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Abstract: The world is currently experiencing the worst health pandemic since the Spanish flu
in 1918—the COVID-19 pandemic—caused by the coronavirus severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2). This pandemic is the world’s third wake-up call this century. In 2003
and 2012, the world experienced two major coronavirus outbreaks, SARS-CoV-1 and Middle
East Respiratory syndrome coronavirus (MERS-CoV), causing major respiratory tract infections.
At present, there is neither a vaccine nor a cure for COVID-19. The severe COVID-19 symptoms of
hyperinflammation, catastrophic damage to the vascular endothelium, thrombotic complications,
septic shock, brain damage, acute disseminated encephalomyelitis (ADEM), and acute neurological
and psychiatric complications are unprecedented. Many COVID-19 deaths result from the aftermath
of hyperinflammatory complications, also referred to as the “cytokine storm syndrome”, endotheliitus
and blood clotting, all with the potential to cause multiorgan dysfunction. The sphingolipid
rheostat plays integral roles in viral replication, activation/modulation of the immune response,
and importantly in maintaining vasculature integrity, with sphingosine 1 phosphate (S1P) and its
cognate receptors (SIPRs: G-protein-coupled receptors) being key factors in vascular protection against
endotheliitus. Hence, modulation of sphingosine kinase (SphK), S1P, and the S1P receptor pathway
may provide significant beneficial effects towards counteracting the life-threatening, acute, and chronic
complications associated with SARS-CoV-2 infection. This review provides a comprehensive overview
of SARS-CoV-2 infection and disease, prospective vaccines, and current treatments. We then discuss
the evidence supporting the targeting of SphK/S1P and S1P receptors in the repertoire of COVID-19
therapies to control viral replication and alleviate the known and emerging acute and chronic
symptoms of COVID-19. Three clinical trials using FDA-approved sphingolipid-based drugs being
repurposed and evaluated to help in alleviating COVID-19 symptoms are discussed.

Keywords: COVID-19; SARS-CoV-2; Sphingosine kinase; sphingosine-1-phosphate;
G-protein-coupled receptors

1. Introduction

The novel betacoronavirus (2019-nCoV), also known as severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) [1,2] and pneumonia-associated respiratory syndrome (PARS) [3], causes
coronavirus disease 19, or simply COVID-19. SARS-CoV-2 is rapidly evolving as the pestilence of the 21st
century. As of September 2020, the number of COVID-19 cases has surpassed 33 million with nearly one
million confirmed deaths worldwide. The incidence of COVID-19 continues to increase daily and has
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not shown any signs of abating (https://www.who.int/emergencies/diseases/novel-coronavirus-2019).
Whilst approximately 80% of all cases will be either asymptomatic, or exhibit mild symptoms with
no known ongoing health issues, 20% of patients will develop severe acute respiratory distress
syndrome (ARDS), dyspnoea, low oxygen saturation, and lung infiltrates [4]. Complications of
hyperinflammation, also referred to as the “cytokine storm syndrome”, are associated with the critical
symptoms of the disease, including respiratory failure, septic shock, or multiorgan dysfunction, which,
together, are the leading causes of morbidity and mortality in patients with severe COVID-19 [4,5].
More recently, it has come to light that a major complication of SARS-CoV-2 infection is the viral
infectivity of endothelial cells lining the inside of blood vessels, causing major catastrophic damage to
the endothelium, vascular dysfunction, and consequent multiple organ failure [6,7]. There is also a very
high incidence of thrombotic complications in critically ill COVID-19 patients [8–10]. Additional severe
complications of COVID-19 now include ischaemic stroke and brain damage, acute disseminated
encephalomyelitis (ADEM) [11], and acute neurological and psychiatric issues [12].

Once the virus invades the host cell and replicates, the body will mount an inflammatory response
to combat the excess manufacture of the virus particles. A major complication of viral infection is a
hyperinflammatory response, characterised by exacerbation and dysregulation of the immune response
and excess production of cytokines and chemokines during the acute phase of the illness (cytokine
storm), leading to the attack and damage of not only infected cells, but normal cells as well [13]. In fact,
it is this hyperinflammatory response that is the cause of many of the major health issues as well as
increased mortality, particularly in elderly, immunocompromised, and comorbidity patients (such as
those with diabetes and cardiovascular disease). One of the first studies to emerge from Wuhan, China,
described patients with severe COVID-19 complications, admitted into the intensive care unit (ICU),
as being more likely to present with higher plasma levels of inflammatory markers, including the
interleukin 2, 7, and 10 (IL2,IL7, IL10), GMCSF, IP10, MCP1, MIP1A, and tumour necrosis factor alpha
(TNFα) [14]. The association of the symptoms of hyperinflammation with disease severity and death
was confirmed in other studies, strongly suggesting that the use of anti-inflammatory agents alongside
antiviral treatments may reduce the rising mortality in severely compromised COVID-19 patients [15].
Recent pathology reports from deceased COVID-19 patients have shown severely compromised
endothelium causing catastrophic multiorgan failure. Balancing the immune response to SARS-CoV-2
infection is critical for virus attenuation. Therefore, to combat the more severe effects of COVID-19,
specifically ARDS, catastrophic vascular dysfunction, and secondary multiorgan failure, resulting from
a hyperimmune response, “the plea” is for multitargeted interventions to trial combinational therapies
and/or new targeted drugs [16].

The sphingolipid rheostat plays an important role in regulating viral replication, the innate,
adaptive, and hyperinflammatory immune response, and importantly, maintaining vascular endothelial
integrity [17,18]. Hence, targeting sphingosine kinase (SphK), sphingosine-1-phosphate (S1P), and the
S1P cognate receptors (high-affinity G-protein-coupled receptors) in the repertoire of therapies to
control viral replication, hyperinflammation, and aid in the maintenance of vascular endothelial
integrity is highly attractive.

This review provides a comprehensive overview of SARS-CoV-2 infection, the resultant severe
symptoms caused by the virus, our current strategies for treatment, and importantly, discusses how we
can we use our knowledge of the SphK/ S1P/S1PR pathway to design therapeutic strategies to provide
some relief from, and to combat, the severe, unprecedented symptoms of COVID-19 and the chronic
health problems emerging in an increasing number of patients. To date, three clinical trials using
FDA-approved sphingolipid-based drugs being repurposed in COVID-19 treatment are in progress
and will be discussed.

2. Coronaviruses from Animals to Humans

The first human coronavirus (hCoV) describing symptoms of the common cold was documented
over 50 years ago in the British Medical Journal by Tyrell and Bynoe [19]. Coronaviruses were isolated
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from humans in the early 1960s in both Britain and the United States [20] and were identified by
their crown-like morphology [21]. Their virion is between 80 and 120 nm containing a positive
single-stranded RNA genome (ranging from 26 to 32 kb in length) encoding four enzymes essential
for the viral life cycle [21,22]. Human volunteer studies in the 1960s and 1970s showed that after
coronavirus exposure, the virus multiplied superficially in the respiratory tract with symptoms of mild
respiratory infection [20]. Although coronavirus was found to be common in humans, due to the lack
of severity of disease symptoms, the study of hCoV was relatively lacklustre for over 50 years [23].
In contrast, CoV has been well studied in animals due to its contribution to the rich diversity of animal
diseases in many species, where it is sometimes fatal [23,24].

Sadly, this viral pandemic is not unexpected. A wake-up call to the severity of coronavirus
infections in humans came with the outbreak of the human severe acute respiratory syndrome (SARS)
in 2003 [25,26], and later the emergence of the Middle East respiratory coronavirus (MERS-CoV) in
2012 [27,28], causing major clinical pathology, mainly characterised by fever, dyspnoea, lymphopenia,
and respiratory tract infections. This year (2020), the world is experiencing the worst health pandemic
since the Spanish flu in 1918 [29]—the SARS-CoV-2 or COVID-19 pandemic [30,31].

