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Abstract

Background: Constructivist theories propose that articulatory hypotheses about incoming phonetic targets may function to
enhance perception by limiting the possibilities for sensory analysis. To provide evidence for this proposal, it is necessary to
map ongoing, high-temporal resolution changes in sensorimotor activity (i.e., the sensorimotor m rhythm) to accurate
speech and non-speech discrimination performance (i.e., correct trials.)

Methods: Sixteen participants (15 female and 1 male) were asked to passively listen to or actively identify speech and tone-
sweeps in a two-force choice discrimination task while the electroencephalograph (EEG) was recorded from 32 channels.
The stimuli were presented at signal-to-noise ratios (SNRs) in which discrimination accuracy was high (i.e., 80–100%) and
low SNRs producing discrimination performance at chance. EEG data were decomposed using independent component
analysis and clustered across participants using principle component methods in EEGLAB.

Results: ICA revealed left and right sensorimotor m components for 14/16 and 13/16 participants respectively that were
identified on the basis of scalp topography, spectral peaks, and localization to the precentral and postcentral gyri. Time-
frequency analysis of left and right lateralized m component clusters revealed significant (pFDR,.05) suppression in the
traditional beta frequency range (13–30 Hz) prior to, during, and following syllable discrimination trials. No significant
differences from baseline were found for passive tasks. Tone conditions produced right m beta suppression following
stimulus onset only. For the left m, significant differences in the magnitude of beta suppression were found for correct
speech discrimination trials relative to chance trials following stimulus offset.

Conclusions: Findings are consistent with constructivist, internal model theories proposing that early forward motor models
generate predictions about likely phonemic units that are then synthesized with incoming sensory cues during active as
opposed to passive processing. Future directions and possible translational value for clinical populations in which
sensorimotor integration may play a functional role are discussed.
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Introduction

It is well known that the acoustic speech signal does not directly

map onto perceived speech-sound categories. This phenomenon is

known as a ‘many-to-many’ mapping between acoustic correlates

and phonemic units. In other words, different acoustic cues may

be associated with the same phoneme and a single acoustic cue

may be perceived differently depending on the surrounding speech

sounds [1,2]. For example, although listeners identify the

consonant/d/as the same phonemic category for the syllables/

di/and/du/, the formant transitions characterizing the consonants

are different for the two syllables [2]. Despite the complex

relationship between acoustic features and perception, humans

successfully process speech even when acoustic cues are mixed

with background noise. As such, the process by which categorical

percepts are recovered from variable acoustic cues has been long

been a matter of debate and is known as the ‘lack of invariance

problem’ [3–11].

To many theorists, the invariance problem suggests that

acoustic cues alone cannot specify what humans perceive as

distinct phonemic units [4,12–16]. Early gestural theories

addressed the invariance problem by suggesting that the goal of

speech perception was not to perceive acoustic cues but instead to

recover invariant articulatory gestures from the acoustic signal.

Liberman’s motor theory proposed that acoustic cues were

perceived as the invariant, intended articulatory targets that give
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rise to the acoustic signal, linking perception and production via a

specialized phonetic module [4]. Alternatively, Fowler’s direct

realist theory proposed that sensory properties (i.e., acoustic cues)

could directly specify invariant articulatory gestures without

reference to intended articulatory targets [12]. Although the

details of the two theories differ, both imply that the motor system

is critical for perception and that direct mapping between sensory

signals and invariant gestures is a solution the problem of

invariance [6–8]. However, a number of findings are inconsistent

with the prediction that the motor system is necessary for

perception, including categorical perception in non-human species

[18], lack of motor system activation in some speech processing

tasks [8,9,19–22], and lesion evidence suggesting only subtle

deficits with damage to the speech motor system [22]. As such,

although gestural theories propose a solution to the problem of

invariance, they have been widely debated from their inception.

In contrast with the prediction that the motor system is

necessary for speech perception, recent theories of speech

processing have proposed that sensorimotor simulations may play

a role in aiding acoustic analysis of speech depending on the

perceptual environment and goals of the perceiver [6,7,11,23,24].

These theories appear to have been influenced by Helmholtz’s

concept of constructivism and suggest that previous experience

derived from speech production (i.e., the motor system), multi-

sensory information (e.g., visual mouth movements), and language

may function to disambiguate cues derived from the acoustic

speech signal [11]. As such, ‘constructivist’ accounts propose that

accurate perception is achieved via an active process in which

hypothesized interpretations of the incoming speech signal weight

sensory perception toward expected acoustic features in a manner

similar to ‘analysis-by-synthesis.’ [6]. Under conditions in which

acoustic cues are ambiguous, Stevens and Halle’s theory long ago

proposed that the articulatory system might generate hypotheses

about the intended articulatory target that can then be synthesized

with incoming acoustic features [23].

Despite decades of controversy, there is little neurophysiological

evidence clearly favoring constructivist accounts of speech

processing over gestural theories of perception [11]. This is no

small matter as the primary goal of speech perception theory and

decades of psychoacoustic research has been to account for the

invariance problem. Due to predictions about the process by

which invariance is achieved, constructivist and direct-realist

perspectives make clear, divergent predictions about when

sensorimotor integration should occur relative to the onset of

acoustic stimuli. Constructivists predict that motor regions should

be active prior to and following the arrival of acoustic speech

signals (i.e., hypothesis and test). Direct realists predict motor

activation during acoustic stimulation only (i.e., direct mapping).

Further, gestural theories in general (i.e., direct mapping theories)

propose that the motor system should be active in all listening

conditions, whereas constructivist theories propose that the motor

system will be active depending on the perceptual environment

and goals of the perceiver [6]. A resolution to these fundamental

questions may favor one computational mechanism over another

and thus may also be critical to developing models that can

accurately account for speech perception in natural environments

(i.e., face-to-face interaction) [23–32].

Neurophysiological theories proposing a role for sensorimotor

integration have suggested neural mechanisms following gestural

and constructivist theories. On the gestural side, the discovery of

sensorimotor ‘mirror neurons’ in the F5 area of the macaque, a

proposed homologue for the premotor cortex (PMC) near Broca’s

area in humans, has renewed interest in direct-realism and motor

theory [11,28]. As in direct realism, it has been suggested that the

PMC might support a direct action to observation matching

system based on the property of neural identity [16] or

alternatively might support the recovery of intended articulatory

goals from the sensory signal in a manner similar to motor theory

[11,28]. In this way, the PMC may function as a multimodal way

station for directly linking incoming perceptual signals with the

neural commands that generated those signals (i.e., direct mapping

theories) [25]. As such, the human mirror neuron system (MNS)

pivoting around the PMC has been taken as physiological support

for long held notions intrinsic to gestural theories [16,26].

In contrast with purely gestural notions, a number of

neurophysiological frameworks have proposed that online senso-

rimotor simulations for speech processing may play a functional

role in some contexts [6–11]. Although theories diverge on some

details, including whether or not the MNS is involved, most

accounts suggest that motor regions cooperate with sensory

regions in the temporal and inferior parietal lobes known as the

dorsal auditory stream network [9–11,26–30]. During language

development, the dorsal stream may allow infants to translate

speech sounds stored in the temporal lobe into motor commands

that generate those same sounds in frontal regions, allowing for

intimate connections between learned auditory targets and the

motor commands required to produce them [33,34]. During

receptive speech processing in some contexts (e.g., speech in noise),

it is thought that the same neural architecture involved in speech

production may be recruited for perception [24]. Some authors

have speculated that motor regions may function in a predictive

capacity similarly to the manner in which attention is thought to

operate in visual perception [7,10,11]. According to these notions,

forward internal models (i.e., predictions) generated via dorsal

stream motor regions might initiate sensory constraints on

incoming acoustic information as in ‘analysis-by-synthesis’ [6–

8,10,11,35–37]. These forward models may function by applying

gain to sensory neurons tuned to expected features, by suppressing

neurons tuned to irrelevant features, or perhaps using both

processes at once [10]. As such, during active processing forward

articulatory models of the motor system predict activity in motor

regions prior to acoustic onset (i.e., articulatory hypotheses) and

immediately following sensory analysis (i.e., test). This prediction is

orthogonal to the predictions of direct-realism in which sensory

properties directly specify invariant speech gestures (i.e., during

sensory analysis only) and occur irrespective of attention to the

signal.

