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Abstract Humans have undergone large migrations over the past hundreds to thousands of

years, exposing ourselves to new environments and selective pressures. Yet, evidence of ongoing

or recent selection in humans is difficult to detect. Many of these migrations also resulted in gene

flow between previously separated populations. These recently admixed populations provide

unique opportunities to study rapid evolution in humans. Developing methods based on

distributions of local ancestry, we demonstrate that this sort of genetic exchange has facilitated

detectable adaptation to a malaria parasite in the admixed population of Cabo Verde within the

last ~20 generations. We estimate that the selection coefficient is approximately 0.08, one of the

highest inferred in humans. Notably, we show that this strong selection at a single locus has likely

affected patterns of ancestry genome-wide, potentially biasing demographic inference. Our study

provides evidence of adaptation in a human population on historical timescales.

Introduction
Genetic studies have demonstrated the important role of adaptation throughout human evolution,

including classic examples such as loci underlying pigmentation, and adaptation to high-altitude life-

styles and infectious disease (Sabeti et al., 2002; Ohashi et al., 2004; Lamason et al., 2005;

Voight et al., 2006; Norton et al., 2007; Nielsen et al., 2007; Pickrell et al., 2009; Yi et al., 2010;

Fumagalli et al., 2011; Grossman et al., 2013; Lachance and Tishkoff, 2013). Yet, we have a lim-

ited understanding of adaptation in human populations on historical timescales, that is, during the

last tens of generations. The ongoing selective pressures shaping human genomic variation, and

how quickly humans can adapt to strong selective pressures, remain unclear. Adaptation on these

short timescales is of particular importance because large-scale migrations within the past thousands

to hundreds of years have exposed human populations to new environments and diseases, acting as

new selective pressures (Hellenthal et al., 2014; Mathias et al., 2016; Busby et al., 2016;

Patin et al., 2017; Laso-Jadart et al., 2017; Nielsen et al., 2017; Fernandes et al., 2019).

Admixture—gene flow between previously diverged populations to form a new population with

ancestry from both source populations—provides a particularly rapid opportunity for selection to act

in a population by introducing alleles previously adapted in a source population into the admixed

population (Huerta-Sánchez et al., 2014; Jeong et al., 2014; Racimo et al., 2015; Norris et al.,

2020). Additionally, in recent human admixture, ancestry contributions from each source population

are often large enough to introduce alleles at intermediate frequencies, potentially avoiding loss

from drift (Ruiz-Linares et al., 2014; Mathias et al., 2016; Fernandes et al., 2019; Fortes-

Lima et al., 2019). More generally, admixture is ubiquitous in human history (Moorjani et al., 2011;

Hellenthal et al., 2014; Busby et al., 2015; Triska et al., 2015; Busby et al., 2016; Laso-
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Jadart et al., 2017; Patin et al., 2017); therefore, understanding the effects of selection in these

often understudied populations is essential to the study of human evolution.

The admixture process may obscure the signals commonly used to detect selection by increasing

linkage disequilibrium and changing the distribution of allele frequencies (Lohmueller et al., 2010;

Lohmueller et al., 2011; Gravel, 2012; Racimo et al., 2015). Further, common signatures of selec-

tion, such as deviation from neutral expectations of the allele frequency spectrum, may not be sensi-

tive to adaptation on the scale of tens of generations (Sabeti et al., 2006; Field et al., 2016).

Recent progress has given insights into human adaptation during the past few thousand years by

using allele frequency trajectories from ancient DNA (Lindo et al., 2016) or the distribution of single-

tons in extremely large data sets (Field et al., 2016). We focus on admixed populations as an oppor-

tunity to detect rapid adaptation using modern populations and moderate sample sizes, allowing

broader sets of populations to be studied. That is, within-genome ancestry patterns across multiple

nearby loci may be easier to detect than single allele frequency shifts (Tang et al., 2007). Further,

ancestry-based methods constrain the timing of potential selection to post-admixture, providing

concrete information about the timing of selection, whereas non-ancestry-based summary statistics

may detect selection in the source populations.

We test this concept developing new ancestry-based methods to characterize adaptation to

malaria during the ~20 generations since the founding of the admixed human population of Cabo

Verde. The Republic of Cabo Verde is an archipelago off the coast of Senegal and was uninhabited

before settlement in ~1460 by Portuguese colonizers and enslaved peoples from the Senegambian

region of West Africa (Fernandes et al., 2003; Beleza et al., 2012; Verdu et al., 2017;

Korunes et al., 2020), henceforth referred to as ‘European’ and ‘West African’ source populations,

respectively. This is approximately 19–22 generations ago assuming a 25- to 28-year human genera-

tion time (Fenner, 2005). Recent analyses using genetic ancestry information alongside historical

data confirmed that admixture in Cabo Verde likely began within the last ~20 generations

(Korunes et al., 2020). In this study, we assume admixture occurred 20 generations ago, and we

focus on three major island regions of Cabo Verde: Santiago, Fogo, and the Northwest Cluster

(Figure 1A).

The malaria parasites Plasmodium vivax, P. falciparum, and P. malariae have been reported across

the islands of Cabo Verde since settlement; recurrent malaria epidemics have primarily occurred in

highly populated regions (World Health Organization et al., 2012; DePina et al., 2019). Santiago,

which has consistently been the most densely populated of the Cabo Verde islands, has experienced

the most substantial burden of malaria transmission since settlement ~20 generations ago. Personal

and historical accounts of malaria incidence within Cabo Verde described the largest and most pop-

ulous island, Santiago, as the most ‘sickly’ and ‘malarious’ (Patterson, 1988). In the last century,

malaria epidemics of both P. vivax and P. falciparum have occurred primarily in Santiago

(Snow et al., 2012; World Health Organization et al., 2012; Ferreira, 2017; DePina et al., 2018).

It is not fully understood why Santiago has sustained a higher burden of malaria than the other Cabo

Verdean islands (World Health Organization et al., 2012); however, it may be due to a combination

of higher population density, climatic differences between islands, increased migration into San-

tiago, which has historically served as the main trading port for Cabo Verde, and the suitability of

the island for the mosquito vector. The other two island regions we consider share ancestry compo-

nents with Santiago, but largely lacked the selective pressure of recurrent malaria transmission, pro-

viding a unique opportunity to compare related populations with and without malaria as a selective

pressure.

We hypothesized that admixture has facilitated rapid adaptation to the malaria parasite Plasmo-

dium vivax via the malaria-protective Duffy antigen receptor for chemokines (DARC) locus (also

known as Atypical Chemokine Receptor 1 [ACKR1]) in Santiago. The protective allele is almost fixed

in West African populations and rare elsewhere (Howes et al., 2011; Gething et al., 2012). The

malaria parasite P. vivax uses the chemokine receptor encoded by the DARC gene to enter and

infect red blood cells. The Duffy-null allele (also known as FY*O, rs2814778) is protective against P.

vivax infection via a single nucleotide polymorphism (SNP) that disrupts binding of an erythroid-spe-

cific transcription factor in the promoter region (Mercereau-Puijalon and Ménard, 2010;

Gething et al., 2012). Thus, individuals carrying the null allele have reduced expression of Duffy anti-

gens on the surface of the blood cell, protecting against P. vivax infection. Duffy-null is a classic

example of strong selection in the human lineage, and it has been estimated to be under one of the
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strongest selective pressures in human history (Hamblin and Di Rienzo, 2000; Hamblin et al., 2002;

Kwiatkowski, 2005; McManus et al., 2017), suggesting it is a plausible selective pressure in Cabo

Verde.