Coronaviruses have a unique strategy of replication. Studies of CoV pathogenicity in animals have
provided a strong base in the understanding of the origin and biology of the human SARS-CoV [23]
and now SARS-CoV-2. SARS-CoV and SARS-CoV-2 are zoonotic pathogens, believed to have been
transmitted to humans from an animal source. The understanding is that the SARS coronaviruses
derived from viral transmission between animals from different species housed in the same cages in
live-animal wet markets in China [1]. Gradual deletions and mutations in the viral genome enabled
the emergence of these new human coronaviruses, crossing the animal-to-human barrier [1]. Bats are
the most likely primary host of the SARS epidemic with genomic sequence and phylogenetic studies
revealing 79.6% identity between human SARS-CoV and bat-coronavirus and 96% sequence identity
between hSARS-CoV-2 and bat-coronavirus [2,32]. Although the transmission intermediary host
of SARS-CoV-2 to humans is not known, a suspected intermediary reservoir associated with the
COVID-19 outbreak is the pangolin (bat–pangolin–human) [33], yet to be confirmed or retraced.

3. SARS-CoV-2 Infectivity, Symptoms, and Complications

3.1. SARS-CoV-2 Infectivity

The extremely virulent nature of SARS-CoV-2 and the uncertainties surrounding the complexities
of the disease have facilitated a surge in research of the biology, infectivity, and symptoms of the
COVID-19 disease. SARS-CoV-2 (2019-nCoV) is transmitted human-to-human via airborne droplets,
direct contact, or surface contamination [34,35]. The genome sequence of the 2019-hCoV/ SARS-CoV-2
(GenBank No. MN908947) is enclosed in a lipid envelope in which are embedded transmembrane
glycoprotein spikes protruding from the viral surface [22]. These protruding spiked glycoproteins
bind to specific receptors on the host cells to promote viral entry. The human angiotensin-converting
enzyme 2 (hACE2) receptor, essentially expressed in all tissues, including the lung, heart, kidney,
gut, brain, and vascular endothelial cells, has been identified as the functional entry coreceptor for
SARS-CoV-2 [22,36,37]. The SARS-CoV-2 also employs the cellular serine protease TMPRSS2, to
facilitate entry into the host cell [38]. The virus then uses the host cell machinery to replicate and
subsequently shed viral copies.

The severity of symptoms appears to be dependent on patient age and immune system status,
with mortality more prevalent in the >70 age group and immunocompromised individuals [4].
Comorbidities, including hypertension, diabetes, chronic obstructive pulmonary disease (COPD),
cardiovascular disease, cerebrovascular disease, and pre-existing respiratory disorders, contribute
as major risk factors for COVID-19 patients [39–41]. Systemic disorders known to be associated
with COVID-19 infections are not confined to fevers and respiratory-related issues. Other mild to
severe side effects include headaches, loss of smell (affecting the olfactory bulb in the brain), fatigue,
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haemoptysis, hypoxemia, gastroenteritis and diarrhoea, dyspnoea (difficult or laboured breathing
linked to pulmonary disease or heart failure), lymphopenia, acute cardiac injury and thrombosis,
neurological disorders, and brain damage [4,8–10,42].

3.2. COVID-19 and Respiratory Failure

Whilst COVID-19 disease characteristics are similar to the common cold and influenza, SARS-CoV-2
viral infection has a higher transmission rate [4]. The primary cause of COVID-19 deaths is respiratory
failure, mainly in the elderly and patients with other underlying health problems [32,43,44]. SARS-CoV-2
attacks both the lower and upper airways, varying from mild respiratory disorders, ground-glass
opacities (observed in subpleural regions of the lung cavities), through to pneumonia, RNAaemia,
and ARDS [4,45].

In the early stages, the patient’s immune response is triggered to clear the infection with the local
and systemic elevation of blood cytokine and chemokine levels observed. Replication of cytopathic
viruses, such as SARS-CoV-2, causes host cell death, tissue injury, and initiates an inflammatory
response. If the infection is not cleared, the body elicits a surge in proinflammatory cytokines
(the cytokine storm) associated with disease severity and death [14]. Hyperinflammatory alveolar
oedema, a decrease in lung compliance, and reduced oxygen capacity are symptomatic of ARDS.
Although patients with severe illness have more of a propensity to develop blood clots, large and small
blood clots are frequently observed and are a major complication of COVID-19 [10]. Blood clots in the
lungs can restrict oxygenated blood flowing through the lungs, and in cases where COVID-19 patients
develop critically low blood-oxygen readings, it may explain why, in some cases, ventilators do not
help to prevent respiratory failure [10].

3.3. COVID-19 Pulmonary Vascular Disorders

In the few studies of lung morphology of deceased COVID-19 patients, the lungs exhibited distinct
pulmonary vascular changes [46]. In COVID-19 patients, specific pathogenic features of the lungs
include severe endothelial injury with the presence of intracellular virus with disrupted endothelial
cell membranes (endotheliitis) [6]; an accumulation of inflammatory cells with evidence of endothelial
and inflammatory cell death [6]; widespread vascular thrombosis with microangiopathy and occlusion
of alveolar capillaries; and significant new vessel growth through intussusceptive angiogenesis [46],
which refers to the expansion and remodelling of the wall of the blood vessel, splitting one vessel into
two [47]. This pulmonary pathobiology distinguishes COVID-19 from other equally severe respiratory
diseases, such as influenza viral infections [46].

The question of whether COVID-19-endotheliitis is a direct consequence of SARS-CoV-2 infectivity
and/or a consequence of endocytosis of the viral particles by the endothelial cells may be partly
answered in the publication by Ackemann and colleagues [46]. The observation that the SARS-CoV-2
receptor, ACE2, was more abundant on the endothelial cells of COVID-19 patients compared to
uninfected subjects suggests direct entry [46], although this does not exclude viral entry by endocytosis
or entry due to endothelial dysfunction. Endothelial morphological changes, including loss of
adhesion contact with the basal membrane, cell swelling, and disruption of intercellular junctions
were consistent with intracellular SARS-CoV-2 infection, suggesting that direct intercellular viral
effects contributed to endothelial injury as well as perivascular inflammation, infiltrating lymphocytes,
and subsequent multiple organ failure [6,46]. Pulmonary complications from breaches in the vascular
endothelium include tissue oedema (build-up of lung fluid), deregulation of inflammatory cell
infiltration, and intravascular coagulation, which all contribute to severe lung damage [48].

3.4. COVID-19, the Heart and Cardiovascular System

SARS-CoV-2 has demonstrated a specific tropism towards the cardiovascular system, being
responsible for severe acute and chronic cardiac diseases. Acute cardiovascular-related pathologies
including congestive heart failure and brain medullary cardiorespiratory dysfunction are among the
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more severe health problems associated with COVID-19 disease [14,40,49–51]. Although a damaging
correlation between cardiovascular disease (CVD) and COVID-19 susceptibility is widely accepted,
the underlying reasons and the acute and long-term cardiac consequences are unclear [52]. On the one
hand, COVID-19 may be a risk factor for CVD development through indirect action, including infection
in the lungs causing an oxygen deficiency resulting in cardiac ischaemia, and further activating the
immune system associated with a pronounced cytokine storm [53]. Whilst early activation of the
immune response is important in virus control, persistent severe systemic inflammation (immune
activation of cytokines, such as IL6 and TNF) and the release of troponin and natriuretic peptides,
especially in predisposed patients (as present in immunocompromised patients, the elderly, and those
with comorbidities such as diabetes and CVD) can result in organ failure. Inflammation can result in
diffuse microangiopathy with thrombosis in the vascular system, a symptom observed in the pulmonary
arteries in the lung pathology of COVID-19 patients. Myocarditis, heart failure, acute coronary
syndrome, and cardiac arrhythmias, also resulting from acute inflammatory responses, lead to rapid
deterioration and death [51]. On the other hand, it is undisputed that patients with comorbidities are
more vulnerable to cardiac complications if they succumb to COVID-19 [54]. Patients with pre-existing
CVD and hypertension are widely representative of poorer prognosis and have a higher risk of dying
due to SARS-CoV-2 infection [51,55]. The ACE2 receptor, which is responsible for SARS-CoV-2 entry
into host cells, is highly expressed in perivascular pericytes and cardiomyocytes. The suggestion
is that direct infection of the cardiac cells may lead to myocardial, endothelial, and microvascular
dysfunction and myocardial infarction [49,51]. However, ACE2 has well-documented cardioprotective
effects, important in the regulation of the renin–angiotensin–aldosterone system (RAAS), influencing
vasculature and blood pressure. Conversely, ACE2 is also upregulated in the failing human heart [49,52].
Therefore, whether the ACE2 receptor can be used to target therapy for COVID-19 patients, especially
patients with underlying heart problems, is debatable [40,49–53,56]. As mentioned, the ACE2 receptor
is also highly expressed on the surface of endothelial cells of COVID-19 patients, and an important
specific pathogenic feature of COVID-19 patients is endotheliitis [6]. Endothelial dysfunction is also
linked to the failing heart circulation and plays a vital role in the development and progression of
CVD and heart failure [57], and needs to be addressed in any severe COVID-19 patient treatment plan.
In COVID-19 treatments, it is important to keep in balance the principal pharmacological interactions
between the drugs used in cardiovascular disease and the treatments and potential vaccines for
COVID-19 patients.