In support of a role for the motor system in perception, a

number of neuroimaging studies have demonstrated that brain

regions classically involved in speech production are also active

during perception. In passive perception tasks, in which partici-

pants are not required make decision about auditory stimuli,

neuroimaging studies have shown variable activation in motor

regions across tasks [6–8,9–11,38–40]. However, in active tasks

activity in motor regions has been shown to be related to task

performance. In a functional magnetic imaging study (fMRI),

Binder et al. [40] demonstrated that blood-oxygen level dependent

(BOLD) activity in the PMC/Broca’s area increased as perfor-

mance decreased in a two-forced choice (e.g.,/ba/vs./da/) speech

perception-in-noise task, suggesting that the motor system may

play a compensatory role with increases in environmental noise.

Callan et al. [41] found greater activity in the PMC for perception

of second language contrasts relative to native language contrasts

that also increased as participants learned new contrasts.

Transcranial magnetic stimulation (TMS) studies in which motor

regions are systematically disrupted have provided further support

for a functional role. Meister et al. [42] found that disrupting the

ventral premotor cortex (vPMC) resulted in a decrease in phonetic
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discrimination in a speech in noise task. D’Ausillio [43] found that

stimulation to the precentral gyrus (primary motor cortex; M1)

resulted in the facilitation of phoneme identification for effector

involved. Sato et al. [44] found that disruption of a region within

the precentral gyrus resulted in decreased reaction time only when

segmentation (e.g.,/bat/vs./rim/) as opposed to discrimination

(e.g.,/bad/vs/dad/) was required, suggesting that the motor

system might have some function related to more difficult tasks

requiring greater demands on working memory. Those findings

are also consistent with previous imaging studies showing

increased BOLD activation in motor regions for a similar task

[45].

Although neuroimaging and TMS studies implicate the motor

system in perception, they have contributed little clear physiolog-

ical evidence addressing how it functions. In order to test

contrasting theories, it is critical to demonstrate that ongoing

motor activity prior to and immediately following acoustic onset is

related to perceptual performance. Recently, Callan et al. [11]

addressed this gap in a two-forced choice, speech-in-noise design

in which brain activity was recorded using both fMRI and high-

temporal resolution magnetoencephlography (MEG). Activation

in the PMC was associated with changes in spectral power that

were greater for correct relative to incorrect trials in the time-

periods prior to and following acoustic input, strongly supporting

constructivist theories of speech processing. However, as that study

did not employ non-speech control stimuli, it remains possible that

early and late activity in the PMC may function in a broader

capacity. The PMC near Broca’s area is known to be active in a

number of tasks, including rapid pitch discrimination [46] and

tone segmentation tasks [47], suggesting that areas of motor

system might also function for rapid perceptual judgments or rapid

auditory processing. Additionally, if early motor activity is

specifically related to speech perception accuracy, it has the

potential to be used as a brain computer interface (BCI) approach

to improve subsequent performance in populations with process-

ing deficits. As fMRI and MEG are prohibitively expensive for use

in many clinical settings, there is a need to develop a less expensive

alternative for BCI approaches. Deficits or differences in networks

for sensorimotor integration for both speech perception and

production have been implicated in a number of communication

disorders, including autism, language impairment, hearing im-

pairment [48], stuttering [49], and aphasias [10], all of which are

commonly treated in speech and hearing clinics.

Perhaps another method by which to quantify ongoing, high-

temporal resolution activity in the motor system is to measure

event-related spectral perturbations (ERSPs) of the sensorimotor m
rhythm using relatively low-cost scalp-recorded electroencepha-

lography (EEG). A large corpus of evidence has demonstrated that

event-related descynchronization (ERD) (i.e., power decrease or

suppression) of the sensorimotor m rhythm occurs during the

observation, imagination, and execution of biological movements,

strongly suggesting the m is a functional correlate of movement

processing [50–66]. The m rhythm of the EEG is composed of at

least two dominant frequency components, one occurring at

,10 Hz and another occurring at ,20 Hz. The ,10 Hz

component tends to be localized to the somatosensory cortex

and the ,20 Hz component is known to emerge in a somatotopic

manner from the precentral gyrus corresponding with the motor

cortex for the effector involved (e.g., lip vs. hand movements) [63–

65]. As the rhythm is localized to the sensorimotor cortex, it is

thought to be a ‘down-stream’ measure of motor activity emerging

from the PMC [65]. Two relatively recent studies have demon-

strated sensorimotor suppression (i.e., electrode locations C3, Cz,

C4) to visual and audiovisual speech signals [61], the continuous

presentation acoustic syllables in noise, and during segmentation

tasks in ideal listening conditions, suggesting that sensorimotor

rhythms may suppress as a function of auditory stimulus

characteristics [66]. However, to test theoretical predictions, it is

critical to demonstrate that suppression time-locked to stimulus

events prior to and following stimulus onset is related to perceptual

performance (i.e., correct trials).

Recent studies have demonstrated that the sensorimotor and

other traditional EEG components can be isolated from other

volume conducted components of the EEG via a blind source

signal separation (BSS) approach known as independent compo-

nent analysis (ICA). A BSS approach to signal analysis allows for

an examination of temporal dynamics of EEG components with

minimal influence from other components (i.e., the influence of

volume conduction). As the aim of the current study is to measure

millisecond resolution ERSPs prior to and following a speech and

rapid pitch discrimination task to shed light on the functional role

of the motor system without the influence of other sources, EEG

data were decomposed in the current study using ICA and

subsequent within subject clustering [67,68]. As in previous

neuroimaging studies, the current study employs classical two

forced-choice speech and non-speech (i.e., rapid pitch change) in

noise design in which EEG time-frequency changes are measured

before, during, and following stimulus onset in both passive

listening and active listening tasks. The specific aims of the present

study are to: 1) identify independent components (IC’s) consistent

with known features of the sensorimotor m rhythm; and 2)

investigate ERSPs for m rhythm components relative to stimulus

type (i.e., speech relative to non-speech), onset relative to acoustic

input, and discriminability (i.e., correct versus chance trials). The

second aim was achieved by examining the spectra, source

estimations of independent component clusters, and the time-

course of ERSP activation patterns. If the motor system is critical

for perception as predicted by gestural theories, it should be active

in passive as well as active syllable discrimination tasks. However,

if the motor system functions as internal models predict, activity

prior to and immediately following acoustic input would be

expected for active discrimination trials that is greater for correct

trials over those identified at chance. By contrast, if the motor

system functions as predicted by direct realism, only activity

during stimulus processing would be expected.

Methods

Experimental Design
The current proposal employs a classical two forced-choice

speech and non-speech (i.e., rapid pitch change) perception design

similar to that used in previous studies [11,40]. In addition to

addressing theoretical predictions, steps were taken in the current

design to address concerns that have traditionally limited

interpretation of neuroimaging evidence of motor activity in

sublexical, two-forced choice tasks. It has been suggested that

activity in the motor system may be more related to covert

rehearsal (i.e., internal speech production) to enhance working

memory or alternatively due to sensory-decision mechanisms as

opposed to perception per se. In the current study, this possibility

was addressed in two ways. First, as motor processing in passive

tasks is thought to reflect covert rehearsal (i.e., after stimulus onset)

and motor processing in active tasks may play a functional role

(prior to and after stimulus onset), both passive and active tasks

were employed. Covert rehearsal was also addressed via the

temporal resolution of the EEG. If covert rehearsal or working

memory for the response was responsible for activity in motor

regions, such activity would not be expected prior to an acoustic
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stimulus. Further, a minimum of 200 ms would be required for

participants to process an auditory stimulus and to initiate covert

rehearsal [11]. As such, if differences between correct and chance

trials are found immediately following stimulus offset, it is unlikely

that such differences would be due to covert rehearsal.

Second, in two forced-choice paradigms in which a same/

different decision is required, it has been suggested that activity

recorded within classical speech production areas might arise from

sensory-decision processes [10,11,40]. To address this possibility,

two active discrimination tasks (i.e., requiring a sensory-decision

via button press) for speech and non-speech auditory stimuli were

presented at high and low signal-to-noise ratios (SNRs) such that a

large number of correct trials and chance trials were submitted. As

participants can still detect auditory stimuli at lower SNRs, if

suppression of the sensorimotor rhythm were related to sensory-

decision only as opposed to stimulus processing, no differences

between correct trials and those discriminated at chance levels

would be expected. In other words, as sensory-decision mecha-

nisms are not different between the high and low SNR conditions,

no differences would be expected. In addition, no differences

between correct speech and rapid-pitch discrimination tasks would

be expected as sensory decision requirements were similar.