Interestingly, this hypothesis goes back to a voyage in 1721 in which Captain Roberts, 1745

reported that a disease in Santiago is ‘dangerous to strangers’ during the rainy season. Consistent

with ancestry-mediated protection from malaria, the record has been interpreted by medical histori-

ans to suggest that ‘foreign visitors and residents of European descent seem to have suffered more

than the African and Afro-Portuguese majority’ from malaria in Santiago (Patterson, 1988).

In this study, we combine ancestry-based summary statistics and simulations to identify and char-

acterize selection at the malaria-protective DARC locus on the island of Santiago during the ~20

generations since the onset of admixture. Importantly, we also consider the genome-wide conse-

quences of this mode of selection. That is, we find that strong selection at a single locus may shift

genome-wide ancestry patterns, with potential to bias demographic inference. The results of this

study provide evidence for rapid adaptation in human populations and advance our ability to detect

and characterize selection in recently admixed populations.

Results

Enrichment of West African ancestry at the DARC locus in Santiago
Empirical studies of selection in admixed populations often look for regions of the genome that

deviate from genome-wide patterns of genetic ancestry (Tang et al., 2007; Jin et al., 2012;

Jeong et al., 2014; Rishishwar et al., 2015; Triska et al., 2015; Zhou et al., 2016; Busby et al.,

2017; Laso-Jadart et al., 2017; Patin et al., 2017; Fernandes et al., 2019; Lopez et al., 2019;

Norris et al., 2020; Vicuña et al., 2020). Regions of the genome with substantially higher ancestry

from one source than present on average in the rest of the genome are hypothesized to be enriched

Figure 1. Enrichment of West African ancestry at the DARC locus in Santiago, Cabo Verde. (A) Map of Cabo Verde islands and sample sizes for

number of individuals from each island region. (B) The distribution of West African-related local ancestry proportion across the genome by SNP

(n = 881,279) by island, with the DARC locus marked by vertical red lines. Local ancestry was estimated using RFMix (see Materials and methods). The

DARC locus is an outlier for high West African-related ancestry in Santiago, but not Fogo or the Northwest Cluster.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Local ancestry proportion along the genome in Santiago.

Figure supplement 2. The observed frequency of Duffy-null for each island vs neutral expectation based on mean global ancestry (as estimated by

ADMIXTURE).
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for genes under selection. For an allele at different frequencies in the source populations, selection

will increase the frequency of the ancestry on which the adaptive allele occurs at that locus. We

tested if the DARC locus was an outlier within the genome for West African ancestry. We estimated

local ancestry using the RFMix software (Maples et al., 2013) and calculated the proportion of indi-

viduals with West African ancestry at each SNP (see Materials and methods for details on local

ancestry assignment). Figure 1B and Figure 1—figure supplement 1 show the distribution of West

African ancestry for over ~880,000 SNPs by island, with the value for the Duffy-null SNP position

marked in red. Within Santiago, this locus has the highest frequency of West African ancestry in the

population, occurring at 0.834 frequency compared to mean West African ancestry across SNPs for

individuals from Santiago of 0.730. In contrast, the DARC locus is not an outlier in its frequency of

West African ancestry on the other island regions, occurring at the 75th and 65th percentiles for

Fogo and the NW Cluster, respectively. High West African local ancestry proportion at the DARC

locus in Santiago is consistent with the expectation that the Duffy-null allele rapidly increased in fre-

quency following admixture, simultaneously increasing the proportion of individuals with West Afri-

can ancestry at that locus relative to the genome-wide average.

Under a simple population genetic model, we expect the frequency of a neutral allele in an

admixed population to be a linear combination of the allele frequencies in each source population

and their relative ancestry contributions. The Duffy-null allele is nearly fixed in the West African

source population and largely absent in the European source population; therefore, under neutrality,

the expected frequency of the allele in each Cabo Verdean population is approximately equal to the

West African ancestry contribution. Using the observed global ancestry proportion inferred with

ADMIXTURE (Alexander and Lange, 2011) as an estimate of the ancestry contribution from West Africa

to each island, we found that the Duffy-null allele is at a higher frequency than expected under neu-

trality for the island of Santiago, but not the other regions of Cabo Verde (Figure 1—figure supple-

ment 2, Table 1, binomial test, Santiago: p ¼ 2:193�10
�5; Fogo: p ¼ 0:1915; NW Cluster: p ¼ 0:8172).

Long, high-frequency West African ancestry tracts span the DARC locus
on Santiago
The distribution of the lengths of ancestry tracts spanning a selected locus can provide information

for detecting and characterizing selection beyond single-locus outlier tests. In the case of recent

admixture and strong selection, we might generally expect to see a parallel increase in local ancestry

proportion in the regions surrounding the beneficial locus because the beneficial allele increases

before recombination can break up large surrounding ancestry blocks. This is analogous to the

increase in linkage disequilibrium and homozygosity in non-admixed populations (Sabeti et al.,

2002; Kim and Nielsen, 2004; Voight et al., 2006). Figure 2A plots ancestry tracts that span the

DARC locus for individuals from Santiago. As expected from source population allele frequencies,

the Duffy-null allele is contained on all West African ancestry tracts spanning the locus and not found

on any European ancestry tracts. Consistent with recent selection, West African ancestry tracts are

longer and in higher frequency than European ancestry tracts covering the region. The median West

African ancestry tract length spanning the locus is ~85 Mb, while the median European tract length

is ~39 Mb.

In order to test if the observed local ancestry patterns are suggestive of selection beyond

genome-wide ancestry proportion, we developed a summary statistic based on the length and

Table 1. Expected and observed Duffy-null allele frequencies for each island and source population.

Expected Duffy-null frequencies are approximated by mean West African global ancestry proportion for each island, calculated using

the ADMIXTURE software.

Population n (sampled individuals) Expected frequency Observed frequency Binomial test p-value

Santiago 172 0.737 0.834 2.193 �10�5

Fogo 129 0.498 0.539 0.192

NW Cluster 236 0.552 0.557 0.817

GWD 107 0.997 1.000 -

IBS 107 0.002 0.019 -
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frequency of the tract-length surrounding a locus. The integrated Decay in Ancestry Tract (iDAT)

score compares the rate of decay of ancestry tract lengths as a function of distance from a site of

interest (Figure 2B; see Materials and methods for details and performance of iDAT statistic under

various demographic scenarios). The statistic is analogous to the commonly used integrated haplo-

type score (iHS) (Voight et al., 2006), but considers local ancestry tracts instead of haplotypes. Neg-

ative values for iDAT indicate longer West African ancestry tracts at higher frequencies compared to

European ancestry tracts. Positive values indicate longer European ancestry tracts at higher frequen-

cies compared to West African ancestry tracts. Windows that contain multiple extreme values of

iDAT provide stronger evidence for recent selection. Figure 2C plots iDAT values along the genome

Figure 2. Long, high-frequency West African ancestry tracts span the DARC locus in Santiago. (A) The distribution of West African (purple) and

European (green) ancestry tract lengths spanning the DARC locus (dashed line). Each horizontal line represents a single chromosome in the population

(n = 343, one chromosome was excluded due to having unknown ancestry at the DARC locus). (B) Decay in Ancestry Tract (DAT) as function of absolute

distance from the Duffy-null allele for West African (purple) and European (green) ancestry tracts. (C) Mean standardized integrated DAT (iDAT) score

for 20 Mb sliding windows (step size = 1 Mb), using standardized iDAT for 10,000 random positions across the genome. Horizontal solid gray line

indicates mean windowed standardized iDAT score (�0.196), and horizontal dashed gray lines indicate three standard deviations from the mean

windowed score. The red dot is the most extreme windowed standardized iDAT score (�2.602), indicative of a larger area under the curve for West

African DAT compared to European DAT. This 20 Mb window contains the Duffy-null SNP.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Mean standardized integrated Decay in Ancestry Tract (iDAT) score for 20 Mb sliding windows (step size = 1 Mb), using

standardized iDAT for 10,000 random positions across the genome for (A) Fogo and (B) the Northwest Cluster.