3.5. Vascular Endotheliitis Contribution to Multiorgan Failure in COVID-19 Patients

Disruption of the vascular endothelium by the invasion of SARS-CoV-2 may lie at the core of
multiorgan failure [6,58]. The vascular endothelial lining forms a protective barrier around blood
vessels (arteries and veins), including the lining of the heart chambers and the lymphatic vessels [59].
This layer of endothelial cells is essential in the maintenance of vascular homeostasis, vascular integrity,
and barrier function [59]. Endothelial cells line the surface of the entire circulatory system and contain
the ACE2 receptor, making them directly vulnerable to SARS-CoV-2 virus invasion [6]. Although the
major overt symptom of COVID-19 mortality is pneumonia, linking the SARS-CoV-2 pandemic to a
classic respiratory disease, one of the first critical adverse symptoms observed in many patients was
major blood vessel damage in the lung pathology after death. The invasion of SARS-CoV-2 into the
endothelial cells throughout the vascular endothelium, or COVID-19-endotheliitis, may explain the
systematic impaired microcirculatory function, leading to devastating multiorgan failure [60]. Around
20–30% of severe COVID-19 patients develop a “storm” of blood clots throughout their bodies [10].
The integrity of the vascular endothelial lining helps to prevent blood clot formation. The development
of the COVID-19-related thromboembolic phenomenon (the higher frequency of small and large
blood clots) in severely ill COVID-19 patients may, in part, be due to damage of the endothelial
cells by SARS-CoV-2 infectivity, releasing proteins that trigger unusual clot formation into the blood
vessels [10]. Damaged blood vessels are more susceptible to other opportunistic infections, potentially
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causing septicaemia (blood poisoning), which can also lead to multiorgan failure. Maintaining vascular
endothelium integrity is key in controlling the immune response, and this links with the critical role of
SphK-S1P-S1PR in the control of endothelium integrity, which will be explored in a later section.

3.6. Neurological Disease and COVID-19

Coronaviruses are historically found to be neurotropic [61]. The majority of COVID-19 patients
experience mild neurological symptoms such as headaches and loss of smell, neurological symptoms
that suggest the coronavirus is affecting the brain [62]. More serious neurological symptoms experienced
by COVID-19 patients range from encephalitis, encephalopathies, acute disseminated encephalomyelitis
and myelitis, cerebrovascular disease and seizures, ischaemic strokes, intracerebral haemorrhages,
and altered mental health status [63]. Recently, there is an unusual increase in cerebral venous
thrombosis in both young and old COVID-19 patients whereby thrombotic occlusions cause a high risk
of acute ischaemic strokes [64–66].

The cerebrovascular endothelium is critical in maintaining blood vessel integrity and
cerebrovascular homeostasis. As mentioned, disruption of the vascular endothelial barrier and
ensuing hyperinflammation are key features of COVID-19. Inflammation and loss of endothelial
integrity contribute to brain oedema and poststroke neuronal injury. Earlier evidence supports
SARS-CoV direct invasion of the central nervous system (CNS), as reported in the brains of patients
and in animal models, and spread of the virus through the synapse-connected route to the medullary
cardiorespiratory centre [62]. The ACE2 receptor, required for SARS-CoV-2 cell entry, is present
in brain vascular endothelium, and could facilitate direct viral entry into the host brain cells [63].
There are also a number of potential routes of SARS-CoV-2 entry into the brain that may cause direct
damage including through the unprotected olfactory bulb, carriage across the blood–brain barrier
(BBB) following viraemia, or by infected leukocytes. Alternatively, brain damage may be a result of
hyperinflammation due to the body’s immune response (innate and adaptive) [63]. Recently, a probable
case of Parkinson’s disease after SARS-CoV-2 infection has been reported with the suggestion of a
causal association between SARS-CoV-2 infection and Parkinson’s disease [67]. Hence, monitoring
of all COVID-19 patients for stroke [66,68] and potentially Parkinson’s, as well as early intervention,
is recommended [67], especially with the strong possibility that “silent” brain damage caused by
SARS-CoV-2 may be a price we pay later, and perhaps many years later.

3.7. Rare Inflammatory Diseases Associated with COVID-19

The current viewpoint is COVID-19 is mainly asymptomatic or shows mild symptoms with a
better prognosis in most children [69,70]. Two rare inflammatory diseases, Kawasaki disease and
a new inflammatory disease, named “paediatric inflammatory multisystem syndrome temporally
associated with SARS-CoV-2” (PIMS-TS), are both causally linked to COVID-19. Without any clear
scientific evidence, the prevalence of both of these rare diseases has increased following infection by
SARS-CoVs [71–74]. Kawasaki disease causes the blood vessels to become inflamed due to over-reaction
of the immune system, with symptoms including fever, rash, bloodshot eyes, and joint pain [75].
Although symptoms for PIMS-TS are similar to Kawasaki, patients present with signs of toxic shock
syndrome with severe abdominal pain, persistent fever, oxygen deprivation, rash, and conjunctivitis,
with some children developing inflammation of the heart [71,72]. COVID-19 is speculatively emerging
as a possible contributor to PIMS-TS symptoms in children [71].

3.8. The Cytokine Storm (Hyperinflammation, Morbidity and Mortality)

Inflammation, in general, is a beneficial and highly regulated reaction to any hazardous insult
to the body, such as in response to a pathogen to eliminate any impending threat and injury,
and to repair any damage to restore and maintain homeostasis [76,77]. With acute viral overload,
the immune response goes into overdrive, resulting in hyperinflammation, producing excessive
cytokines. The “cytokine storm syndrome” is an important, consistent, and central theme in
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COVID-19 literature [13,78,79]. Understanding the mechanisms underlying the COVID-19-specific
cytokine storm and targeting and quelling the hyperinflammatory response is necessary for the
prevention of severe morbidity and death in the current COVID-19 pandemic, and also in any
future viral outbreaks. This hyperinflammatory “out of control” immune response is common in
many types of infectious—viral, bacterial, and non-infectious—diseases, cancer, and any flares in
immunoinflammatory diseases, and is not COVID-19 specific [80]. Although there are many similarities,
there are, however, subtle differences in COVID-19 infections that need to be taken into consideration.
Without an understanding of the full complexity of COVID-19 disease, alleviating the symptoms of
the cytokine storm with current drugs may not be sufficient, and may, in some cases, be detrimental.
As previously briefly mentioned, there are specific vasculature pathobiological features that distinguish
COVID-19 from other equally severe respiratory diseases, such as influenza viral infections [46].
These are mainly associated with atypical changes in endothelial morphology and functionality [6,46].
Therefore, maintaining a balance between a beneficial immune response to enable viral elimination
and a hyperinflammatory response, which in most cases is detrimental, may be a matter of timing in
therapy regimes. We will later discuss how SphK/S1P plays a vital role in endothelial homeostasis and
the regulation of inflammation in pathogenicity, and how we can potentially target specific components
of this pathway in adjunct viral treatments.

4. Current Strategies for the Prevention and Treatment of COVID-19

4.1. COVID-19—Vaccine Development Targets

No vaccine or specific antiviral therapy for human-infecting coronaviruses have been approved
to date. Herd COVID-19 prevention by vaccination is on the horizon but with months (and possibly
years) to go before any approval [81,82]. The average time required to develop a vaccine is 2–5 years.
Once a vaccine becomes available, it needs to undergo extensive preclinical trials with testing in cell
culture and animals, from phases I to IV human clinical trials to the safety of use and efficacy, and then
approval for use by the appropriate regulatory bodies, followed by mass production and ensuring
global access [83]. Vaccines need to be safe for human use and accessible to all countries for world
immunity to control the pandemic.