Further, no differences in lateralization (i.e., left relative to right

hemisphere motor activity) would be expected for speech and

control non-speech auditory stimuli since for both an active

decision was required.

Participants
Sixteen right-handed English-speaking adults (15 female and 1

male) with a mean age of 25 (range 20–42) participated in this

study. Participants were recruited from the general population at

the University of Tennessee. Participants reported no diagnosed

history of communicative, cognitive or attentional disorders.

Degree of handedness was assessed using the Edinburg Handed-

ness inventory [69]. This study was approved by the Institutional

Review Board of the University of Tennessee Health Science

Center. Prior to the experiment, all participants were provided

with an informed consent document approved by the Institutional

Review Board and all participants gave written informed consent

prior to inclusion.

Stimuli
Speech stimuli consisted of/ba/and/da/syllable generated

using AT&T naturally speaking text-to-speech software. The

software generates syllables from text using speech synthesized

from a human male speaker. Half of the stimuli were composed of

different initial sounds (e.g.,/ba/and/da/) and the other half were

the same (e.g.,/ba/and/ba/). The stimuli were normalized to have

the same root-mean-square (RMS) amplitude and low-pass filtered

with a cutoff at 5 kHz. Each stimulus syllable was 200 ms in

duration with an interstimulus interval of equal length (i.e.,

200 ms). Thus, the total time required to present a stimulus pair

was 600 ms. For the tone discrimination task, sine-wave tone

sweeps were generated using a procedure adapted from a previous

neuroimaging study [46]. Tone-sweep stimuli were composed with

an 80 ms modulated tone onset and a 120 ms steady state

1000 Hz sine-wave. As for the speech stimuli, tone-sweeps were

generated, low-pass filtered with a cut-off at 5 kHz, and

normalized to have the same RMS amplitude as the speech

stimuli. Tone pairs differed only in whether the pitch onset was

lower at 750 Hz than the steady state tone or higher at 1250 Hz.

For both speech and tones the time between trials (i.e., intertrial

interval) was 3000 ms. White noise for the tone and speech stimuli

was generated and processed using the same procedure as for the

speech sounds, with a low-pass filter cut-off at 5 kHz. All auditory

stimuli were processed using Soundtrack Pro academic software

on an iMac (2 GHz intel core duo) computer and were sampled at

44 kHz. Conditions were placed in random order prior to

presentation. All stimuli were presented at an absolute intensity

of ,70 dB. An example time line of one stimulus trial is displayed

in Figure 1.

Previous investigations have shown better than chance perfor-

mance on a forced choice syllable discrimination task using a

+4 dB SNR and chance performance using a 26 dB SNR

[11,40]. However, pure tones may be detected with noise

intensities as high as 18 dB above pure tone intensity (i.e.,

218 dB SNR) [70]. To account for differences in perceived

loudness between tone and speech stimuli, preliminary behavioral

data was collected on 10 female participants using Stim2

presentation software presented through Etyomotic ER1–14A

tube phone inserts in a sound treated booth. Syllable and tone

stimuli were embedded in white noise and presented in 20 trials

using the time scheme shown in Figure. 1 at the following SNRs

218 dB, 212 dB, 26 dB, +4 dB. Syllable stimuli were identified

above chance in the +4 db condition only. Accuracy for tone-

sweep conditions were not above chance in 218 dB SNR, with

60% in 212 dB SNR, 78% in the 26 dB condition, and 76% in

+4 dB condition. Paired-t tests revealed no significant difference

(p..05) between the +4 dB and 26 dB tone-sweep conditions. As

such, the SNRs for the syllables were set at +4 dB and 26 dB and

for tone-sweeps at +4 dB and 218 dB.

Procedure
Stimuli were presented using Stim 2 4.3.3 stimulus presen-

tation software on a PC computer. The experiment was

conducted in an electronically and magnetically shielded,

double-walled, sound-treated booth. Participants were seated in

a comfortable reclining armchair with their heads and necks

well supported. Participants were told that they would be

listening to white noise, syllables, and tones. They were

instructed that the onset of one trial would commence when

white noise was audible, followed by either syllable or tone

stimuli. Participants were asked to indicate whether the syllables

or tone-sweeps sounded the same or different by pressing a

button using the left thumb only. Premotor planning for

repeated finger movements has been shown to occur ,1 second

prior to muscle contraction [63,71] and sensorimotor suppres-

sion to peak briefly (,200 ms) following a manual response to a

perceptual target [72]. To further control for the possibility that

preparation for the response might confound motor activity

related to stimulus processing, participants were signaled to

respond via a 100 ms, 1000 Hz sine wave tone 1400 ms after

stimulus onset. To control for stimulus-response bias in the

button press task, the order of the button press was

counterbalanced [11].

All conditions were randomized prior to presentation and

presented in two randomized blocks consisting of 40 trials each.

Performance was evaluated as a percentage of correct trials (%CT)

and response time (RT). Participants were asked to listen under the

following conditions: 1) Passively listening to noise (PasN); 2)

Passively listening to speech syllables in +4 dB noise (PasSp+4 dB);

3) Passively listening to tone-sweeps in +4 dB noise (PasTn+4 dB);

4) Active syllable discrimination-in +4 dB noise (ActSp+4 dB) 5);

Active tone-sweep discrimination-in +4 dB noise (ActTn+4 dB); 6)

Active syllable discrimination in 26 dB noise (ActSp26 dB); 7)

Active tone-sweep discrimination in 218 dB noise

(ActTn218 dB).
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Data Acquisition
Thirty-two electrode channels were used to acquire EEG data

based on the extended international 10–20 method of electrode

placement [73] using an unlinked, sintered NeuroScan Quik Cap.

Recording electrodes included Cz, C3, C4, CP4, CP3, Pz, P3, P4,

P8, Fz, F3, F4, F7, F8, FC4, O1, O2, FP1, FP2, FT7, FT8, T3,

T4, T5, T6, TP8, TP7 with two electrodes on the left (M1) and

right mastoids (M2). The reference electrode was placed on the

nasion and the ground electrode was at Fpz. The electro-

oculogram (EOG) was recorded by electrodes placed on the left

superior orbit and the left inferior orbit (VEOG) and on the lateral

and medial canthi of the left eye (HEOG) to monitor vertical and

horizontal eye movements, respectively. The impedances of all

electrodes were measured at 30 Hz before, during, and after

testing and were never greater than 5 KV.

EEG data were collected using Compumedics NeuroScan Scan

4.3.3 software and the Synamps 2 system. The raw EEG data was

filtered (0.15–100 Hz), and digitized via a 24-bit analog-to-digital

converter at a sampling rate of 500 Hz. Data was time-locked to

the onset of individual speech perception trials. After data

collection, the recorded EEG signal and electro-oculogram

(EOG) data was segmented into single trials lasting approximately

5000 ms each, spanning from 23000 ms to +2000 ms with

reference to stimulus onset (i.e., zero time). That is, time prior to

syllable and tone-sweep stimuli was considered negative and time

following syllable and tone-sweep stimuli was considered positive.

To examine pre and post-stimulus activity, the EEG data was

epoched into 5000 ms segments. EEG data were visually inspected

and trials contaminated by gross artifacts greater than 200 mV

were removed. A minimum contribution of 40 epochs for each

participant in each condition was required for inclusion in the

experiment. Due to a contribution of only 20 trials in several

conditions, one participant was omitted from analysis.

ICA Preprocessing
As in previous studies using both ICA decomposition and

sLORETA source localization analysis, to decrease computational

requirements for ICA processing, data were digitally resampled

using a cubic spline interpolation method and a division of

1024 Hz (here 256 Hz) adequate for investigating all frequencies

up to the gamma frequency range [74,75]. Prior to ICA training,

EEG data were concatenated for each participant across

conditions. Subsequent ICA training was implemented using the

extended runica algorithm in EEGLAB [76]. The initial learning

rate was set to.001 with a stopping weight of 10–7. Linear

decomposition using the extended Infomax algorithm was

conducted for each participant across experimental conditions.