Figure supplement 2. Density distributions for five ancestry-based statistics under eight neutral models.

Figure supplement 3. Density distributions for five ancestry-based statistics under simulations using different genetic maps.

Figure supplement 4. Performance of integrated Decay in Ancestry Tract (iDAT) under various scenarios.

Figure supplement 5. Performance of integrated Decay in Ancestry Tract (iDAT) for various chromosome sizes and cut-off values.
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for individuals from Santiago. Values are calculated by averaging over 20 Mb sliding windows (step

size of 1 Mb) for 10,000 random standardized iDAT scores. Notably, in Santiago, the DARC gene is

contained in the window with the lowest iDAT score in the genome (Figure 2C; window iDAT

score = �2.602). iDAT scores near the DARC locus are not outliers in other island regions (Figure 2—

figure supplement 1).

Ancestry-based signatures for Santiago cannot be explained by drift
alone
In order to estimate the expected distribution of ancestry within the population and test if the values

of various summary statistics for the DARC locus on Santiago can be explained by drift alone, we

conducted neutral simulations in SLiM (Haller and Messer, 2019) (Materials and methods). We cal-

culated the following five summary statistics for each simulated population: the West African local

ancestry proportion at DARC, the variance in the frequency of West African local ancestry across

SNPs on chromosome 1, the median and mean West African ancestry tract length containing the

Duffy-null allele, and the unstandardized iDAT score for the Duffy-null SNP. The variance in local

ancestry along the chromosome provides a non-LD-based measure to capture high frequency and

long tracts of West African ancestry using the population-wide measures of local ancestry for each

SNP on the chromosome. Studies of demographic history and selection in recently admixed popula-

tions often assume constant population size and a single admixture event to simplify simulations. In

order to confirm that assumptions about demographic history do not change our expectations, we

considered multiple scenarios of population growth, differences in population size, and models of

both constant contributions and single admixture events (Table 2). The values for the summary sta-

tistics for Santiago generally lie outside our expectations for all models, especially considered jointly

(Figure 2—figure supplement 2).

Together, these summary statistics provide suggestive evidence that the DARC locus has been

under positive selection on the island of Santiago since admixture started ~20 generations ago. To

formally test this hypothesis, we extended the SWIF(r) framework developed by Sugden et al.,

2018. SWIF(r) is a machine learning classification framework that explicitly learns the joint distribu-

tions for a set of features and returns a posterior probability of positive selection at a site of interest.

It is particularly useful for handling summary statistics that are correlated, such as the length and fre-

quency of ancestry tracts. We trained SWIF(r) using data simulated in SLiM and estimated the poste-

rior probability of positive selection at the DARC locus using the five ancestry-based measures

(Materials and methods). SWIF(r) returned a high posterior probability of positive selection at DARC

on Santiago starting 20 generations ago (P>0:999).

Classical haplotype-based signatures of selection not detected at
the DARC locus
The haplotype-based statistic, iHS, is often used to detect signatures of recent positive selection

and partial selective sweeps (Voight et al., 2006), particularly in non-admixed populations. This sta-

tistic has been used as evidence of selection in recently admixed populations (Fernandes et al.,

2019; Reynolds et al., 2019; Norris et al., 2020). However, the process of admixture results in the

Table 2. Demographic models used for single-chromosome neutral simulations relevant to Cabo Verde demographic history.

Initial population
size (N)

Population growth
model

Population growth rate (per
generation)

Admixture
type

Proportion of new migrants (per
generation)

Scenario
number

1000 Constant size - Single-pulse - 1

Continuous 0.01 2

Exponential 0.05 Single-pulse - 3

Continuous 0.01 4

10,000 Constant size - Single-pulse - 5

Continuous 0.01 6

Exponential 0.05 Single-pulse - 7

Continuous 0.01 8
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mixture of differentiated allele frequencies and diverged haplotypes, so interpretation of these sta-

tistics is difficult and applicability is limited. We demonstrate this by calculating iHS for all SNPs in

our data set for each island region and performing the common standardization based on allele fre-

quencies, using the software hapbin (Maclean et al., 2015). Figure 3 shows the distribution of abso-

lute standardized iHS values along the genome for each island population, with the Duffy-null SNP

indicated by the orange dot and flag. The absolute iHS values for all islands at the Duffy-null SNP

are low. That is, the commonly used statistic iHS does not detect significant signatures of selection

at the Duffy-null SNP position. This analysis, and other summaries of variation that do not account

for the allele frequency and LD changes associated with admixture, may be detecting the high diver-

sity in the African source populations rather than post-admixture selection. Without considering the

process of admixture, we should be skeptical of the utility of these statistics in recently admixed

populations. This emphasizes the importance of new methods that are admixture-aware.

Strong selection inferred at the DARC locus in Santiago
Beyond identifying selection, inference of the strength of selection is informative about the evolu-

tionary processes shaping human genomes. We used two complementary approaches to infer the

strength of selection at the DARC locus. First, we considered a deterministic classical population-

genetic model of selection based on the trajectory of allele frequencies over time on a grid of possi-

ble dominance and selection coefficients (Materials and methods). The estimate of the selection

coefficient depends on dominance; past studies have modeled Duffy-null as recessive

(Hodgson et al., 2014), dominant (Pierron et al., 2018), and additive (McManus et al., 2017) when

estimating selection strength in other human populations. Figure 4A plots the selection strength (s)

as a function of the dominance coefficient (h) of the Duffy-null allele for a set of three realistic initial

frequencies, assuming 20 generations of constant selection strength. Functional studies suggest that

heterozygotes have at least partial protection against P. vivax infection (Cavasini et al., 2007;

Sousa et al., 2007; Gething et al., 2012; Kano et al., 2018); while not an exact correlate for popu-

lation-genetic model parameters, this suggests that the Duffy-null allele is unlikely to be fully reces-

sive or fully dominant. Taking the mean of selection coefficients for 0:2 �h� 0:8, we estimate the

selection coefficient for each initial frequency, s0:65 ¼ 0:106, s0:70 ¼ 0:082, and s0:75 ¼ 0:056, where spo

is the inferred selection coefficient for initial allele frequency po.

Second, we used a simulation and rejection framework, approximate Bayesian computation

(ABC), to jointly infer the selection coefficient and initial West African contribution while allowing for

drift (Materials and methods). We used the five ancestry-based summary statistics described previ-

ously. We assumed an additive model, a single admixture event, and exponential growth in the pop-

ulation. Taking the median of the posterior distribution as the point estimate for selection

coefficient, we estimated s ¼ 0:0795 (Figure 4B; see Figure 4—figure supplement 1 for estimates

of s when modeling Duffy-null as either a dominant or a recessive mutation). This estimate of selec-

tion coefficient is consistent with those estimated under the deterministic population-genetic model.