COVID-19 vaccine development includes: (i) inactivated or live attenuated virus, (ii) subunit
vaccines, which use part of the virus to mount an immune response, (iii) genetic vaccines (delivering
messenger RNA to cells to counteract the virus RNA), (iv) viral vector vaccines engineered to produce
part of the viral protein to mount an immune response, and (v) targeting the viral reproductive
machinery [84,85].

Vaccine targets include antibodies to prevent SARS-CoV-2 host cell entry [38]. The coreceptors
ACE2 and TMPRSS2 are prime neutralising antibody targets for blocking SARS-CoV-2 entry into host
cells to stem host infectivity [22,38]. Although these target receptors sound promising, we do not
fully understand the efficacy and adverse side effects of blocking these receptors, especially on the
heart where they mediate important functions in the regulation of RAAS [38,49,52,86], and the fact
ACE2 receptors are found on the endothelial cells lining the vascular circulatory system. Molecularly
targeted therapies in the pipeline will still need extensive testing before clinical use.

4.2. Current COVID-19 Vaccine Clinical Trials

The ongoing marathon to develop the ideal COVID-19 vaccine is one of the world’s biggest
challenges to date and is constantly evolving by the day. There are hundreds of vaccines currently
being developed worldwide and a few promising trials are briefly described. When starting this
review, scientists at the Jenner Institute, Oxford University, ChAdOx1 nCoV-19, had just developed
a genetically altered adenovirus which causes a common cold in chimpanzees that cannot grow in
humans; now, it is undergoing the final stages of stage III clinical trials (ClinicalTrials.gov Identifier
NCT04324606). The ChAdOx1 nCoV-19 vaccine expresses a spiked glycoprotein, which is the protein
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enabling the SARS-CoV-2 to enter human cells via the ACE2 receptor. Hopefully, by recognising
this spiked protein on the ChAdOx1 nCoV-19 vaccine, the body will develop an immune response
and help to prevent viral entry into human host cells. However, clinical trials have been questioned
due to an adverse reaction to the ChAdOx1 nCoV-19 vaccine (AstraZeneca). Recent developments
also include “molecular clamp” technology, which clamps the viral glycoprotein spike in shape for
immune recognition and neutralisation, and clinical trials of this technology commenced in Australia
on 13 July 2020 [87]. Another promising COVID-19 clinical trial (BRACE, identifier NCT04327206),
spearheaded by the Australian Murdoch Children’ Research Institute (MCRI) Melbourne, is using
the bacille Calmette–Guerin (BCG) vaccine. BCG is a vaccine against tuberculosis, not a specific
COVID-19 vaccine, and aims to boost the host’s innate immune system to reduce the prevalence
and severity of SARS-CoV-2 infectivity. The antiviral drug, remdesivir, a nucleotide analogue that
inhibits viral RNA polymerases [88], has been shown to reduce COVID-19 symptoms and is currently
in limited clinical use. An interim analysis of the Adaptive COVID-19 Treatment Trial (ACTT) found
remdesivir aids recovery 31% faster than a placebo, with approximately 3.6% benefit in survival [85,89];
however, there are concerns with liver damage in some patients [90]. Other promising vaccines are:
mRNA1273 (Moderna therapeutics; Clinical trial identifier, NCT04283461); BNT162b2 (Pfizer; Clinical
trial identifier, NCT04380701); CoronaVac (Sinovac; Clinical trial identifier, NCT04383574); Ad5-nCoV
(CanSino Biologics; Clinical trial identifier, NCT04313127); Sputnik V/Gam-COVID-Vac (The Gamaleya
National Center of Epidemiology and Microbiology: Clinical trial identifier, NCT04436471). It is
envisaged that an antiviral vaccine alone will not beat this disease and combinational therapy will still
be required for control and prevention.

4.3. COVID-19 Vaccine Limitations

Limitations in the development of a COVID-19 vaccine include the number of COVID-19 trial
vaccine recipients who prove to be resistant to SARS-CoV-2 infection and monitoring of the adverse
vaccine side effects. Even in the event of a successful vaccine, it is highly likely a vaccine would be
required every year and would have to be revisited due to the prevalence of viral mutations. A vaccine
would most likely kerb SARS-CoV-2 spread, meaning there will still be a need to find a drug that will
reduce the severity of the COVID-19 symptoms. Given the virulent nature of SARS-CoV-2 and the
urgency of curbing the pandemic, fast-track repurposing of known drugs is an attractive proposition
to stem the pandemic and circumvent any complications associated with the development of new
vaccines and anti-SARS-CoV-2 drugs [91].

4.4. Current COVID-19 Treatment

In 1918, the flu pandemic was controlled by distancing, strict hygiene, quarantine, surveillance of
communities, and notification of suspected cases [92]. Over 100 years later, in the absence of a vaccine,
sadly, current prevention of SARS-CoV-2 infections has not changed; rather, these methods have been
advanced by the technology of contact tracing. Early detection and quarantine of suspected and
confirmed COVID-19 patients, early diagnosis, and supportive treatment, including oxygen therapy
and antibacterial drugs to prevent pneumonia, are the most effective measures available. Current
treatments include the management of symptoms alongside repurposing of such nonspecific antiviral
agents, corticosteroids, herbal drugs, and the controversial antimalarial drugs [93]. Most COVID-19
patients will recover from the disease with standard care; however, immunocompromised patients,
elderly patients with comorbidities, and vulnerable children (with undefined predisposition), are more
likely to develop a hyperinflammatory response and need intubation and protective mechanical
ventilator support to alleviate symptoms [40,49–53,56]. Severely affected COVID-19 patients are more
likely to die from acute respiratory failure (ARDS), including pulmonary oedema or cardiovascular
problems, causing acute myocarditis and inflammation of the heart muscle. The chronic and more
long-term effects of COVID-19 are unknown making treatment difficult to manage.
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COVID-19 Treatment—Targeting Vasculature Failure

As recently highlighted, vasculature failure may be one of the major underlying causes of
COVID-19 mortality [6,46]. Approximately 40% of COVID-19-related deaths are due to cardiovascular
complications, supporting that COVID-19 is looking more like a vascular infection in preference to a
purely respiratory problem. Multiorgan inflammation, including the lungs, ear, kidneys, liver, bowel,
and multiple severe blood clots, suggested impeded blood flow and the proposition that COVID-19 was
also a vasculature sickness. Therefore, the theory is that conventional antiviral therapies are insufficient
and potentially a drug that stabilises the vascular endothelium may be a more effective antiviral therapy
for COVID-19 patients. The concept of using antistatins to reduce cardiovascular complications,
thrombotic events, and inflammation as a protection and to mitigate endothelial dysfunction due
to SARS-CoV-2 infection is currently being considered [94]. However, treatments with statins for
COVID-19 patients come with some controversy, one being that statins are known to upregulate the
ACE2 receptor (the receptor for SARS-CoV-2), therefore the jury is still out [94–96].

Although anti-inflammatory agents would not routinely be recommended for SARS-CoV-2 patients,
the timely intervention of nonspecific anti-inflammatory and immunosuppressive drugs, alongside
antiviral drugs, oxygen therapy, intubation, and protective mechanical ventilator support, has been
proposed to alleviate symptoms for severely affected COVID-19 patients to reduce mortality [15,97].
Curbing hyperinflammation is especially relevant for COVID-19 patients with pulmonary oedema and
hyaline membrane formation to prevent ARDS development and ongoing chronic problems.

5. Targeting SphK/S1P/S1PR in Viral Infection and Alleviation of COVID-19 Symptoms

A proven vaccine or treatment to suppress the severity of COVID-19 disease and reduce morbidity
and mortality is not available (as discussed in Section 4 above). This multifaceted complex disease
needs a systemic and systematic approach to block viral replication and alleviate the acute and
chronic symptoms of COVID-19 disease (as overviewed in Section 3). Sphingolipid signalling plays
integral roles in viral replication, activation of the immune response, and importantly, in maintaining
vasculature integrity. Modulation of sphingolipid signalling has demonstrated many beneficial effects,
including limiting inflammation, selective vascular barrier protection, regulating blood coagulation,
cardioprotection, and neuroprotection to name a few of the COVID-19 symptoms. Hence, selective
targeting of SphK-S1P-SIPRs to alleviate the acute and chronic effects of SARS-CoV-2 infection,
as anti-COVID-19 adjunct therapies is worth considering. The complexity of SphK-S1P signalling and
the seemingly opposing actions of SphK and S1P intra- and extracellular signalling on viral infection
outcomes are discussed in more detail in this section. FDA-approved sphingolipid-based drugs are
already available for immune-based diseases, and repurposing of these drugs to treat COVID-19
disease is on the cards with three FDA-approved sphingolipid-based drugs currently in clinical trials
(reviewed in more detail in Section 6).