The algorithm spheres or decorrelates the data matrix prior to

ICA rotation and computes the variance of IC projection weights

on to the original EEG channel data [67]. The resulting square

weight matrix (30630) is thus applied to each participant, yielding

a single set of weights for each experimental condition expressing

independence in the data. This process allows for a comparison of

condition differences for the same set of component weights. The

inverse weight matrix (W21) can then be projected onto the

original EEG channel configuration, providing a spatial scalp

topography for the components.

Independent components (IC’s) were evaluated for each

participant across experimental conditions using three criteria.

First, an automated algorithm (ADJUST) shown in a previous

study to have good inter-rater reliability with researchers

experienced in IC noise removal, was used to tag non-brain

artifact components in the EEGLAB module [77]. Scalp-maps and

log spectra were also visually inspected for indicators of non-brain

artifact including high power in low frequencies, abnormal

spectral slope, and scalp-topographic distributions known to be

associated with eye-movement and temporal muscle contraction

Figure 1. Sample time-line of one trial with time periods of interest prior to, during, and following stimulus onset.
doi:10.1371/journal.pone.0072024.g001
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[11,67]. ICs with characteristic signs of non-brain artifact were

then pre-tagged for each subject. Second, IC’s with 20 trials

having outlier values (mV SD set to 10) over the electrode with

maximum power were eliminated [11]. Finally, equivalent current

dipole (ECD) models for each component were computed using a

four-shell spherical head model (BESA) in the DIPFIT toolbox

[78], freely available at sccn.ucsd.edu/eeglab/dipfit.html). Stan-

dard 10–20 electrode coordinates were warped to the BESA head

model followed by automated coarse and fine-fitting to the

spherical wire matrix, yielding dipole models for each of 480 ICs.

The procedure involves hypothesizing a dipole source that could

have generated the scalp potential distribution for a given IC and

then computing the forward model that explains the highest

percentage of the variance in the scalp map. ECD modeling is

well-suited to explaining IC scalp topographies as they can be

modeled efficiently with a single dipole source representing

synchronous activity within a small patch of cortex.

sLORETA Source Estimations
sLORETA is a functional imaging technique that provides

standardized linear solutions for modeling 3-D distributions of the

likely cortical generators of EEG activity [79]. The software uses a

3-D spherical head model separated into compartments including,

the scalp, skull, and brain. sLORETA analysis operates under the

assumption that scalp-recorded signals originate primarily in the

cortical gray matter/hippocampi and that neighboring neurons

are synchronously activated, giving rise to a signal that is distinct

from surrounding noise. The head model is standardized with

respect to the Talairach cortical probability brain atlas, digitized at

the Montreal Neurological Institute (MNI) and uses EEG

electrode coordinates derived from cross-registrations between

spherical and realistic head geometry [80]. The brain compart-

ment includes 6,239 voxels (5 mm resolution). Electrode coordi-

nates were converted to ASCII text format and exported to

sLORETA from the EEGLAB module. For each IC, inverse ICA

weight projections onto the original EEG channels were exported

to the sLORETA data processing module for each participant.

Cross-spectra were computed and mapped to the standard

Taliarach brain atlas cross-registered with the Montreal Neuro-

logical Institute (MNI) coordinates, yielding sLORETA estimates

of current source density for each of 480 ICs.

Independent Component Clustering
To identify similar independent components across partici-

pants, 480 (30616) components were then clustered using

measure product methods in the K-means statistical toolbox

implemented in EEGLAB [81]. The toolbox uses principle

component clustering methods to reduce data dimensions and

yields similar component clusters across participants. Here, 28

possible component clusters were considered. The data dimen-

sions were reduced to 10 with the standard deviation set to 3.

As such, ICs more than 3 standard deviations from any cluster

mean were excluded as an outlying cluster. As the sensorimotor

m rhythm is known to have characteristic peaks at ,10 and

,20 Hz and source locations within the sensorimotor cortex,

scalp-maps, log spectra, and equivalent current dipole models

were precomputed and used in the clustering analysis.

Component power spectra for each subject were calculated by

averaging fast Fourier transform (FFT) spectra for each epoch

using a window length of 256 points. Scalp topographies were

computed as 30 channel (x,y) map gradients and ECD models

were precomputed in the manner described in a previous

section. After clustering, only components with a single dipole

model within the head volume accounting for 80% or greater of

the variance in the independent component scalp distribution

were included in m component clusters. Pre-identified noise

components tagged prior to the analysis were used to identify

clusters accounting for non-brain sources. Only dipole locations

and sLORETA source maximum voxels within the precentral

or postcentral gyrus with spectral peaks ,10 and ,20 Hz were

included in m component clusters.

Event-related Spectral Perturbations
To examine stimulus induced changes in the EEG spectrum,

ERSP transforms were precomputed in the EEGLAB module

using the STUDY command structure. ERSPs are changes

scaled in normalized decibel units over a broad spectral range

(here .5–40 Hz) [81]. For independent components, ERSPs are

scaled in RMS decibel units on the same scale as the

component. Thus, IC scalp map topographies and ERSPs

share the same RMS scale in decibel units. In this study, ERSPs

were computed using a Morlet sinusoidal wavelet set at 3 cycles

at 3 Hz rising linearly to 20 cycles at 40 Hz. A 1000 ms pre-

stimulus baseline was selected from the silent intertrial interval.

This baseline served as a time period during which a surrogate

distribution was generated. The surrogate data distribution is

constructed by selecting spectral estimates or each trial from

randomly selected latency windows in the specified epoch

baseline. In this study, the baseline data was sampled 200 times,

producing a baseline distribution whose percentiles were taken

as significance thresholds [81]. Significant changes in spectral

power (i.e., increases or decreases from baseline) were then

tested using a bootstrap resampling method. Significant differ-

ences from baseline (p,.05 uncorrected) were considered in the

subsequent within subjects analysis of ERSPs for identified m
component clusters.

Analysis of condition effects for the left and right m ERSPs

were carried out using the STUDY command structure in

EEGLAB. The single trial current for all seven experimental

conditions for frequencies between 3–40 Hz and times from

2600 ms to 1500 ms post-stimulus onset were entered into a

time-frequency analysis. For the two conditions in which

performance was better than chance (ActSp+4 dB and

ActTn+4 dB) only trials discriminated correctly were considered

in the ERSP analysis. A mean of 64 trials across conditions

were entered into the ERSP analysis. Wavelet estimates across

trials for each time and frequency were then converted to a

time-frequency matrix (696105) from 3.4 Hz to 39.9 Hz to

2589 to 1441 ms. To test the significance of condition effects,

non-parametric random permutation statistics in a 167 repeated

measures ANOVA design were computed. The advantage of

using non-parametric statistics for hypothesis testing of ERSPs is

that this approach does not assume that the data are normally

distributed. As discussed in previous papers, the event-related

spectral increases (ERS) and decreases (ERD) that characterize

ERSPs are frequently non-normal [71]. Random permutation

methods generate a surrogate distribution constructed from

time-frequency values randomly shuffled from each condition

across all possible permutations. This random distribution

represents the null hypothesis that no condition differences

exist. In the current study, 2000 random permutations were

computed and compared to F-values for the mean condition

differences. To control for the inflation of Type I error rates

associated with multiple comparisons, a correction for false-

discovery rate (pFDR) was applied, allowing for a conservative

test of condition effects [82].
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Results

Percentage Correct Trials
The means and standard errors for percent correct trials (%CT)

in the four active speech and tone perception conditions are

displayed in Figure 2A. Prior to the analysis, trials with response

times (RT) greater than three standard deviations from the mean

response time (i.e., trials greater than 1996 milliseconds) were

removed and were not considered in any subsequent analysis.

Performance on the active perceptual identification tasks (i.e., tasks

in which a response was required) was assessed as a percentage of

correct trials. Performance in the ActSp+4 dB condition was at

near ceiling levels with a mean of 96% (SE = .01) correct. The

ActSp+4 dB condition was associated with better performance

than the ActTn+4 dB condition, with a mean of 83% (SE = .02)

correct in the latter. The mean for the ActSp26 dB and

ActTn218 dB were 52% (SE = .01) and 51% (SE = .01) correct

respectively. For the active conditions, a repeated measures

analysis of variance (ANOVA) for the factor condition (164)

revealed a significant main effect [(F = (3)131.65, p,.01]. A series

of planned, a priori orthogonal single degrees of freedom

comparisons were employed to determine condition differences.