Selection at a single locus impacts genome-wide ancestry estimates
Mean global ancestry proportion is often used as an estimate for initial ancestry contributions for

admixed populations (Moreno-Estrada et al., 2013; Hellenthal et al., 2014; Bryc et al., 2015;

Mathias et al., 2016; Laso-Jadart et al., 2017; Patin et al., 2017; Fernandes et al., 2019). How-

ever, our ABC estimates of the initial contributions from West Africa are lower than the mean ances-

try currently observed in Santiago. The median of the posterior of initial contributions from West

Africa is 0.690, with the middle 50 percentile of observed values in [0.682,0.697] (Figure 5A). In con-

trast, the observed mean ancestry in Santiago (Figure 1B) is 0.737. While this particular difference in

observed and inferred founding contributions may be due to sampling biases or other neutral pro-

cesses, it raises the more general question of how strong selection at a single locus may impact

genome-wide ancestry patterns. We hypothesized that selection at DARC may have increased the

genome-wide West African ancestry proportions in the current population of Santiago.

To test the genomic consequences of post-admixture selection at a single locus, we simulated

whole human autosomes under a model of exponential growth and a single admixture event with

selection at a single locus. We first considered a model based on the history of Santiago, using the

posterior distributions of selection coefficient and initial West African ancestry contribution as
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Figure 3. Absolute values of iHS for SNPs in the Cabo Verde data set. iHS was calculated using the hapbin software and standardized using the

default method based on allele frequencies. (A) Santiago, (B) Fogo, and (C) NW Cluster. Value for Duffy-null SNP is indicated by orange dot and white

label. Duffy-null iHS value is nonsignificant in all island regions.
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parameters for the simulations (Materials and methods). Figure 5A plots the estimated posterior dis-

tribution of initial West African contribution in dark gray and the simulated distribution of global

ancestry after 20 generations in white. The distribution of global ancestry in the populations simu-

lated with selection (median 0.723, white) is noticeably higher than the initial contributions specified

in the simulations (median 0.690, dark gray). This demonstrates that selection at a single locus is a

plausible mechanism to increase mean global ancestry in an admixed population under a scenario

similar to Santiago.

To explore the mechanism and relationship between selection strength at a single locus and

genome-wide ancestry patterns, we simulated whole autosomes, assuming a single admixture event

with initial West African ancestry contribution at 0.65 and selection coefficient varying from 0 to 0.2

at a single locus on chromosome 1. Figure 5B plots the mean ancestry for chromosome 1 and the

other 21 autosomes in each simulated population after 20 generations as a function of the selection

coefficient at a single locus. Perhaps surprisingly, mean ancestry on chromosomes 2–22 also

increases with selection strength (gray), indicating that global ancestry increases beyond the contri-

bution of higher ancestry on the selected chromosome alone (black). Together, this evidence sug-

gests that strong selection at the DARC locus over 20 generations may have skewed global ancestry

in Santiago and raises potential biases with a statistic that is often used to infer neutral demographic

histories.

Figure 4. Strong selection inferred at the DARC locus in Santiago. (A) Pairs of s and h that result in a small difference in final allele frequency calculated

under the model and the allele frequency observed in the Santiago genetic data, p20 � pDuffy
�

�

�

�<0:01 under a deterministic population genetic model.

Colors indicate the initial Duffy-null frequency: po ¼ 0:65, black; po ¼ 0:70, dark gray; po ¼ 0:75, light gray. (B) Approximate Bayesian computation (ABC)

estimates of the selection coefficient for Duffy-null on Santiago. Shaded gray area shows prior distribution of selection coefficient [s~Uð0; 0:2Þ]. Dark

gray histogram shows posterior distribution for selection coefficient (median = 0.0795), constructed from regression-adjusted values from accepted

simulations.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Results of approximate Bayesian computation (ABC) estimation of posterior distributions for (A) selection coefficient for Duffy-

null and (B) initial West African ancestry contribution for Santiago.

Figure supplement 2. Results of leave-one-out cross-validation of approximate Bayesian computation (ABC) joint estimation.
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Discussion
Using adaptation to malaria in the admixed population of Cabo Verde as a case study, we have

demonstrated that admixture can facilitate adaptation in merely tens of generations in humans.

Developing methods to identify and characterize post-admixture selection, we found that this rapid

adaptation leaves detectable genomic signatures (Figures 1 and 2), with potential genome-wide

consequences (Figure 5). Combining inference under two complementary methods, and under a

range of possible dominance coefficients and initial allele frequencies, we estimated selection

strength of s» 0:08 for the Duffy-null allele in Santiago (Figure 4). Our estimate is consistent with

other studies that have inferred the strength of selection for Duffy-null ranging from ~0.04 (modeled

under additive selection) in sub-Saharan African populations (McManus et al., 2017) and ~0.07

(modeled as recessive) to ~0.2 (modeled as dominant) in a Malagasy population with admixed Afri-

can ancestry (Hodgson et al., 2014; Pierron et al., 2018). Our estimated strength of selection for

Duffy-null is among the highest inferred for a locus in any human population.

Introgression of an adaptive allele can facilitate adaptation on short timescales, particularly for

traits with large effects from single loci. When ancestry contributions from multiple sources are high,

such as is common in recent human admixture, selection post-admixture can be a faster mode of

adaptation, similar to selection on standing variation (Hermisson and Pennings, 2005;

Hedrick, 2013).

Figure 5. Selection at a single locus impacts genome-wide ancestry proportion. (A) Inferred (dark gray), simulated (white), and observed (red) mean of

global ancestry in Santiago over time. The dark gray histogram plots the posterior distribution for initial g ¼ 1ð Þ West African ancestry contribution

inferred using approximate Bayesian computation (ABC) (median, 0.690); the prior distribution [m~Uð0:1; 0:9Þ] is in light gray. The red line plots the

mean global ancestry estimated by ADMIXTURE from modern genetic data from Santiago, 0.737. The observed global ancestry is higher than most values

of the initial contributions inferred in dark gray. The white histogram plots the distribution of West African global ancestry proportion calculated after

20 generations in populations simulated with selection coefficients and initial ancestries drawn from the ABC-inferred values (median, 0.723). The global

ancestry calculated after 20 generations of simulated selection (white) more closely matches that observed from Santiago genetic data (red line). (B)

West African mean global ancestry proportion calculated for 500 simulated populations after 20 generations under varying single-locus selection

coefficients, s. We simulated whole autosomes, setting the initial West African ancestry contribution to 0.65. Black circles indicate mean ancestry on

chromosome 1 alone. Gray circles indicate mean ancestry on the other autosomes (2–22). The increase in ancestry with selection for gray circles

demonstrates that selection impacts global ancestry beyond the local effects of the chromosome under selection.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Effect of selection on global ancestry across simulation methods.
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Commonly used ancestry outlier approaches have identified candidate regions for admixture-

enabled adaptation in many populations; for example, at the HLA and LCT regions in Bantu speak-

ing populations (Patin et al., 2017), the MHC locus in Mexicans (Zhou et al., 2016), and adaptation

to high-altitude at EGLN1 and EPAS1 in Tibetans (Jeong et al., 2014). However, results from this

framework alone can be difficult to interpret because drift post-admixture may substantially change

allele frequencies and the distribution of local ancestry within and between individuals (Bhatia et al.,

2014; Belbin et al., 2018; Calfee et al., 2020). Further, recessive deleterious variation masked by

heterosis can similarly cause a signal of increased introgressed ancestry, especially in regions of low

recombination (Kim et al., 2018). As a result, outlier approaches may have increased rates of false-

positive detection of regions under selection. One recent approach modeled local ancestry devia-

tions based on individual-level global ancestry distributions; however, determining a significance

threshold for local ancestry deviations remains difficult (Busby et al., 2017). Outlier approaches also

discard local haplotype information and are not informative about the selection strength or timing.