5.1. The Sphingosine Kinase Rheostat

Sphingolipids are ubiquitous key components of the lipid membrane and act as signal transduction
molecules inside and outside of the cell [98–100]. Sphingosine is one of the sphingolipids important
in these cellular processes. Sphingosine is produced by the action of ceramidase on ceramide in the
sphingolipid pathway [101]. The phosphorylation of sphingosine to its active form, S1P, is catalysed by
the SphK isozymes (SphK1 and SphK2) and their isoforms [100–103]. In turn, S1P is dephosphorylated
by S1P lyase as part of the sphingolipid (SphK/S1P) rheostat. In its phosphorylated form, S1P acts
as an intra- and extracellular messenger contributing to cellular signalling cascades and pathological
processes referred to as an “outside–inside” S1P signalling, or paracrine/autocrine, mechanism of
action [98,99,104]. The isoenzyme SphK1 has also been found to be released from the cell and contributes
to S1P synthesis in the extracellular environment, as well as internal, autocrine activation [104,105].
Signalling by secreted S1P is mediated mainly through a family of transmembrane G protein-coupled
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receptors (GCPRs), designed as EDG isoforms or S1P receptors (S1PR1-5) [106–108]. However,
both intra- and extracellular S1P action can occur independently of its cognate receptors [98,99].
Different S1PRs are expressed on various cell and tissue types and each of the S1PRs are coupled
to different G-alpha subunits, extending the diversity of intracellular signalling processes in normal
development and pathogenicity (Figure 1) [109–111]. Of the five S1P receptors (S1PR1-5), S1PR1-3 are
expressed predominantly in vascular endothelium, the central nervous system (CNS), and the immune
system, S1PR4 expression predominates in lymphoid tissue, and S1PR5 is found mostly in the CNS,
immune natural killer cells and spleen [112–114].
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Figure 1. Schematic summary of Sphingosine 1 Phosphate (S1P)/S1PR (G-protein-coupled receptor)
agonist and antagonist signalling. There are five S1PR (G-protein-coupled receptors) differentially
expressed depending on cell type. Diversity of intracellular signalling is dependent on the differential
targeting and binding of S1P to the S1P receptors, which results in internalisation of the S1P receptor
and Gi-mediated downstream activation of effector pathways. S1P agonists and antagonists (described
in Table 1) bind to cognate transmembrane S1PRs on the cell and are designed to block or activate S1PR
action. S1P antagonists are depicted with the symbol. Adapted from [102,115].
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The pleiotropic nature of S1P-S1PR paracrine signalling enables a wide range of physiological
functions. Paracrine plasma-S1P in vascular endothelium and the lymphatic system is well characterised
and known to maintain homeostasis and confer protection against vascular barrier dysfunction.

5.2. SphK-S1P-S1PR1 Autocrine and Paracrine Inflammatory Actions

SphK/S1P signalling in innate and adaptive immune responses, both in immune trafficking
and activation, is well-recognised and S1P/S1PRs are important mediators in multiple immune
disorders [116,117]. Depending on the cellular environment, SphK-S1P action can be either pro- or
anti-inflammatory [116,118]. This conundrum was observed in SphK1 and SphK2 knockout mice,
whereby some studies demonstrated reduced colonic and synovial inflammation in TNF-induced
arthritis [119] and others reported normal acute and chronic inflammatory responses [120]. Autocrine
action of SphKs is believed to play a critical role in the regulation of S1P inflammatory innate
and adaptive immune responses in inflammatory diseases, and in response to pathogens. There is
some evidence in the literature that intracellular SphK1 might be considered proinflammatory and
SphK2 considered anti-inflammatory based on SphK1- and SphK-null mice studies [121]. However,
as demonstrated in SphK1-null and SphK2-null mice, there is some redundancy in function, obscuring
the distinct functions of the two SphK isozymes [122]. The subcellular localisation of the individual
SphK isozymes, as well as the locations of the S1PRs, which vary with tissue type, influence S1P activity,
and the distinct, individual, and common, roles they play in viral pathogenesis, and inflammation
in particular.

5.3. Autocrine SphK-S1P Response in Systemic Inflammation and the Immune Response

The immune response is the body’s main protection against viruses; however, with SARS-CoV-2
infection, there appears to be a critical point where the immune response alters from a protective response
to a destructive hyperinflammatory response [123]. Therefore, understanding the immunopathogenesis
of COVID-19 and blocking hyperinflammation (cytokine storm) is critical for effective therapies.

Cytokine responses are vital to evoke a host defence against pathogens [124]. The first line
of defence, the innate immune response, needs to be able to detect and block pathogen infectivity.
Individuals with an effective innate immune response recover faster when infected with a novel
virus. Inflammatory cytokines such as interferons (IFNs) and tumour necrosis factor alpha (TNFα)
have evolved to mediate viral tropism in both a positive and negative manner at different levels
of infection [124]. In 1998, Xia and colleagues demonstrated that the pleiotropic cytokine TNFα
induces intracellular SphK1 and activation of S1P to mediate endothelial cell activation, and adhesion
molecule expression, thereby providing a mechanism for endothelial cell activation during systemic
inflammation and the immune response [125]. Intracellular activation of SphK1 also associates with
the TNF-receptor-associated factor 2 (TRAF2) and generates S1P locally, within the cell, mediating
TNFα-stimulated nuclear factor kappa B (NFkB), promoting cell survival and proinflammatory
mediators [126,127]. SphK1 activation is also important for lipopolysaccharide (LPS)-induced IL6
production and is implicated in exacerbation of inflammatory responses [128]. Intracellular generation
of S1P in the cytoplasmic has also been shown to function as an epigenetic coregulator in LPS-induced
lung inflammation [129].

Thus SphK1-S1P has two seemingly opposing modes of action (the yin and yang of SphK1 action).
In response to infection, SphK1 activation and the export of S1P have a positive effect in protecting
vascular endothelial barrier function (paracrine effect), whilst intracellular SphK1-S1P signalling
stimulates proinflammatory cytokine release (autocrine effect) in the fight against infection. Excess
cytokine release, contributed by SphK/S1P signalling, has the potential to contribute to detrimental
hyperinflammatory responses or the cytokine storm.

Similarly to SphK1, SphK2 has the same capacity to phosphorylate sphingosine to S1P, therefore
teasing out and interpreting the distinct downstream functions of the two isozymes has been, and still
is, difficult. Differing subcellular localisations within the cells and different kinetic properties provide
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distinct, as well as compensatory and redundant, signalling events [102,103]. SphK2, known to be
located in the nucleus, endoplasmic reticulum, and mitochondria, is mainly associated with intracellular
S1P activation, whereas SphK1, located mainly in the cytoplasm, is associated with S1P “outside–inside”
events. SphK2 has been linked to both pro- and anti-inflammatory responses. From observations in
SphK2-deficient mice (SphK2-/-), SphK2 was believed to be a negative regulator of inflammation [121].
However, in the SphK2-/- mouse, the elevation of SphK1-S1P expression compensated for the lack of
SphK2, thus blurring the true effect of SphK2 activation [121]. Evidence for the proinflammatory effects
of SphK2 includes SphK2-S1P regulation of histone acetylation (HDAC-1/2) and the transcription of
proinflammatory genes in the nucleus, thus promoting the inflammatory response [130,131].

Alternatively, SphK2 has been shown to have an anti-inflammatory response in human
macrophages, which are the main regulators of inflammation [132]. In the experiments conducted
by Weigert et al., overexpression of SphK2 suppressed NF-κB transcriptional activity and cytokine
release [132]. Early degradation of SphK2 was shown to elicit macrophage activation, and late
upregulation of SphK2 may be involved in terminating inflammatory cytokine production; however,
it is important to note that these actions were shown to be independent of S1P activity, as demonstrated
by using a SphK2 kinase-dead mutant [132]. Thus, modulation of S1P activity, either through SphK1 or
SphK2 or the specific S1P lyase, would be a novel therapeutic approach in inflammatory control.

