rat CNV genes were obtained using HomoloGene release 64

as well, which made feasible the comparison between CNV genes

and Tiffin’s dataset.

The locations of ultraconserved elements on rat genome

(assembly rn4) were determined using BLAT [60]. The 481

published elements resulted in 484 positions due to non-unique

mapping. The simulation for estimating the significance of the

overlap between CNVRs and the ultraconserved elements was

conducted following the previous procedure for overlap between

CNVRs and gene regions.

Rat microRNAs along with their genomic coordinates based on

assembly rn4 were downloaded from miRBase (http://www.

mirbase.org/, release 14) [61]. Predicted targets of mature

microRNAs were obtained from MicroCosm (http://www.ebi.

ac.uk/enright-srv/microcosm/htdocs/targets/v5/) based on the

miRanda algorithm [39]. Since rno-mir-30b was processed to two

mature forms, rno-miR-30b-3p and rno-miR-30b-5p, their targets

were combined for further analysis; and it was the same with rno-

mir-30d, where the targets of rno-miR-30d and rno-miR-30d* were

merged. The targets in MicroCosm presented as Ensembl

transcript IDs were converted to Entrez gene IDs utilizing the

mappings provided by the package org.Rn.eg.db. The significance

of the targets’ enrichment in the 425 T2D-related genes was

calculated in a hypergeometric distribution by taking all the genes

in the package ‘‘org.Rn.eg.db’’ as background. The pathway

mapping and enrichment analysis of targets were performed as the

same as those of CNV genes using the package of GOstats.

The super series GSE13271 contains three expression datasets:

GSE13268 (adipose), GSE13269 (muscle), and GSE13270 (liver),

all of which profiled the gene expressions of GK and Wistar rats in

normal and high fat diet, and in 5 time points, thus resulting in 30

conditions. For genes with more than one probeset, we kept the

one which was most often associated with the highest expression

level. If there were still more than one probeset left, the intensities

of the remaining probesets were averaged to represent the

expression level of this gene. We then performed t-test to identify

differentially expressed genes between GK and Wistar samples,

and calculated the base 2 logarithm of the fold changes for the

expression levels. FDR correction using BH method [62] was

adopted to adjust the raw p-values of multiple hypothesis testings,

and 0.2 was chosen as the threshold, which means that more than

80% of the identified genes are truly differentially expressed. As for

the microRNA expression dataset GSE13920, we simply looked at

the mean signal intensities after removing mean background noise

for each probe of mir-30b and mir-30d.

Supporting Information

Figure S1 Effect of dye bias correction. The samples were

clustered according to the corresponding M values, before (A) and

after (B) correcting the systematic errors caused by dye bias,

respectively. GK19, GK29 and GK49 represent the corresponding

‘‘reverse’’ hybridizations for GK1, GK2, and GK4, respectively.

Found at: doi:10.1371/journal.pone.0014077.s001 (0.08 MB TIF)

Figure S2 Expression levels of mir-30b/30d in the muscle of

GK and Wistar Rat. Data were downloaded from GEO

(GSE13920), and two GK samples and 2 Wistar samples were

hybridized on 4 single-channel microarrays respectively. The

expression level was represented by the mean foreground signal

intensity after subtracting the mean background signal intensity.

Each probe duplicated 3 times.

Found at: doi:10.1371/journal.pone.0014077.s002 (0.22 MB TIF)

Table S1 CNVRs identified in 3 GK rat DNA samples.

Found at: doi:10.1371/journal.pone.0014077.s003 (0.05 MB

XLS)

Table S2 Simple statistics of GK/Wistar CNVRs in 3 samples.

Found at: doi:10.1371/journal.pone.0014077.s004 (0.04 MB

DOC)

Table S3 Common CNVRs between samples (Mb).

Found at: doi:10.1371/journal.pone.0014077.s005 (0.03 MB

DOC)

Table S4 Non-redundant CNVRs and Entrez genes directly

overlapped them.

Found at: doi:10.1371/journal.pone.0014077.s006 (0.06 MB

XLS)

Table S5 Genes identified from GK/Wistar CNVRs.

Found at: doi:10.1371/journal.pone.0014077.s007 (0.03 MB

XLS)
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Table S6 The pathway mapping and enrichment of CNV genes.

Found at: doi:10.1371/journal.pone.0014077.s008 (0.03 MB

XLS)

Table S7 CNV genes occurred in ‘‘near-T2D’’ diseases.

Found at: doi:10.1371/journal.pone.0014077.s009 (0.02 MB

XLS)

Table S8 Preferentially selected protein-coding genes in GK/

Wistar CNVRs.

Found at: doi:10.1371/journal.pone.0014077.s010 (0.02 MB

XLS)

Table S9 Logarithm (base 2) ratios of CNVRs (GK vs. Wistar)

containing microRNAs.

Found at: doi:10.1371/journal.pone.0014077.s011 (0.01 MB

XLS)

Table S10 Pathway mapping and enrichment of the targets of

rno-mir-30b.

Found at: doi:10.1371/journal.pone.0014077.s012 (0.04 MB

XLS)

Table S11 Pathway mapping and enrichment of the targets of

rno-mir-30d.

Found at: doi:10.1371/journal.pone.0014077.s013 (0.04 MB

XLS)

Table S12 Coding signals annotated in sources other than

Entrez Gene (EG).

Found at: doi:10.1371/journal.pone.0014077.s014 (0.03 MB

DOC)

Table S13 Comparison of CNV genes and differentially

expressed genes.

Found at: doi:10.1371/journal.pone.0014077.s015 (0.06 MB

XLS)
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