Instead, we developed a suite of methods to identify and characterize selection post-admixture: the

iDAT summary statistic, application of the SWIF(r) framework to estimate the probability a locus is

under selection in an admixed population, and an ABC framework to jointly infer selection strength

and initial admixture contributions (Materials and methods).

Methods to detect adaptation driven by alleles introduced through gene flow in human popula-

tions have typically focused on ancient admixture between highly diverged populations, often with

small contributions from one of the sources (Racimo et al., 2017; Jagoda et al., 2018; Setter et al.,

2020). Recent advances leverage patterns of ancestry to consider recent admixture, though perform

best for events at least hundreds of generations ago (Svedberg et al., 2020). Instead, we emphasize

admixed populations as a model for adaptation on historical timescales, with selection dramatically

changing genomic variation within tens of generations. This timescale is important for elucidating

human history and has implications for conservation genetics and ecology in other organisms. Addi-

tionally, our summary statistic approach can be flexibly applied in a variety of inference methods.

For example, our implementation in a likelihood-free ABC framework allows for flexible population

history models fit to the population of interest. This approach moves beyond identification of loci

under selection, allowing joint inference of selection and population history parameters.

We apply these methods to characterize post-admixture adaptation in the Cabo Verdean island

of Santiago. The Cabo Verdean populations have a number of advantages for identifying and inter-

preting selection over the last ~500 years. First, the island geography minimizes within-population

structure and provides comparison island populations with shared ancestry components to partially

account for demography. Second, historical records give a clear boundary for the earliest onset of

selection in the admixed population, based on the initial occupation and admixture in the 1460s

(~20 generations in the past). Further, the European and West African source populations have high

levels of genetic divergence for human populations, improving local ancestry assignment accuracy.

Though errors in phasing or local ancestry assignments are possible and should be considered if

applied to other scenarios, it is unlikely that such errors would create signatures as extreme and

long ranging as we observe in Santiago.

We inferred that the Duffy-null allele rapidly increased in frequency after admixture as a result of

its adaptive resistance to P. vivax infection. While we consider this to be the strongest candidate

locus, given the large ancestry tracts, it is possible that selection at other nearby loci is responsible

for the observed ancestry patterns. The Duffy-null allele shows extreme geographic differentiation,

being nearly fixed in sub-Saharan African populations and mostly absent in non-African populations

(Mercereau-Puijalon and Ménard, 2010; Howes et al., 2011; Gething et al., 2012 ), and multiple

populations with ancestry from sub-Saharan Africa show evidence for admixture-enabled adaptation

throughout human history at the DARC locus (Hodgson et al., 2014; Triska et al., 2015;

Busby et al., 2017; Laso-Jadart et al., 2017; Pierron et al., 2018; Fernandes et al., 2019). Further,

the Duffy-null allele has well-characterized functional protection against P. vivax, a malaria parasite

with a documented record of recurrent transmission in Santiago since settlement.

We demonstrated how selection at the DARC locus may have affected patterns of ancestry

genome-wide (Figure 5). The initial admixture contributions inferred under our model were lower

than those observed in Santiago today, and we confirmed this pattern more generally in simulations.

Population-genetic studies often use loci far from potentially selected sites as putatively

neutrally evolving loci, or treat many dispersed loci as neutral based on the assumption that a few
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selected sites will not dramatically change genome-wide distributions of summary statistics. How-

ever, we found that selection on a single locus may shape patterns of ancestry genome-wide. Indi-

viduals with higher genome-wide proportions of ancestry from the source population carrying the

beneficial allele are more likely to have a selective advantage in early generations post-admixture as

recombination has yet to uncouple global ancestry proportion and the local ancestry of the selected

allele (Pierron et al., 2018). The genome-wide consequences of adaptation at a single-locus were

previously proposed by Pierron et al., 2018. However, the scale of simulations was limited, and the

extent of this effect on the selected chromosome versus the rest of the genome was not explored.

Using whole-genome simulations, we demonstrated that selection on an allele on chromosome 1

increases ancestry proportion on chromosomes 2–22; that is, the increase in global ancestry is not

exclusively owing to an increase in ancestry on the selected chromosome (Figure 5B). We also

showed that this effect can be detected over a range of moderate to strong selection coefficients.

Finally, we illustrated how this effect may explain the discrepancy in our observed global ancestry

and inferred initial admixture contributions for Santiago (Figure 5A). Therefore, since global ancestry

is often used to infer initial admixture contributions, these and related demographic inferences may

be biased under the common assumption that genome-wide patterns of ancestry reflect demogra-

phy alone. Importantly, the change in global ancestry will likely have long-term consequences even if

adaptation is relaxed. In the absence of negative selection, ancestry is not expected to revert to ini-

tial admixture proportions. Instead, drift will not change global ancestry in a specific direction, and

the population will evolve neutrally with this new ancestry proportion (Pierron et al., 2018).

Difference in observed and simulated global ancestry may be caused by a variety of statistical

and evolutionary processes beyond selection, including sampling, estimation method, demographic

model misspecification, different rates of migration over time, or drift. Regions aside from DARC

may also have been under selection post-admixture in Santiago and therefore affected the global

ancestry patterns. For example, it is possible there are other genetic associations with P. vivax sus-

ceptibility; however there are not many published and well-characterized examples

(Zimmerman et al., 2013). Further, only mutations with large effects, such as the Duffy-null allele,

are likely to show significant allele frequency deviations or ancestry-based signatures of selection in

just 20 generations.

We also observed a cluster of extreme negative iDAT values on chromosome 16 [~chr16:

48,000,000–60,000,000] that may be of interest for future study. The 10 annotated genes in this

region and associated gene ontology terms are included in Supplementary file 1. A cursory litera-

ture search returned no known associations with malarial response in this region, and it is more diffi-

cult to draw conclusions on selection history in this region without a prior hypothesis. That said, we

note that this region does not show high proportions of West African ancestry compared to the

genome-wide distribution (Figure 1—figure supplement 1). The extreme iDAT values in this region

may be influenced by its adjacence to the centromere, which may affect the length of ancestry

tracts.

Generally, we suggest that iDAT should be used as one line of evidence alongside other summa-

ries of variation, such as those used in our ABC estimation and expected allele frequency calcula-

tions. Moreover, in the case of Duffy-null, we had a strong prior expectation for positive selection

for the West African haplotype. Analogous to biallelic selection scenarios, with admixture between

two source populations, it is difficult to distinguish between positive selection for one ancestry and

negative selection for the other ancestry.

Another important limitation for ancestry-based methods of detecting selection in admixed popu-

lations is that they are best suited for scenarios wherein frequencies of a selected allele differ greatly

between source populations, as is the case with Duffy-null. If an allele is present at similar frequen-

cies in the source populations (i.e. regions of low FST between source populations), selection will

likely affect both ancestries in the admixed population similarly. Future studies into the adaptive his-

tories of admixed populations should consider this limitation on the pool of potentially adaptive var-

iants that can be detected using ancestry-based analyses.

The framework developed here is broadly applicable to detect and characterize selection in other

recently admixed human and non-human populations. For most analyses, we assumed a single

admixture event 20 generations in the past. The simulation software we use, SLiM, makes it straight-

forward to consider other models of population history specific to populations of interest for future

studies. Further research into the interaction of selection and demography will refine inference.

Hamid et al. eLife 2021;10:e63177. DOI: https://doi.org/10.7554/eLife.63177 12 of 24

Research article Evolutionary Biology Genetics and Genomics

https://doi.org/10.7554/eLife.63177


Additionally, while the timing of admixture in Cabo Verde is well documented, our ABC approach

may be extended to infer the timing of selection and admixture as well, as the tract length distribu-

tion is informative about these parameters (Gravel, 2012; Liang and Nielsen, 2014; Korunes et al.,

2020). Indeed, we demonstrated the need to jointly infer selection and demographic histories.