The use of specific inhibitors or inhibitors that preferentially target SphK1 and/or SphK2,
are currently in use, as are developments to help delineate the functions of each SphK isozyme
(Table 2) [133]. In addition, inhibitors of S1P and/or S1PR1-5, are also being evaluated (Figure 1 and
Table 1) and developed for clinical application in multiple complex diseases including autoimmune
diseases, chronic inflammatory diseases, diabetes, and multiple organ failure [102,110,134].

Table 1. Comparative selectivity of the S1P modulators.

S1P Modulator S1PR Selectivity References
Agonists

# FTY720
*# Fingolimod and phosphorylated fingolimod
(Trade name: Gilenya)

S1P1 > S1P5 > S1P4 > S1P3 [127,135–139]

S1P-specific antibody Depletion of S1P [112]
*# CS-0777 S1P1 > S1P5 > S1P3 [140]
* Ponesimod (ACT-128800) S1P1 > S1P5 > S1P3 [141]
*# Ozanimod (RPC1063) S1P1 > S1P5 [141]
* Ceralifimod (ONO-4641) S1P1>S1P5>S1P4 [142,143]
* Siponimod (BAF312) S1P1 > S1P5 > S1P4 [144]
* GSK2018682 S1P1 > S1P5 [141]
SEW2871 S1P1 [145–147]
AUY954 S1P1 [148,149]
* Amiselimod (MT-1303) S1P1, S1P4, S1P5 [141]
* Etrasimod (APD334) S1P1, S1P4, S1P5 [150]
* ASP4058 S1P1, S1P5 [151,152]
* Mocravimod (KRP-203) S1P1>S1P4 [153,154]
AAL(R) and phosphorylated AAL(R)
(FTY720 analogue) S1PR1, S1PR3, S1PR4 S1PR5 [155–157]

CYM-5442 S1P1 [158,159]
VPC23153 S1P4 [160,161]
W-061 S1P1 > S1P5 > S1P4 > S1P3 [142,162]
* Cenerimod S1P1 [163]
# CYM-5478 S1P2 [164]
SB649146 S1P1 [165–167]
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Table 1. Cont.

S1P Modulator S1PR Selectivity References
Antagonists
VPC44116
VPC23019
VPC25239

S1P1 and/or S1P3
[112]
[168]

TASP0277308 S1P1 [169]
** Sonepcizumab (Mab) S1P1 [170]
W146 S1P1 [171,172]
JTE-013 S1P2 [173,174]
NIBR-0213 S1P1 [171]

Note: Adapted from [102]. More in-depth reviews [112,134,175–177]. * Currently in clinical trials, refer to [178] for
more details. # agonists known to act as functional antagonists. ** Sonepcizumab—monoclonal antibody (Mab)
binds to S1P and prevents S1P/S1PR interaction.

Table 2. Sphingosine kinase (SphK) inhibitors.

SphK Inhibitor SphK Selectivity References
SKi (2-(p-hydroxyanilino)-
4-(p-chlorophenyl)thiazole) or SK1-II SphK1 and SphK2 [112,179,180]

Safingol SphK1 and SphK2 [181]
L-threo-dihydrosphingosine (DHS) SphK1 and SphK2 [182]
N,N-dimethyl-D-erythro-sphingosine (DMS) SphK1 and SphK2 [112]
B-5354c, F-12509A (Natural products) SphK1 and SphK2 [112]
ABC294735 SphK1 and SphK2 [179]
Amgen 82 SphK1 and SphK2 [183]
Amidine-based range of sphingosine analogues SphK1 and SphK2 [112]
MP-A08 SphK1 and SphK2 [141]
ST-1083 SphK1 and SphK2 [184]
S-15183a and S-15183b (Natural product) Not specified [112]
SKI-V Noncompetitive? [185]
PF-543
((R)-(1-(4-((3-methyl-5-(phenylsulfonylmethyl)phenoxy)
methyl)benzyl)pyrrolidin-2-yl)methanol), SK1-5c
(CAY10621), SK1-178, VPC96091 (36a), CB5468139

SphK1 [186]
[180,187]

SKI-I SphK1 [188–190]
LCL351 SphK1 [191]
Compound inhibitors 51 and 54 SphK1 [141,192]
Balanocarpol SphK1 [193]
VPC94075 SphK1 [157]
1-deoxysphinganines 55-21 and 77-7
(induces proteasomal degradation -SK1) SphK1 [194]

RB-005 SphK1 [195]
(S)-FTY720 vinylphosphonate SphK1 [196]
Genzyme SphK1 [183,197]
Peretinoin (NIK333) SphK1 [198,199]
ABC294640 SphK2 [112,200]
SG-12 and SG14 (sphingosine analogue) SphK2 [201]
SLC5111312 and SLM6041434 SphK2 [202]
F02 thiourea adduct of sphinganine SphK2 [194]
VT-ME6 SphK2 [203]
(2S,3S,4R)-Pachastrissamine SphK2 [204]
Trans-12a and Trans-12b SphK2 [203]
SLR080811, SLP120701 SphK2 [180]
K145 SphK2 [180]

Adapted from [205].
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5.4. The S1P/S1PR Paracrine “Outside–Inside” Response

Here, we refer to the “outside–inside” response specifically related to extracellular S1P binding to
transmembrane proteins, the S1PRs or G-protein-coupled receptors, on the outer cell surface, acting as
an intracellular second messenger, to activate a wave of intracellular signalling events, (Figure 1) [178].

In response to external stimuli, including proinflammatory cytokines, SphK1 translocates to the
plasma membrane, close to the sites of sphingosine production and localisation, resulting in a transitory
elevation of S1P expression. S1P is then exported by specific transporters into the extracellular
environment as an extracellular first messenger [18,206,207]. S1P can, in turn, activate cognate
receptors (S1PR1-5) on neighbouring cells and self, acting in a paracrine manner [18]. S1P binding
to S1P receptors differentially regulates the innate immune response, as reviewed extensively by
Bryan et al. [117]. Plasma S1P is carried in the bloodstream by albumin or the high-density lipoprotein
(HDL)-apolipoprotein M (ApoM) [208,209]. There is evidential support for albumin-bound-S1P to
exert different physiological responses compared to S1P bound to HDL-ApoM, whereby high levels of
HDL-ApoM-S1P have a protective role in vascular and endothelial function [208,209].

ApoM carries S1P preferentially to S1PR1,3 and induces S1PR internalisation and Gi downstream
activation of effector pathways [208,209] (Figure 1). Many of the intracellular second messenger
signalling pathways remain obscure and somewhat controversial. The most studied S1P outside–inside
S1P receptor pathway is the S1P/S1PR1 pathway signalling. Extracellular S1P complexes with S1PR1

forming complexes with ß-arrestin to regulate intracellular effector pathways, including tyrosine kinase
signalling (extracellular signal-regulated kinase-1/2 [ERK-1/2]), the platelet-derived growth factor
receptor ß (PDGFRß), and the PKB/mammalian target of rapamycin (mTOR pathway) [210]. Thus,
S1P/S1PR1 intracellular signalling is believed to control various biological responses including growth,
differentiation, cell migration and trafficking, and in addition, pathological inflammatory responses.

Development of S1PR agonists and antagonists are of interest to the pharmaceutical industry,
due to their high potential in the treatment of immune-mediated diseases and cancer. Table 1 provides
a comparative list of the S1P modulators, which are currently in use to understand the biology of the
S1PRs as well as their usefulness as therapeutics.

5.5. The Sphingolipid Pathway in Coronavirus Infection and Replication

Enveloped RNA viruses, such as SARS-CoVs are very much dependent on the host’s lipid
biosynthesis, and there are a growing number of examples in which the sphingolipid pathway and
SphK/S1P intracellular signalling has been shown to play an integral role in viral permissiveness and
replication [101,211–215]. Viruses exploit the host cell metabolism in all stages of their life cycle with
the sphingolipid rheostat central in this process [101]. Sphingolipids serve as coreceptors during viral
entry, modulate the virus replication cycle, and influence the antiviral immune response [216]. Cells
overexpressing SphK1 are more susceptible to viral infection with increased virus replication and
produce more virus proteins than the control cells. SphK2 colocalise with viral RNA and blocking
SphK2 significantly impairs viral function [133,183].