A significant difference was found for a comparison between %CT

in the ActSp+4 dB condition and the ActTn+4 dB condition

[(F = 39, p,.01, g2 = .72, W = 1]. No significant difference was

found for a comparison of the Actsp26 dB and Actn218 dB

conditions [(F = 1.79, p = .20]. The ActSp26 dB and

ActTn218 dB were not significantly different from chance

[t = .98, p = .20]. Thus, as expected, only the speech and tone-

sweep conditions with a relatively high SNR (i.e. +4 dB) were

associated with better than chance performance.

Response Time
The means and standard errors for button press response time

are depicted in Figure 2B. Response times (RT) were evaluated as

the time in milliseconds from the cue to respond (i.e., 1000 Hz

tone) to the button press response. RTs for each subject in the four

active conditions were entered into a repeated measures ANOVA

with the factor condition (164). The analysis revealed a significant

main effect for condition [(F = 3.71, p,.01, g2 = .19, W = .77]. A

series of planned, single degrees of freedom a priori contrasts

revealed significant differences between correct trials in the

ActSp+4 dB and ActTn+4 dB compared to chance trials in the

ActSp26 dB and ActTn218 dB conditions respectively

[(F = 7.23, p,.01, g2 = .32, W = .71]. No significant difference

was found between the Actsp+4 dB and ActTn+4 dB conditions

[(F = .00 p = .96] or between the ActSp26 dB and ActTn218 dB

[F = .24 p = .62]. The mean RT for the two conditions in which

performance (ActSp+4 dB and ActTn+4 dB) was above chance

were 642 ms (SE = 58) and 641 ms (SE = 47) respectively. The

mean RT for the two conditions in which performance was at

chance levels was 767 (SE = 68) for speech and 743 ms (SE = 55)

respectively. Taken together, the analysis of behavioral responses

revealed an inverse relationship between perceptual performance

in the active conditions and button press response time.

Independent Component Clustering
Independent component clustering revealed eight distinct

component clusters with neural as opposed to non-brain (i.e.,

artifact) sources. Six component clusters accounted for eye-blinks

and vertical eye-movements, horizontal eye-movements, temporal

muscle noise, and nonspecific noise (electromagnetic noise).

Component clusters with similar scalp-topographies, spectra,

ECD, and sLORETA CSD locations were found for a left

hemisphere frontal, bilateral frontal midline cluster, central

midline cluster, and left and right posterior temporal clusters.

However, because the focus of the current investigation is on the

sensorimotor m rhythm, only left and right sensorimotor compo-

nents are discussed further.

Fourteen participants submitted ICs with the hallmark charac-

teristics of the left sensorimotor m rhythm and 13 participants

submitted ICs with hallmarks of the right m rhythm. The left

cluster revealed mean scalp-topographies centered over the left

sensorimotor cortex (Figure 3A) whereas the right cluster showed a

similar topography over the right hemisphere (Figure 4A). For

both clusters, log spectra revealed distinct spectral peaks at

,10 Hz and ,20 Hz (Figures 3B and 4B) and ECD locations

within the left and right pre or postcentral gyri with an average

dipole location at Taliarach coordinates [(x,y,z) 242, 213, 47] in

the left hemisphere and [(x,y,z) 41, 212,42] in the right

hemisphere. The residual variance not explained by the single

dipole model was 4.33% for the left hemisphere and 5.73% in the

right hemisphere.

To evaluate the statistical significance of dipole locations across

participants, statistical comparisons relative to zero (i.e., no

activation) were computed for all m scalp topographies in the

sLORETA statistical module [83]. A paired t-test was carried out

for frequencies between 0–40 Hz (159 frames) with the smoothing

parameter set to 1 (single common variance for all variables), using

5000 random permutations yielding corrected t-value thresholds

for all 6,235 voxels in the sLORETA solution space. The paired

test revealed significant voxels at p,.001 in the precentral and

postcentral gyri with maximum current source density estimates at

Taliarach [t = 2.85 (x,y,z) 245, 218, 42] in the left hemisphere

and Taliarach [t = 2.52 (x,y,z) 40, 216,61] in the right. As left

hemisphere activity was of interest, to determine the extent to

which sLORETA and ECD estimates were correlated, a bivariate

correlation analysis was conducted on the maximum CSD

coordinates and the ECD coordinates for each sensorimotor IC

in the left hemisphere. The analysis revealed correlation coefficient

of r = .93 that was significant at p,.01, suggesting a close

relationship between CSD and ECD estimates. As such,

topographic results and source localization estimates support the

hypothesis that ICA captures synchronous EEG signals consistent

with a small patch of cortex.

Figure 2. Means and standard errors for percentage correct
trials and response time. A) active speech and tone perception
conditions for percentage correct and B) active speech and tone
perception conditions for response time. Significant condition differ-
ences at p,.05 are indicated by *.
doi:10.1371/journal.pone.0072024.g002
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Event-related Spectral Perturbations
Left and Right m mean ERSP values across subjects and

conditions are shown in a time-frequency map with corrected

significance values for condition in a separate map (Figure 5). Non-

significant values are depicted in green and significant values are

depicted in color from orange for weaker values to red for stronger

values (pFDR,.10 to pFDR,. 001). A repeated measures

ANOVA design with the factor condition (167) revealed no

significant differences for the number of trials submitted between

conditions (F = .92, p = .48). The initial permutation analysis (167)

revealed significant ERSPs in the 15–20 Hz range (beta) the left m
component and the 15–25 Hz range for the right hemisphere

component corrected across the entire time-frequency matrix

(pFDR,.05; 696105) (see Figure 5). Significant time-frequency

values were found in the time-periods prior to, during, and after

stimulus onset with a peak event-related decreases in spectral

power (i.e., ERD) in the time period after stimulus offset. To

determine the sources of condition effects, two separate ANOVA

designs were computed using the STUDY command structure.

Because the time periods before, during, and after stimulus onset

were of interest, all subsequent analysis were based upon the time

period from 2600 ms to 1200 ms. In other words, as the total

time to present a stimulus was 600 ms, all times and frequencies

between 3 and 40 Hz for time periods 600 ms prior to until

1200 ms following the stimulus were investigated to test proposed

hypotheses.

Left m
First, to determine whether any significant differences existed

between the PasN baseline and the other passive conditions, a 163

ANOVA was conducted for the PasN, PasSp+4 dB, and

PasTn+4 dB conditions. For the left m, no significant differences

corrected across the entire time-frequency matrix (69692) were

found (pFDR..05) in 15–20 Hz range, indicating no differences

between the PasN baseline condition and the other two passive

conditions. Analysis of the active conditions in which discrimina-

tion was required (164), revealed a significant main effect

(pFDR,.05; 69692) in the 15–19 Hz range for the time period

between 600–1200 ms following stimulus offset. To assess which

conditions were significantly different from the PasN baseline, a

Figure 3. Cluster results for the left-hemisphere m component. A) mean scalp potential distribution (W21) scaled to RMS microvolts and
individual scalp distributions for each participant, B) mean spectra of the component as a function of condition, C) average equivalent current dipole
location, and D) maximum current source density voxels (t-values) with greater values in darker colors and smaller values in lighter colors (NIH Micro
template) (at p,.001 corrected for multiple comparisons).
doi:10.1371/journal.pone.0072024.g003
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series of paired t-tests were performed. Significant differences

(pFDR,.05; 69692) for the time periods before, during, and after

stimulus onset were found for the ActSp+4 dB and ActSp26 dB

only. A paired comparison between the ActSp+4 dB and

ActSp26 dB conditions across the 15–19 Hz range between

600–1200 ms period (pFDR,.05;8631) revealed a significantly

larger peak ERD in the ActSp+4 dB condition just following

stimulus offset and lasting until 1100 ms. As such, the left

component cluster showed significant effects for only the syllable

discrimination task and further showed significant differences in

the time period following stimulus offset for correct discrimination

trials in the ActSp+4 dB condition relative to the chance trials in

the ActSp26 dB condition (Figure 6).