Materials and methods

Genetic data and ancestry inference
For this study, we used SNP array data from Beleza et al., 2013 which included 564 admixed indi-

viduals across the island regions of Cabo Verde. From this data set, we filtered individuals with

greater than 5% missing calls overall or greater than 10% missing calls on a single chromosome. This

resulted in removal of one individual with high missingness on chromosome 14 (11.36%). We merged

genotypes for the remaining 563 individuals with genotypes from 107 IBS (Iberian Population in

Spain) and 107 GWD (Gambian in Western Division – Mandinka) samples from high-coverage rese-

quencing data released through the International Genome Sample Resource (Clarke et al., 2017;

Fairley et al., 2020). Our analyses considered autosomal chromosomes only. We selected biallelic

SNPs occurring in both the Cabo Verde samples and the reference samples. The final merged

data set contained 884,656 autosomal SNPs. Average missingness by SNP was 0.0017.

Using the 884,656 autosomal SNP data set, we performed phasing with SHAPEIT2 using the

Phase 3, NCBI build 37 (hg19) reference panel of haplotypes and associated genetic map in

IMPUTE2 format (Delaneau et al., 2013). Following the SHAPEIT documentation, we first ran

SHAPEIT –check to exclude sites not contained within the reference map, followed by SHAPEIT

phasing to yield phased genotypes at 881,279 SNPs. For local ancestry inference, we ran RFMix v1.5

on the phased samples using a two-way admixture model (Maples et al., 2013). We used the RFMix

PopPhased program with default window size, the --use-reference-panels-in-EM option, -e = 2 (2 EM

iterations), and --forward-backward. Ancestry references for European and West African source pop-

ulations, respectively, were IBS and GWD.

We observed a low overall proportion of regions within a given individual’s genome assigned as

‘unknown’ local ancestry by RFMix. The mean and median genome-wide proportion of unknown

ancestry in our data set were 0.0089 and 0.0083, respectively. Typically, more than 99% of each indi-

vidual’s genome could be assigned as either West African or European ancestry. Coupled with the

fact that there is little historical or genetic evidence of migration from non-West African or non-Euro-

pean populations to Cabo Verde (Carreira, 1983; Verdu et al., 2017; Korunes et al., 2020), we

find it is unlikely that individuals in our data set have high proportions of recent ancestry from a non-

European or non-African source population.

To validate our phase imputation and RFMix local ancestry calls, we also performed local ancestry

assignment using a second method, ELAI, which performs its own independent phasing prior to call-

ing local ancestry (Guan, 2014). We ran ELAI under a two-way admixture model, again using IBS

and GWD genotypes as references for the source populations. We set the parameters -mg (number

of generations) to 20, -s (EM steps) to 30, -C (upper clusters) to 2, and -c (lower clusters) to 10,

based on the 5 � C recommendation from the ELAI documentation. The estimates of each individu-

al’s average genome-wide ancestry are highly correlated between ELAI and RFMix (Pearson’s R =

0.9964; p < 1 � 10�8).

Global ancestry inferred in ADMIXTURE (Alexander and Lange, 2011) was averaged over 10 inde-

pendent runs with randomly chosen seeds using supervised cluster mode with the GWD and IBS

individuals specified as the reference populations. Our estimates of global ancestry by individual

from ADMIXTURE are consistent with those of RFMix (Pearson’s R = 0.9973; p < 1 � 10�8).

The island of Boa Vista was excluded from analyses due to our small sample from the region (26

individuals), leaving a final set of 537 individuals across the three island regions considered in this

study (Santiago: 172, Fogo: 129, NW Cluster: 236; Figure 1A).

Local ancestry calls can be found at https://doi.org/10.5281/zenodo.4021277.

iDAT score
In order to account for global ancestry patterns that contribute to the ancestry tract-length distribu-

tion when identifying loci under selection post-admixture, we developed the iDAT score. This
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statistic quantifies the length and homozygosity of the tract-length distribution by comparing the

decay of tract lengths from alternate ancestries at increasing distance from a site of interest.

First, we describe the Decay in Ancestry Tract (DAT) feature, which is calculated similar to

expected haplotype homozygosity (EHH) (Sabeti et al., 2002), using local ancestry tracts rather than

haplotypes. For each source population i we calculate:

DATi xð Þ ¼
nx

n

� �2

;

where nx is the number of ancestry tracts that extend some absolute distance x from a position of

interest, and n is the total number of ancestry tracts (extending in either direction) that contain the

site of interest. We calculate DAT at increasing distances from the site of interest. Similar to inte-

grated haplotype homozygosity (iHH) (Voight et al., 2006), we then calculate the area under the

curve for DAT as a function of distance from the position of interest, producing iDAT (Figure 2B).

For this study, we calculated iDAT only for distances where DAT� 0:25, that is, where at least half of

the ancestry tracts extend that absolute distance from the site of interest. We compare the differ-

ence in order of magnitude between iDAT for each ancestry, analogous to the integrated haplotype

score (iHS), we have,

iDAT score¼ ln
iDAT2

iDAT1

� �

;

where iDATi is the iDAT calculated for source population i. The length of ancestry tracts, and there-

fore the iDAT score, will be influenced by relative ancestry contributions from each source popula-

tion. So, when possible, we standardized the iDAT score using the empirical distribution of iDAT

scores for 10,000 random positions across the genome. In this way, we deviate from the calculation

of standardized iHS, which is standardized by the empirical distribution of SNPs with the same allele

frequency because the length of haplotypes will be affected by the age of a variant (Voight et al.,

2006). In the case of admixed populations, we instead need to account for the effect of global

ancestry proportion on ancestry tract lengths, where the majority ancestry will tend to have longer

contiguous tracts. We standardized by the genome-wide empirical distribution of iDAT scores,

rather than iDAT scores for variants with the same local ancestry proportion, because the variance in

local ancestry across the genome can be heavily influenced by drift. That is, to standardize the iDAT

score, we calculate

ln
iDAT2
iDAT1

� �

�E ln
iDAT2
iDAT1

� �h i

SD ln
iDAT2
iDAT1

� �h i :

By standardizing against a genome-wide distribution of iDAT values, we can account for demo-

graphic parameters, such as admixture proportions and timing since admixture, that may affect the

global iDAT distribution. Single-locus deviations from the genome-wide expectations may then be

indicative of selection at that site, and may warrant further study.

Single-chromosome simulations
We used SLiM forward simulations with tree-sequence recording to track local ancestry

(Haller et al., 2019; Haller and Messer, 2019). We considered eight different demographic scenar-

ios: combinations of initial population size (N = 10,000 or N = 1000) with either a constant popula-

tion size or exponential growth at a rate of 0.05 per generation, and either a single pulse of

admixture at the start of simulation or continuous admixture at 1% total new migrants per genera-

tion (Table 2). The proportion of new migrants from each source population was weighted by the

respective initial admixture contributions.

For each demographic scenario, we generated 1000 simulations of the human chromosome 1.

For realistic recombination rates, we used the population-averaged human genetic map provided by

IMPUTE2 (Delaneau et al., 2013) (https://mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.html). We

simulated admixture from two source populations to form a third admixed population (similar to rec-

ipe 17.5 in the SLiM manual) (Haller and Messer, 2016). One source population, representing the

West African source population, was fixed for a neutral variant at the same position as the Duffy-null
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allele (chr1:159174683; GRCh37 coordinates in accordance with genetic map). Because the true

West African ancestry contribution is unknown, for neutral simulations this parameter was drawn

from a uniform distribution with lower and upper bounds at 0.65 and 0.75, respectively. We simu-

lated the admixed population for 20 generations.