Viral infection leads to rearrangement of cellular membranes and manipulation of the lipid
metabolism to support viral entry and virus particle production. Viruses manipulate cellular signalling.
Examples of viral exploitation of SphK/S1P are influenza [217], measles [213], hepatitis B [218], dengue
virus [219], the respiratory syncytial virus (RSV), hepatitis B virus (HBV), and hepatitis C viruses
(HCV) [220].

The influenza virus is a good example of an enveloped virus taking advantage of the host
sphingolipid metabolism in the process of replication and to modulate the host defence system.
Influenza infection increases intracellular SphK1-S1P and SphK-activated signalling pathways such
as (1) NF-kB and ERK and (2) MAPK and PI3K/AKT, which are necessary for viral protein synthesis,
the amplification of progeny virus, and nuclear export and transport of viral ribonucleoprotein
(RNP) complexes to facilitate the production of infectious viral particles, respectively [212,221].
Conversely, blocking SphK or S1P lyase, the enzyme that irreversibly converts S1P back to sphingosine;
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inhibits influenza virus proteins; interferes with the ERK-AKT pathway; blocks the activation of
Ran-binding protein 3 (RanBP3), a cofactor for chromosome region maintenance (CRM1); and inhibits
the CRM1-mediated nuclear viral export of infectious progeny viruses [211,212]. Thus, inhibition
of SphK1 was shown to impair the influenza viral life cycle. Similarly, the measles virus (MV),
an enveloped RNA virus, was also shown to manipulate SphK-S1P signalling by inducing a transient
increase in S1P, activating the metabolic mTORC1 pathway, and heat shock protein 90 (hsp90), which
are vital for efficient MV replication [222]. Virus uptake was not affected by the SphK inhibitor,
SKI-II, and the ceramidase inhibitor, ceranib-2; however, impairment of mTORC1 and HsP90 created a
hostile environment for viral replication [222]. These experiments were conducted in primary human
peripheral blood lymphocytes and human B cells [222]. Inhibitors of intracellular SphK1/S1P may have
a place in adjunct therapy in restricting viral replication and viral load in SARS-CoV-2 in the current
SARS-CoV-2 pandemic.

5.6. The S1P/S1PR1 Response to Inflammatory Lung Viral Infections

Once SARS-CoV-2 enters the chest it can cause inflammation, pneumonia, ARDS, and sepsis
complications with irreparable damage to the lungs. There is no specific treatment; however, in extreme
cases, mechanical ventilation is the only option. Extended use of mechanical ventilation in the treatment
of the more severe COVID-19 respiratory problems is associated with ventilator-induced lung injury
(VILI), characterised by loss of alveolar permeability and the influx of inflammatory cytokines
contributing to excessive lung stress and increased morbidity [223]. In a study by Suryadevara et al.,
using a well-characterised VILI mouse model, S1P lyase inhibition, thus increasing S1P levels,
demonstrated a protective role for SphK1 and S1P against VILI [224]. Hence, patients suffering
from lung damage, from viral hyperinflammation or mechanical injury, may have some therapeutic
benefit by restoring S1P levels, either by increasing production through SphK1 or by preventing the
degradation of S1P.

Previous reports have identified SphK, S1P, and S1P receptors as key modulators of pulmonary
diseases [225,226], with S1P/S1PR signalling linked to pulmonary inflammation caused by viral
infections, such as the influenza virus [217,227,228]. The mortality of patients with the H5N1 strain
of influenza was associated with high pharyngeal virus loads and hypercytokinemia [229]. Within
the lung, S1PR1 is expressed on the endothelial cells and lymphocytes [230]. In infectious diseases,
S1PR1 influences recruitment and the trafficking of innate immune cells, macrophage polarisation,
and plasmacytoid dendritic cell functions [117]. Extracellular S1P binding to S1PR1 also plays a dual
role in inflammation by the activation of intracellular inflammatory signalling pathways during viral
infections. During influenza (H1N1) infection, S1PR1 agonists protected mice, and ferrets against acute
immunopathologic damage in influenza infections [217,227,228]. Using an endothelial cell-specific
inducible S1PR1 knockout mouse line (S1PR1-ECKO), S1PR1 gene ablation resulted in an increased
inflammatory reaction with the aggravation of lung injury, massive exudation, and highly oedematous,
with vascular haemorrhaging and a significant increase in inflammatory cell infiltration, in response
to H1N1 influenza virus challenge [217]. Heightened levels of responsive cytokines/chemokines in
S1PR1-ECKO were also observed, indicating an aberrant pulmonary immune response. In the study by
Teijaro et al., S1P/S1PR1 was shown to mediate two signalling pathways involved in inflammatory
reactions, MAPK and NFkB, in H1N1-infected mice [230]. Teijaro et al. demonstrated that S1PR1

agonists suppress cytokines and innate immune cell recruitment, thus inhibiting early proinflammatory
cytokine expression and innate immune cell build-up, which blunts the cytokine storm [230]. Activation
of S1PR1 using a S1PR1 agonist, CYM-5442, was protective against viral challenge in control mice,
but not in the S1PR1-ECKO mice, highlighting the importance of S1PR1 signalling in the control of
viral infection. Thus, selectively targeting S1P1 receptors, as central orchestrators of cytokine storm
suppression, may prove to be promising in alleviating the severity of diseases where amplification
of the cytokine storm is a significant pathological manifestation [230], such as demonstrated in acute
and chronic COVID-19 patients. As such, S1P analogues have been successful in reducing lung tissue
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inflammation and injury in response to viral diseases in preclinical mouse models [231]. Conversely,
as briefly mentioned in Section 5.3, intracellular SphK-S1P signalling has been demonstrated to
regulate LPS-induced inflammation in lung endothelium, whereby LPSs have been very effective in
the activation of signals to induce an antiviral response [129].

5.7. SphK/S1P/S1PRs in Maintaining Vascular Integrity

Catastrophic vascular endothelial failure is a distinctive feature emerging from severe SARS-CoV-2
infection, as described in the postmortems of COVID-19 patients [6,232]. Loss of vascular endothelial
integrity underlies the major severe COVID-19 symptoms of hyperinflammation, oedema, and tissue
ischaemia. The S1P-S1PR signalling pathway is crucial in maintaining vascular endothelial integrity.
Abnormalities in this signalling network lead to devastating consequences, morbidity, and death.
Most of our understanding of the roles of S1P signalling in the vasculature is derived from in vivo
mouse models and in vitro primary human umbilical vein endothelial cells (HUVEC) [17,233–236].
Mice deficient in SphK1 and SphK2 die prematurely from haemorrhages, resulting from a dysfunction in
vascular development [122]. SphKs play vital roles in vascular function both by enabling and secreting
the active form of sphingosine (S1P) essential in vascular formation (angiogenesis and vasculogenesis),
blood pressure homeostasis, barrier protection and integrity, and vascular tone (mainly through
SIPRs1-3) [110,237,238]. S1P is also important in the migration and differentiation of endothelial cells
lining the inside wall of the blood vessels. Pathophysiology of the endothelial cells plays a vital role in
lung disorders, cardiovascular diseases, and heart failures, such as impaired coronary development
and systemic perfusion, and has a major impact on morbidity and death [57].

Red blood cells, platelets, fibroblasts, and vascular endothelium are rich sources of plasma-S1P,
whereby S1P acts as a pleiotropic lipid mediator critical for the regulation of vascular and immune
cells through activation of its cognate receptors (SIPR1-3) [239]. In addition, lymphatic endothelial cells
are the main source of lymph secreted S1P [240].

In blood and lymph vessels, S1P concentrations are naturally high, and conversely, S1P expression
is low in cells and tissues due to the higher activity of S1P dephosphorylation enzymes (endoplasmic
reticulum-resident S1P lyase) inside the cells [240]. High blood S1P levels are essential for S1P functions,
including blood vessel integrity, and recruitment of inflammatory cells [115]. In addition, S1P signalling
has a central role in the regulation of lymphocyte trafficking whereby the S1P gradient needs to be
maintained between the systemic circulation and tissues for egress of newly formed T cells from the
thymus, and movement of mature T and B cells from secondary lymphoid organs [241,242].