Right m
The initial permutation analysis revealed significant ERSPs at

pFDR,.05 in the 15–25 Hz range (beta) for the right m
component (Figure 5). Significant time-frequency values corrected

across the entire time-frequency matrix (pFDR,.05; 69692) were

found in the time-periods prior to, during, and after stimulus onset

with a peak event-related decrease in spectral power in the time

period after stimulus onset. To determine the sources of condition

effects, a 16design for the passive conditions (PasN, PasSp+4 dB,

and PasTn+4 dB conditions) was conducted. The ANOVA

revealed no significant differences (69692; pFDR..05). Analysis

of the active conditions in which a sensory-decision was required

(164; ActSp+4 dB, ActSp26 dB, ActTn+4 dB, and

ActTn218 dB), revealed no significant differences (pFDR,.05;

69692). To assess which conditions were significantly different

from the PasN condition (i.e., the baseline), a series of paired

contrasts were performed. Significant differences (pFDR,.05;

69692) for the time periods before, during, and after stimulus

onset were found for correct trials in the ActS+4 dB and chance

trials in the ActSp26 dB conditions. For the tone-sweep

conditions, significant suppression occurred only after stimulus

onset (pFDR,.05; 69692). Although ERDs were found for

individual participants in the time-period prior to tone-sweep

discrimination trials, overall results did not fall below the

significance threshold. Thus, although active tone discrimination

conditions differed from the passive noise baseline in the time

Figure 4. Cluster results for the right-hemisphere m component. A) mean scalp potential distribution (W21) scaled to RMS microvolts and
individual scalp distributions for each participant; B) mean spectra of the component as a function of condition, C) average equivalent current dipole
location, and D) maximum current source density voxels (t-values) with greater values in darker colors and smaller values in lighter colors (NIH Micro
template) (at p,.001 corrected for multiple comparisons).
doi:10.1371/journal.pone.0072024.g004
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period following stimulus onset, no significant differences were

noted between the active conditions (Figure 7).

Previous studies have suggested that reaction time may provide

a measure of sensory decision processes related to a response [40].

To investigate the possibility that ERSPs following stimulus onset

might be related to the button press response, significant ERSPs

values (i.e., 15–20 Hz for the left m and 15–25 Hz for the right m)

were extracted from correct trials in the +4 dB condition and

averaged over three time-periods of interest prior to, during, and

following stimulus onset (2600–0, 0–600, and 600–1200). A

bivariate correlation analysis was performed on each participant’s

mean ERSP values in the time period following stimulus offset

(600–1200) and RT for each subject in the left hemisphere

component cluster. The results indicated no significant correlation

between RT and ERSPs (r = .02 p = .94), suggesting little relation-

ship between RT and left hemisphere sensorimotor desynchroni-

zation (i.e., suppression) where the main effects of ERD were

related to task performance.

In summary, left and right m rhythm clusters were associated

with suppression relative to PasN during the active syllable

discrimination task prior to, during, and following the onset of

syllable stimuli. Peak suppression values prior to acoustic onset

occurred between ,200 and 100 ms in the syllable discrimination

conditions, with the largest suppression values occurring just

following acoustic offset (,600–800 ms) in those conditions.

Relative to chance trials, correct trials were associated with

Figure 5. Mean left and right hemisphere m time-frequency ERSPs (event-related spectral perturbations). ERSPs are scaled in the same
root-mean-square decibel units as a function of condition (167) and random effects analysis indicating significant values in the traditional beta (13–
30 Hz) and alpha ranges (8–13 Hz). Non-significant values are colored green, with significant values shown in orange and red. Event-related decreases
in spectral power are indicated in blue (24.5) and increases are indicated in red (4.5).
doi:10.1371/journal.pone.0072024.g005
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significantly greater suppression in the time period immediately

following acoustic syllable stimuli only. Tone-sweep discrimination

trials were not associated with suppression prior to stimulus onset

relative to PasN. However, tone-sweep trials were significantly

different from PasN in the time period after stimulus presentation

only. Finally, no significant differences were found between correct

tone-sweep discrimination trials and trials discriminated at chance.

Discussion

To investigate the time-course of sensorimotor processing in

speech and non-speech processing, the current study employed

independent component analysis of event-related EEG to measure

activity of sensorimotor m rhythm. The aims of the current study

were to first identify ICs with hallmark features of the sensorimotor

Figure 6. Mean ERSPs for correct and chance trials as a function of stimulus type and performance level for the left-hemisphere m
cluster. A) sLORETA solutions depicted on a 3D Van Essen average template; B) mean time-frequency ERSPs (event-related spectral perturbations) as
a function of stimulus type (speech and tone) and performance level (correct and chance) for the time-periods prior to stimulus onset, during
stimulus presentation, and after stimulus-offset.
doi:10.1371/journal.pone.0072024.g006

Figure 7. Mean ERSPs for correct and chance trials as a function of stimulus type and performance level for the right-hemisphere m
cluster. A) sLORETA solutions depicted on a 3D Van Essen average template; B) mean time-frequency ERSPs (event-related spectral perturbations) as
a function of stimulus type (speech and tone) and performance level (correct and chance) for the time-periods prior to stimulus onset, during
stimulus presentation, and after stimulus-offset.
doi:10.1371/journal.pone.0072024.g007
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rhythm and second to investigate suppression of the rhythm

relative to task demands, stimulus type, and discriminability. To

our knowledge, this is the first study to employ a BSS method to

investigate suppression of the m rhythm in a speech and non-

speech discrimination task commonly employed in neuroimaging

studies. As such, the present findings have implications for the

measurement of EEG during auditory tasks. Taken together,

findings provide evidence that the m rhythm is involved in active

syllable discrimination performance. Further, findings may have

implications for potential use as a brain computer interface (BCI)

approach in speech and hearing clinics. In the discussion

following, each of the specific aims are addressed separately and

subsequently framed within an overall discussion of the theoretical

and possible clinical significance.

Specific Aim 1
The first aim of the investigation was to identify ICs with

hallmark features of the sensorimotor m rhythm following ICA

decomposition. As ICA is a blind source separation algorithm,

components must be inspected for identifying features consistent

with traditional elements of the EEG signal. Several findings for

left and right hemisphere components are consistent with known

characteristics of the m rhythm. First, cluster analysis revealed left

and right hemisphere IC clusters with topographic distributions

over the sensorimotor cortex with spectral peaks at ,10 Hz and

,20 Hz and average dipole locations in the lateral portion of the

central sulcus [84–89]. Second, a distributed localization approach

indicated significant activations in the precentral and post central

gyri, consistent with distributed source locations over the

sensorimotor cortex within a small cortical patch [80]. Third,

relative to the passive noise baseline, the left and right

sensorimotor m rhythms in the active discrimination conditions

were associated with differential suppression in the traditional beta

range (here 15–25 Hz), consistent with the activity of neuronal

populations in the precentral gyrus [63]. These findings strongly

suggest that component clusters with the hallmark characteristics

of the sensorimotor m rhythm were differentially involved in the

processing of speech and non-speech auditory signals.

In previous studies, it has been demonstrated that ICA is

capable of separating the most synchronous EEG signals

associated with small patches of cortex (,3 cm) [81]. As electrical

potentials are limited by the speed at which they travel through a

conducting volume, it is thought that ICA captures local field

potentials within small cortical areas. In the present study, it

appears that ICA captured activity over the lateral portion of

sensorimotor cortex with dominant frequency components at ,10

and ,20 Hz. Although the ,10 Hz and ,20 Hz components of

the m are thought to be phase locked and thus interdependent,

there is reason to suspect functional differences between the two.

High-density MEG studies have shown power changes at ,10 Hz

associated with dipole locations near the somatosensory cortex

bilaterally when band pass filtered to exclude the ,20 Hz rhythm.

Suppression of the ,10 Hz rhythm is also associated with tactile

stimulation and binocular rivalry [63,85], suggesting that it is more

generally associated with somatosensory activity. Further, with the

administration of drugs effecting motor unit firing (e.g., diazepam),

power centered near 20 Hz is doubled and 10 Hz activity is not

affected [84]. As such, the most likely role for the ,10 Hz rhythm

during movement processing is in coding the somatosensory

consequences of the perceived or performed movement when

required [63]. In the present study, the ,10 Hz rhythm was

enhanced during active and passive processing relative to the silent

recording interval, most likely reflecting cortical inhibition of the

somatosensory cortex.

Several lines of evidence suggest that beta suppression (i.e.,

,20 Hz) over the sensorimotor region is generated in motor

regions. First, MEG studies have shown that beta suppression

during the overt production, imagination, and observation of

movement is associated with dipole locations near the primary

motor cortex bilaterally (BA4) following the moving body part

(e.g., more lateral locations for mouth movements) [63]. Second,

in agreement with a source in the primary motor cortex, ,20 Hz

suppression has also been obtained from intracranial recordings

within the central sulcus [86]. Third, ,20 Hz suppression is

coherent with motor unit firing [86,63] and is enhanced by the

administration of benzodiazapines, a drug known to result in

clumsy, poorly controlled movements [87,63]. Finally, beta

suppression between 15 and 30 Hz has been shown to be

inversely correlate with BOLD increases the premotor and

primary motor cortex [90–94], suggesting convergence between

hemodynamic approaches and electrophysiological approaches

measuring local field potentials.