Using the tree-sequence files output from the SLiM simulations, we calculated the five ancestry-

based summary statistics for each simulation: West African local ancestry proportion at DARC, vari-

ance in the distribution of West African local ancestry proportion across SNPs along the chromo-

some, mean and median West African ancestry tract length containing Duffy-null, and

unstandardized iDAT score for the Duffy-null variant. We used the unstandardized iDAT score

because there is no genome-wide distribution of iDAT scores for single-chromosome simulations.

iDAT scores also could not be standardized using the distribution of simulated Duffy-null iDAT

scores because each simulation had a different starting admixture proportion.

We sampled 172 individuals from each simulation and compared the simulated distribution to the

observed values of the statistics for the 172 individuals from Santiago (Figure 2—figure supplement

2). The genetic map provided by IMPUTE2 is population-averaged. To determine whether popula-

tion-specific differences in recombination rate may affect our ancestry-based statistics, we per-

formed the same neutral simulations and comparison to empirical data using one of three genetic

maps: GWD or IBS maps from Spence and Song, 2019, or an African American (AA) genetic map

from Hinch et al., 2011. The expectations for mean and median tract length are affected by popula-

tion-specific differences in recombination rate; however, because recombination rate affects both

ancestries equally, the choice of genetic map does not change the expectation for iDAT score (Fig-

ure 2—figure supplement 3). Of note, the AA genetic map contains regions with extremely high

recombination rate, resulting in the extreme differentiation in expectation of tract lengths between

simulations using this and the other genetic maps, and, in particular, shorter expected tract lengths.

Using this map would inflate our estimates of selection strength under the ABC framework; we chose

to use the more conservative and general-use IMPUTE2 genetic map for population-averaged

recombination rates.

Ancestry tracts extend over large proportions of the chromosome at the timescale of interest for

this study (~20 generations). Therefore, in this case, fine-scale recombination rate differences are not

expected to significantly affect our expectations for ancestry-based statistics.

Performance of iDAT
The impact of different population size and migration scenarios on iDAT is summarized in the

Materials and methods, under Single-chromosome simulations (Figure 2—figure supplement 2).

These scenarios are relevant for the population history of Cabo Verde. Here, in order to understand

the general behavior and applicability of iDAT for future analyses, we extend the scenarios consid-

ered beyond those likely to represent Cabo Verdean history. We consider combinations varying the

generations since admixture, the selection coefficient, the initial contribution from the source popu-

lations, different chromosome lengths for the position of the adaptive allele, and different DAT cut-

offs.

First, we considered the demographic history of the admixed population. Modifying the single-

chromosome simulations described above, we conducted simulations setting the admixture timing

to 10, 100, or 1000 generations in the past and admixture contribution from the source population

with the adaptive allele to 0.1, 0.5, or 0.9. This source population was fixed for the variant at the

Duffy-null position. We assumed a constant population size of N = 10,000 and a single-pulse of

admixture. For each combination of admixture timing and admixture proportion, we generated

1000 simulations for each selection strength of s ¼ 0, s ¼ 0:01, s ¼ 0:05, or s ¼ 0:1. This resulted in 36

different scenarios and 36,000 simulations. For each simulation, we calculated iDAT for the variant at

the Duffy-null position.

To interpret iDAT performance under these scenarios, we plot the proportion of Duffy-null iDAT

values from the selection simulations that are in the bottom fifth percentile of the respective neutral

Duffy-null iDAT distribution (Figure 2—figure supplement 4). We compare within demographic

models because admixture proportion has a strong influence on the expectation and possible range

of iDAT values. We also note that iDAT values cannot be calculated when an allele has been fixed in

a population, as observed in the older admixture scenarios with high selection strength and high

starting admixture proportion from the selected ancestry. As such, this statistic may be more useful
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under recent admixture and selection (i.e., fewer than 100 generations in the past) with substantial

admixture contributions from both source populations of interest.

We next sought to assess how chromosome size and choice of DAT cut-off value affect the

expected distribution of iDAT values. For this, we performed simulations of human chromosomes 1

(~250 Mb), 7 (~160 Mb), 15 (~100 Mb), and 22 (~50 Mb), to capture a range of reasonable chromo-

some sizes. We used the associated IMPUTE2 genetic map for each of these simulations. For consis-

tency across simulations, one source population was fixed for a variant at a position at 80% of the

physical length of the chromosome. We again assumed a constant population size at N = 10,000

and a single pulse of admixture. Based on the demographic history of Cabo Verde, we assumed the

modern-day West African ancestry proportion to be the initial admixture contribution of 0.73 from

the source population providing the variant of interest. We simulated the admixed population for 20

generations. We generated 1000 simulations each of neutral (s ¼ 0) and strong selection scenarios

(s ¼ 0:05). For each simulation, we calculated iDAT for the tracked variant for distances where

DAT� 0:25 (following our main analyses), DAT� 0:125, DAT� 0:0625, and DAT� 0:01. We show the

proportion of iDAT values for the simulated variant under selection that are in the bottom fifth per-

centile of the neutral distribution of iDAT values, for each chromosome size and DAT cut-off (Fig-

ure 2—figure supplement 5).

Generally, on this timescale, selection strength, and admixture proportion, iDAT performs well

across chromosome sizes and cut-off values. That said, we note that the cut-off of 0.25 works slightly

better for the smallest human chromosome (chr 22), though we emphasize that its performance is

not very different from the other cut-off values. Further, using lower cut-offs requires more computa-

tion time, and depending on the SNP density of the data set, this may be an important consider-

ation. We encourage future studies looking to detect signatures of selection using this statistic on

smaller chromosomes or different admixture histories, particularly for non-human populations, to

consider testing iDAT performance under their specific model of interest.

SWIF(r) implementation
We incorporated ancestry-based summary statistics and admixture simulations into the SWIF(r)

framework developed by Sugden et al., 2018. For the simulated training set, we followed the sin-

gle-chromosome simulation framework described above. We considered a single realistic demo-

graphic scenario for training: starting population size N = 10,000, exponential growth at a rate of

0.05 per generation, and single-pulse admixture with starting West African ancestry contribution ran-

domly drawn from a uniform distribution from 0.65 to 0.75.

For simulations with selection at a single locus, we assumed an additive selection model (h ¼ 0:5).

Selection coefficient was randomly drawn from a uniform distribution from 0 to 0.2. We calculated

the five ancestry-based summary statistics for each simulation. Under this model, we generated

50,000 neutral simulations and 100 positive selection simulations for training; these training propor-

tions are to reflect a prior probability of selection scenarios at 0.002. Since positive selection is rela-

tively rare compared to neutral scenarios, SWIF(r) calibrates posterior probabilities according to this

designated prior probability.

To validate this extension of SWIF(r), we generated a new set of 1000 neutral simulations and

1000 positive selection simulations. Figure 6 shows a precision-recall plot for a SWIF(r) implementa-

tion using the five ancestry-based statistics, a prior positive selection probability of 0.2% (reflecting

the training set proportions above), and two classes (neutral or positive selection). Figure 6—figure

supplement 1 demonstrates SWIF(r) performance for each class and across values of admixture con-

tribution and selection coefficient. This SWIF(r) implementation had a low rate of false-negative clas-

sification of neutral simulations as positive selection scenarios.

Inference of selection under a deterministic population-genetic model
To estimate the selection coefficient for the Duffy-null allele based on the dominance and the allele

frequency trajectory over 20 generations, we used a deterministic population-genetic model of

selection. We used the following recursion equation (Coop, 2020):

ptþ1 ¼ pt þ
pthsþ qts 1� hð Þ

1� 2ptqtsh� q2t s
ptqt ;
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where pt is the frequency of Duffy-null in a given generation t, qt is the frequency of the alternate

allele in generation t, s is the selection coefficient which is constant over time, and h is the domi-

nance coefficient (0 if Duffy-null is dominant, 1 if recessive, and 0.5 in an additive selective model).

We calculated the allele frequency over a grid of values for pairs of h2½0;1� and s2½0;0:2� in 0.005 and

0.001 increments, respectively. Figure 4A shows the combinations of h and s that produce

p20� pDuffy
�

�

�

�<0:01, where p20 is the calculated frequency of the selected allele after 20 generations

and pDuffy is the observed frequency of Duffy-null in Santiago (0.834). Because the true initial allele

frequency po is not known, we performed the analysis for three reasonable starting allele frequen-

cies: po ¼ 0:65, po ¼ 0:70, and po ¼ 0:75.

Inference of selection coefficient using ABC
We used an ABC framework with nonlinear regression (neural network) adjustment to jointly esti-

mate the posterior distributions for selection strength acting on the Duffy-null allele and the initial

West African ancestry contribution (R package ‘abc’, with ‘neuralnet’ method) (Csilléry et al., 2012).

We followed the same simulation framework we previously described for our SWIF(r) positive

selection simulations of chromosome 1, with the following demographic scenario for training: start-

ing population size N = 10,000, exponential growth at a rate of 0.05 per generation, and single-

pulse admixture. We assumed an additive selection model (h ¼ 0:5). The selection coefficient (s) and

the initial West African ancestry contribution (m) were drawn from uniform prior distributions,

Figure 6. Precision-recall curve for validation of SWIF(r) classification of neutral and positively selected variants, using 1000 neutral and 1000 positive

selection simulations. With our ancestry-based measures, SWIF(r) achieved an area under the curve (AUC) of 0.966, where an AUC of 1 represents a

classifier with perfect skill. Horizontal dashed line indicates the no-skill classifier for this data set.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. SWIF(r) classification results for 1000 neutral and 1000 positive selection simulations used for the test set based on Santiago’s

demographic history.
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s~Uð0; 0:2Þ and m ~Uð0:1; 0:9Þ. We generated 10,000 simulations for ABC inference and calculated

the five ancestry-based summary statistics for each simulation.

We chose the tolerance and hidden layer sizes for ABC estimation based on the best combination

of RMSE and R2 values for leave-one-out cross-validation under different combinations of these

hyperparameters. We performed cross-validation for 1000 simulations. Estimation accuracy for this

data set was similar under a variety of hyperparameter choices. We set the number of units in the

hidden layer to ‘sizenet=2’ and the acceptance rate to ‘tol=0.05’. For the cross-validation, our esti-

mates of the selection coefficient had an RMSE ¼ 0:0083 and R2 ¼ 0:9785; our estimates of starting

admixture proportion had an RMSE ¼ 0:0090 and R2 ¼ 0:9985 (Figure 4—figure supplement 2).

Global ancestry simulations
To assess how selection at a single locus impacts genome-wide patterns of ancestry, we simulated

changes in global ancestry over 20 generations (Figure 5). Whole autosome (22 chromosome) simu-

lations with a realistic recombination map are computationally intensive. Instead, we took two com-

plementary approaches.

First, we performed whole autosome simulations (22 independently segregating chromosomes) in

SLiM by specifying a ’crossover rate’ between chromosomes of 0.5 per generation. We used the

total lengths of autosomal chromosomes from the Human Genome Assembly GRCh37.p13 (https://

www.ncbi.nlm.nih.gov/grc/human/data?asm=GRCh37.p13). We used a uniform recombination rate

within each chromosome of 1�10
�8 crossovers per base position per generation. We considered the

following demographic scenario: starting population size N = 10,000, exponential growth at a rate

of 0.05 per generation, and single-pulse admixture. Global ancestry was calculated by taking the

mean West African ancestry proportion across the autosome.

Second, we performed two-chromosome simulations (modeled based on human chromosomes 1

and 2) in order to incorporate a human genetic map for realistic recombination rates. We again used

the genetic maps provided by IMPUTE2 for chromosomes 1 and 2. Two-chromosome simulations

were performed under the same demographic model as whole autosome simulations. Global ances-

try was calculated by taking a weighted mean of ancestry for the two chromosomes, where chromo-

some 2 represented the contribution for the ~92% of the genome that segregates independently

from chromosome 1.

To test how selection at a single locus affects global ancestry, we considered both whole auto-

some simulations and two-chromosome simulations, using a West African ancestry contribution of

0.65 for all simulations in the founding generation. We varied the selection coefficient for the simu-

lated Duffy-null variant on chromosome 1 from 0 to 0.2. We assumed an additive selection model

(h ¼ 0:5). The results are similar across simulation methods (Figure 5—figure supplement 1).

To determine how our ABC estimates of initial West African ancestry contribution differ from final

global ancestry after 20 generations of selection at the Duffy-null locus, we next simulated whole

autosomes admixing for 20 generations drawing parameters from the previously inferred posterior

distributions of the selection coefficient and initial ancestry contribution. Specifically, we used the

paired estimates of selection coefficient and West African admixture contribution from each

accepted simulation from the ABC analysis and passed those parameters as input for each whole

autosome simulation; this produced a distribution of estimates of global ancestry for populations

simulated with realistic selection and initial ancestry contributions (Figure 5A).
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Everardo P, de Avila F, Gómez-Valdés J, León-Mimila P, Hunemeier T, Ramallo V, Silva de Cerqueira CC, Burley
MW, Konca E, de Oliveira MZ, Veronez MR, Rubio-Codina M, et al. 2014. Admixture in Latin America:
geographic structure, phenotypic diversity and self-perception of ancestry based on 7,342 individuals. PLOS
Genetics 10:e1004572. DOI: https://doi.org/10.1371/journal.pgen.1004572, PMID: 25254375

Sabeti PC, Reich DE, Higgins JM, Levine HZ, Richter DJ, Schaffner SF, Gabriel SB, Platko JV, Patterson NJ,
McDonald GJ, Ackerman HC, Campbell SJ, Altshuler D, Cooper R, Kwiatkowski D, Ward R, Lander ES. 2002.
Detecting recent positive selection in the human genome from haplotype structure. Nature 419:832–837.
DOI: https://doi.org/10.1038/nature01140, PMID: 12397357

Sabeti PC, Schaffner SF, Fry B, Lohmueller J, Varilly P, Shamovsky O, Palma A, Mikkelsen TS, Altshuler D, Lander
ES. 2006. Positive natural selection in the human lineage. Science 312:1614–1620. DOI: https://doi.org/10.
1126/science.1124309, PMID: 16778047

Setter D, Mousset S, Cheng X, Nielsen R, DeGiorgio M, Hermisson J. 2020. VolcanoFinder: genomic scans for
adaptive introgression. PLOS Genetics 16:e1008867. DOI: https://doi.org/10.1371/journal.pgen.1008867,
PMID: 32555579

Snow RW, Amratia P, Kabaria CW, Noor AM, Marsh K. 2012. The changing limits and incidence of malaria in
Africa: 1939-2009. Advances in Parasitology 78:169–262. DOI: https://doi.org/10.1016/B978-0-12-394303-3.
00010-4, PMID: 22520443
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