The functional distinction between the ,10 Hz somatosensory

and ,20 Hz motor component in the current study is also broadly

consistent with previous neuroimaging studies finding motor

activity during speech processing in the auditory modality without

differential changes in somatosensory activity [95–97]. Neuroim-

aging approaches have implicated overlapping regions within the

precentral gyrus for both speech production and speech percep-

tion. Wilson et al. [97] found overlapping peaks of BOLD activity

in regions extending from the precentral gyrus (MNI x,y,z = 251,

211, 46) to the posterior bank of the central sulcus (MNI

x,y,z = 245, 213, 34) of the left hemisphere for speech perception

and production. Callan et al., [11] found peak voxels for correct

discrimination trials over incorrect trials at (MNI x,y,z = 248,

26,14) within the superior portion of precentral gyrus. These

regions are near the mean dipole location and maximum CSD

locations in the current study. Differential beta suppression in this

study is also consistent with a recent MEG study finding increased

N100 amplitudes for syllable identification in noise localized to a

region of interest within the precentral gyrus that was greater for

active perception relative to passive perception conditions [98]. As

such, the current finding of differential beta suppression localized

to the sensorimotor cortex is consistent with both known features

of the m rhythm and activation of the motor cortex during speech

processing.

Specific Aim 2
A second aim of the present study was to investigate whether

suppression of the m rhythm differed as a function of stimulus

onset, stimulus type, and discriminability. First, in accordance with

expectations behavioral measures indicated that active task

performance differed as a function of SNR. A higher percentage

CT and shorter RT in high SNR speech and tone conditions

(ActSp+4 dB and ActTn+4 dB) was found relative to low SNR

speech and tone conditions (ActSp26 dB and ActTn218 dB). As

expected, due to the drastically decreased quality of auditory

information in the low SNR conditions, perceptual performance

was not above chance levels. Further, consistent with previous

investigations of syllable discrimination in noise [11,40], increases

in RT were associated with decreases in accuracy. This finding is

consistent with the notion that continuous sensory decision

processes require greater time when a given decision is ambiguous

relative to when it is more easily identified [40].

Second, suppression of the m rhythm differed as a function of

performance level for the syllable discrimination task only. Early

activity (i.e., prior to stimulus onset) was present bilaterally for

speech stimuli regardless of subsequent perceptual performance,
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suggesting sensorimotor processing prior to stimulus onset

consistent with a kind of phonological selective attention. Third,

brief peak activity (i.e., suppression) was significantly larger for the

syllable discrimination task only when compared to extremely

degraded stimuli (i.e., chance trials), indicating that although the

sensorimotor cortex is active for both types of stimuli it is greater

when auditory features are sufficient to specify phonemic units

following sensory analysis. Fourth, significant suppression of the

sensorimotor rhythm in the right hemisphere occurred for control

tone stimuli in the time period following stimulus onset only. Thus,

although speech stimuli elicit early activity peaking after stimulus

discrimination, non-speech auditory stimuli are associated with

activity following stimulus offset only and in the right hemisphere

only. Further, as no differences were found between correct and

chance tone-sweep discrimination trials, it is unlikely that right

sensorimotor suppression was critical for the performance of that

task. Thus, it would appear that the sensorimotor cortex in the left

hemisphere was recruited for perceptual analysis in the syllable

discrimination tasks only.

In addition to addressing theoretical predictions regarding the

time-course of sensorimotor activity relative to acoustic stimuli, the

experimental paradigm and findings were intended to address

concerns that have traditionally limited findings of sensorimotor

activity in neuroimaging studies including sensory-decision and

covert rehearsal. First, significant differences for stimulus type and

performance level for tasks in which an active decision was

required were found. As the button press and sensory decision

requirements were the same for correct speech and tone-sweep

trials, no significant difference in suppression or in laterality would

be expected for the two types of stimuli if sensory decision

mechanisms alone accounted for differences. Another way in

which sensory-decision processes and covert rehearsal were

addressed was via the temporal resolution of the EEG. As beta

suppression occurred prior to, during, and immediately following

stimulus onset covert rehearsal does not easily explain the findings.

Further, because significant differences between correct and

chance trials began less than 200 ms (at ,100 ms) following

stimulus offset and lasted only 400 ms, it is unlikely that this early

activity was due to covert production [11]. Finally peak

suppression for both speech and tone stimuli following stimulus

offset was brief, occurring within a 400 ms span of time and

diminishing thereafter. If covert speech production for holding

percepts in working memory accounted for suppression, peak

suppression would be expected to be sustained until the sensory

decision rather than diminishing prior to the response.

It is also worth noting that the experimental effects cannot be

explained as simply preparatory activity for the upcoming button

press response task. Although beta rhythms are associated with

movement execution (and observation), it is unlikely that left

hemisphere peak suppression here was related to preparation for

the manual response for the following reasons: 1) There was no

significant difference between baseline (PasN) and either active

tone-sweep condition (AcTn+4 or AcTn218) in the left hemi-

sphere, indicating that preparation for a manual response cannot

account for observed left hemisphere differences in the active

syllable discrimination task; 2) Contrary to what would be

expected for motoric execution, peak suppression was found over

the hemisphere (left hemisphere) ipsilateral to the effector (left

thumb); 3) Peak suppression occurred briefly following acoustic

offset, more than 300 ms prior to the cue to respond and showed

evidence of rebound thereafter; 4) Given that significant suppres-

sion prior to stimulus onset for the syllable discrimination

conditions only, more than 2 s prior to the response, it is unlikely

that preparation for the manual response can account for

condition effects. For these reasons, we believe that it would be

difficult to explain the left hemisphere differences between active

correct and active chance trials as preparation for the manual

response.

Whereas sensory-decision and covert-rehearsal do not easily

explain the experimental outcomes, findings in the present study

may be readily explained within the context of constructivist,

internal model proposals of speech processing. More specifically,

early beta suppression localized to the sensorimotor cortex prior to

syllable discrimination is consistent with an early forward model

that instantiates a general prediction about likely incoming sensory

signals. As the subsequent percepts are unknown, such an

anticipatory model may be explained as neural tuning to expected

acoustic features of the upcoming stimulus [10,11,36]. Further,

because early activity constitutes a prediction, continuous activity

in the motor system to update the model would be expected until

the initial set of articulatory hypotheses can be compared with

online acoustic analysis. Peak activity just following acoustic

analysis of the signal would be expected in the time period during

which relevant features of the acoustic signal are matched with the

initial forward constraints. Further, peak suppression would be

expected only when the acoustic signal was sufficiently robust to be

compared to the initial hypotheses. The finding of significant

differences in m suppression between correct and chance trials

immediately after stimulus offset may be explained by such a

process. In other words, it appears that early motor models may be

instantiated when discrimination is required but fail to specify

phonemes when auditory information is insufficient for compar-

ison with the initial motor model.

However, given that internal articulatory models are thought to

be developed via past experiences with producing speech, early

activity would not be expected for non-speech auditory signals as

those signals have not been repeatedly associated with vocal

production. Indeed, early activity prior to stimulus onset was not

found for correct or chance tone-sweep trials. As such, suppression

of the sensorimotor rhythm following tone processing in the right

hemisphere may be an attempt to internally simulate pitch

changes using cortical representations of the vocal tract [47]. It is

worth noting that this notion would predict forward models for not

only speech sounds but for any sound repeatedly associated with

actions for producing the same sounds [99]. Consistent with this

notion, a number of studies have demonstrated motor activation

for sounds associated with motor sequences required to produce

them [100–102]. As such, to further investigate the role of the

motor system and perhaps forward internal models in general

auditory perception, future investigations may employ learning

tasks in which pitch change stimuli are paired with actions

required to produce them.

It is also worth noting that the present results favoring internal

model concepts fit well with those designed to explain event-

related decreases in spectral power prior to a range of cognitive

tasks. These early spectral changes have been associated with

subsequent performance in memory, attention, and visual tracking

[103–109]. It has been suggested that multiple EEG sources

oscillating at near harmonics of thalamic rhythms (,10 Hz) may

reflect inhibitory filter mechanisms mediating top-down attention-

al control. Power decreases are thought to signify a cortical release

from inhibition that serves to ready the system for the coding of

incoming information [106]. According to theories of EEG

generation (e.g., local/global theories), transient global coherence

between multiple cortical generators may instantiate top-down

anticipatory processes that facilitate subsequent sensory processing

[65]. In addition, recent theories of speech processing propose that

‘active sensing’ may be helpful to processing speech in natural,
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noisy environments and predict low-frequency (1–8 Hz) entrain-

ment (i.e., phase coherence) across multiple brain regions during

active processing. As such, the current results are likely to reflect

just one component of a distributed neuronal network (e.g., the

dorsal auditory stream) exerting top-down control on subsequent

perception [27]. Future analyses may focus on how changes in

ongoing beta rhythms are related to increases in phase coherence

at low frequencies across component clusters.

Conclusions and Future Directions
The current study is, to our knowledge, the first to employ a

BSS method used previously in EEG studies of visual perception

[81] and auditory event-related potential (ERP) paradigms [110]

to address theoretical predictions about how the motor system

functions in speech processing. The present study favors internal

model frameworks of speech processing over mechanisms

proposed by direct-realism. In addition, the study provides

evidence supporting claims that these internal models operate

similarly to a kind of phonological or articulatory selective

attention [10,11,7]. For example, the finding that both correct

and chance syllable discrimination trials were preceded by early m
suppression is what would be expected if forward articulatory

models function similarly to selective attention. That is, if early

articulatory hypotheses function in a manner similar to attention,

early motor activity would be expected regardless of subsequent

correct or chance level performance.

The study also provides further evidence that early forward

models are related to perceptual performance at the point in time

when acoustic features are sufficient for comparison with initial

hypotheses (i.e., immediately following acoustic stimuli) in a

manner similar to ‘analysis-by-synthesis.’ Furthermore, this study

suggests that internal models are specific to a syllable discrimina-

tion task relative to a similar, rapid pitch discrimination task. As

both tasks required attention to the task for successful discrimi-

nation, general attentional mechanisms cannot account for

differences in early m rhythm suppression for speech as opposed

to tone-sweep stimuli. This finding is critical to determining

underlying mechanisms, as to our knowledge no studies have

measured the ongoing time-course of sensorimotor activity for

speech and non-speech control tasks with similar attentional

requirements. As such, results favor articulatory mechanisms that

are either specific to speech [4] or alternatively to any auditory

signal previously paired with vocal tract actions [47;111].

However, because specificity of motor regions in speech

processing has traditionally been another area of heated debate,

this issue deserves more explicit comment. The motor theory of

speech perception postulated the use of articulatory goals to

mediate and constrain perception long ago [4,11]. According to

Liberman’s ‘motor theory’, the lack of invariance problem is

solved via a specialized phonetic module evolved to track intended

invariant articulatory targets as opposed to acoustic features. The

motor theory predicts that this articulatory phonetic module is

critical for speech perception and thus that motor activity should

be present in all contexts. However, as stated previously, a number

of empirical findings are at odds with that prediction [26]. The

lack of strong motor activity in passive speech perception in this

study is consistent with some previous neuroimaging studies and is

somewhat contrary to the predictions of the motor theory.

Although beta suppression during passive listening was not

observed here, it is important to note that other studies have

demonstrated activation of motor regions during passive listening

tasks. Wilson et al [97] demonstrated motor activity during an

auditory bombardment paradigm in which syllable stimuli were

repeated in stimulus trains relative to non-speech listening tasks.

However, a number of other neuroimaging studies have not shown

motor activation during passive listening [10,11]. One possible

explanation for conflicting results is that the task and goals are

important considerations in whether or not the motor system is

recruited for task performance. Hickock et al [10] suggest that

some passive tasks may induce covert rehearsal of repeated stimuli

and propose that motor activity in active discrimination tasks may,

by contrast, induce the use predictive internal model mechanisms.

Callan et al [11] propose that passive conditions likely recruit

predictive mechanisms to a lesser extent than tasks requiring active

attention to speech stimuli, a conclusion similar to that reached by

others [17]. In line with this point of view, a recent review has

more specifically implicated beta suppression in efferent predictive

mechanisms mediating active auditory perception [110]. As such,

while the present study indicates sensorimotor activity specific to a

syllable discrimination task, it also favors a more dynamic concept

of speech processing in which sensorimotor integration via a

transiently interactive neuronal system may function to aid

acoustic analysis depending on context and perceiver goals. As

such, speech processing may be characterized as one example of

an ‘embodied’ process sharing a close connection between offline

processing and the online sensorimotor mechanisms that give rise

to those processes in real-world environments [113].

As early changes in spectral power are thought to influence

subsequent perceptual performance in noisy conditions, it is likely

that some populations with difficulty resolving percepts in noise

might use sensorimotor integration in a compensatory capacity.

Individual differences in motor activation have been shown to

correlate with individual working memory capacity, suggesting a

compensatory role when working memory is compromised [114].

Older adult populations without hearing loss have been shown to

recruit areas of the motor system and frontal regions thought to be

involved in attention and memory more heavily than younger

listeners [115]. Dysarthria is a group of motor speech disorders

that often significantly decreases the intelligibility of speech for

both naı̈ve and regular communication partners. Given that

dysarthrias cause distortions of the consequent acoustic signal, it is

possible that sensorimotor integration plays a compensatory role in

perceptual learning for communication partners of those with

dysarthria [116]. The motor system may function similarly to aid

perception in children who have deficits in the perception of

speech or spectotemporal analysis generally but have intact speech

production. It is an open question whether the articulatory system

plays an important role in perception for populations with hearing

impairment. Further as deficits or differences in sensorimotor

integration may play an important role in specific language

impairment and autism spectrum disorders [48], the current

methodology may provide information important for assessment

and treatment in those populations. Establishing the ongoing time-

frequency features of the EEG for both neurotypical and clinical

populations addresses an important gap in the knowledge base as

these signals have been shown to change as a function of

experience and may thus be used as neuromodulatory feedback to

enhance current therapeutic protocols [11].

Although these findings present evidence that the m rhythm

plays a functional a role in the speech processing, several

limitations must be considered. First, as this study used only

meaningless syllable and tone-sweep stimuli in the auditory

modality only, the current findings are limited in the extent to

which they can be generalized to other contexts. The motor

system is likely to be more heavily involved in face-to-face

interaction, during which gestural sources of information (e.g.,

facial and manual gestures) are known to influence perception

[30]. Further, the current findings do not suggest that the motor
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system causes successful discrimination performance. In order to

delineate the relative roles of multiple brain regions involved in

speech processing, combined TMS and high-time resolution

approaches are warranted [117]. Second, as only 32 channels

were used in this study, it may be important to investigate whether

improved spatial resolution may be obtained for high density

electrode arrays (i.e., 64–128 channels) using ICA decomposition.

However, informal comparisons between smaller and larger arrays

have generally shown similar independent components associated

with the most synchronous activity of the EEG and high

correlations between dipole models for low density arrays and

BOLD activity have been demonstrated [81,118]. Third, although

findings from this study implicate the sensorimotor rhythm in

speech processing, performance was manipulated at the extremes

so that performance was either accurate or not better than chance.

It may be important to examine whether early and late

sensorimotor activity tracks performance across different perfor-

mance levels.

Limitations notwithstanding, findings in the present study help

to flesh out the underlying role of early articulatory simulations in

sublexical discrimination tasks. The presence of early beta

suppression prior to stimulus onset and throughout stimulus

processing would suggest that the motor system was involved at all

stages of processing for speech stimuli, both for conditions in

which percepts were discriminable and for conditions in which

they were not. Thus, it appears that forward models may

participate in perception even when the acoustic signal is so

impoverished that discrimination between phonemes is not

possible. Further, it appears that this process is specific to

incoming acoustic signals that have been paired previously with

articulatory movements. In light of the current findings, early

forward models may function similarly to effort in attention. That

is, when stimuli are attended regardless of the likelihood of success

or failure, early motoric models are instantiated followed by an

attempt at synthesis. However, synthesis or sensorimotor integra-

tion is achieved only when subsequent acoustic cues are sufficient

to specify phonemic units.
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