Plasma-S1P levels are tightly regulated, having a rapid turnover of approximately 15 min. S1P
is constitutively produced by SphK1 and SphK2 (sphingosine to S1P) and degraded by S1P lyase,
specific phosphatases (SPP1 and 2), and lysophospholipid phosphatase 2 (LL3) [17,243]. SphK1 and
SphK2 both contribute to S1P extracellular egress to maintain plasma-S1P levels [244]. Deletion
of either SphK isozyme, in vivo and in vitro, demonstrate complementary, compensatory, as well
as distinct functions in maintaining plasma-S1P levels and vascular endothelial integrity [233].
The continuous supply of S1P from the endothelial cells contributes significantly to vascular integrity
and homeostasis, through stabilisation of endothelial adherens junctions and prevention of microvessel
leakage [17,243]. As previously mentioned, (HDL)-apolipoprotein M (ApoM) and (Albumin-S1P) have
different functional properties [208,209]. Christoffersen et al. demonstrated circulating plasma-SIP
bound to HDL-Apo M (ApoM) is important for basal endothelial function and vascular protection [209].
S1P-signalling was found to be more stable when bound to HDL-ApoM compared to albumin-S1P.
In the absence of HDL-ApoM-S1P, in ApoM-null mice, the endothelial cell barrier function was
impaired, even in the presence of albumin-S1P [208]. Albumin-S1P, as opposed to HDL-ApoM-S1P,
exhibits differential effects on the trafficking and stabilisation of S1PR1 signalling [208]. This highlights
a significant role for HDL-ApoM-S1P in maintaining vascular homeostasis. During inflammation,
activation of SphK1-dependent S1P, or inflammation-induced cell death releasing active SphK2 into
the extracellular space, helps to maintain extravascular S1P levels and vascular integrity [245].



Int. J. Mol. Sci. 2020, 21, 7189 17 of 36

In addition, secreted S1P can be protective against chronic inflammation, as demonstrated in
animal models whereby during acute and chronic inflammation plasma-S1P limits disruption of the
vascular endothelial layer and reduces oedema [246]. Endothelial defects can be rectified in some cases
by increases in plasma HDL-ApoM-S1P binding to S1PR1 to induce adherens junctions and vascular
integrity, thereby protecting the vascular barriers. HDL-ApoM-S1P also suppresses proinflammatory
cytokine signalling and angiogenic signals, such as VEGF growth signalling, to maintain vascular
integrity [115]. Thus, maintaining plasma-HDL-ApoM-S1P levels may be beneficial in suppressing
inflammation, sepsis, and other pathological conditions [115].

Differential Roles of S1P1-3 Receptors in Vascular Function and Regulation

Of all the S1P receptors, only S1PR1-3 are expressed in the vascular endothelial cells, S1PR1 being the
most abundant [247]. S1PR1 is the most well-studied S1P receptor as it is ubiquitously expressed in innate
immunity, mediating functions in most innate immune cells [117]. The removal of S1PR1 (Edg1) in mouse
models is embryonic-lethal and has some compensatory functions for S1PR2-3 [234,248]. S1PR1 blocks the
formation of new blood vessels (a negative regulator of angiogenesis), regulates cellular adhesion and
motility (strengthens the adherens junctions), and restricts sprouting angiogenesis through regulation
of the vascular endothelial growth factor 2 (VEGFR2) signalling and internalisation [235]. The deletion
of S1PR1 (S1PR1 null mice) results in disorganisation of the aorta and endothelial hyperplasia, vascular
leakage, exaggerated and ectopic endothelial sprouting and embryonic lethality [235,247]. Activation
of S1PR1 prompts the release and circulation of new blood platelets to prevent blood loss during
injury, and mice lacking S1PR1 develop severe blood clotting (thrombocytopenia) [236]. S1PR2 and
S1PR3 expressed in the vascular endothelial, albeit in lower amounts compared to S1PR1, have some
redundant and compensatory functions, as well as independent functions in endothelial development
via the Gi signalling pathway (Figure 1) [114]. One recognised role of S1PR2 is to oppose the activity of
S1PR1. S1PR2 has been shown to repel rather than attract cells in response to S1PR1 [249]. The deletion
of all three S1P receptors in S1PR1-3 null mice demonstrate a more severe vascular phenotype than
S1PR1 null. Individual S1PR2-null, or S1PR3-null, demonstrate no overt adverse phenotype; however,
double-null S1PR2 and S1PR3 show partial embryonic lethality and vascular development [114].

Further studies characterising the three S1P receptors (S1PR1-3) functions demonstrate differential
roles for the receptors in homeostasis and disease. As reported by Zhao et al., the inhibition of S1P lyase
increased S1P levels in lung tissue and bronchoalveolar lavage fluids, resulted in reduced lung injury,
by stemming alveolar flooding, and inflammation, providing some endothelial barrier protection [250].
Therefore, injection of the S1P lyase inhibitor to maintain S1P levels in the blood has been suggested as
a potential therapy to maintain vascular endothelial barrier function. However, the full story proves
to be not so simple. This barrier-protective effect was only demonstrated by S1P binding to S1PR1,
not S1PR2 or S1PR3 [17]. When S1PR2 and S1PR3 were activated by S1P, disruption was observed in the
alveolar and vascular barriers, with increased permeability, and conversely, blocking these receptors
was found to be beneficial [251,252]. S1P receptor agonists and antagonists have been developed to
block one or more of the S1PR receptors (Figure 1).

5.8. SphK/S1P/S1PR1 Role in Thrombosis

One of the unusual and life-threatening side effects in COVID-19 patients is unusual blood clotting,
believed to occur as a direct action of the virus on the arteries themselves, resulting in uncommon
strokes in younger patients, pulmonary embolisms, immune complications, and multiorgan failure [10].
The commonly used blood thinners for the dissemination of blood clots are not reliable and young
and old patients are dying [10]. As early as 1957, sphingosine was shown to be associated with the
prevention of blood clot formation [253]. Blood platelets are the body’s natural defence to prevent
excessive bleeding in the event of blood vessel damage, are involved in vascular wall repair, and are
likely key effector cells in immune and inflammation response to infection [254]. Conversely, blood
platelets are heavily involved in the process of arterial thrombosis [243]. Platelets express large amounts
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of SphK which produce and secrete abundant amounts of S1P when activated [243]. They lack the S1P
lyase enzyme, which degrades S1P; therefore, platelets can store a ready source of S1P in response to
platelet activation [243].

S1P/S1PR1 activation is associated with the haemostasis-related mechanisms of the coagulation
system [255]. One of the many proposed roles of S1P in the blood, through its activation of S1PR1, is a
master regulator of efficient thrombopoiesis, as demonstrated in mice where severe thrombocytopenia
was observed in a mouse model lacking S1PR1, and activation of the S1P/ S1PR1 signalling promoted
the release of new platelets into the bloodstream [236]. Biological effects of S1P release in the vasculature
include the prevention of platelet aggregation, and thrombosis-related vascular diseases [255,256].
Upon vascular injury, thrombus formation and stabilisation require persistent platelet recruitment and
activation. S1P-secretion from human platelets is stimulated by thrombin (thrombin induces SphK
expression to produce S1P), S1P in turn, activates S1PR1 and Gi-dependent activation of Rac-1 signalling,
via cross-talk with endothelial protein C receptor, and one of the beneficial consequences of this later
action is to limit and counteract thrombin-induced endothelial damage [257]. Thus, thrombin both
enhances endothelial generation of S1P and also limits its own action through differential regulation of
S1P/S1PR signalling pathways. The integrity of thrombus formation was shown to be dependent on
SphK2 activation of S1P in a mouse model, where deficiency in SphK2 resulted in defective platelet
aggregation and arterial thrombosis [258].

5.9. SphK/S1P/S1PR and Sepsis

Potentially life-threatening sepsis is a major complication in COVID-19 patients. Sepsis is
characterised by a hyperinflammatory systemic response, reducing the body’s ability to deal with
opportunistic bacterial infection in the bloodstream, and triggering changes that can damage multiple
organ systems. Sepsis-related mortality is linked to endothelial dysfunction and microvascular
thrombosis underlying multiple organ failure. Although we have a limited understanding of the
connection between S1P and sepsis, serum levels of S1P, especially HDL-ApoM-S1P are compromised
in septic patients and are inversely associated with sepsis disease severity [254,259,260]. Sepsis is also
associated with increased S1PR2, whereby S1PR2 positivity is associated with increased severity of
sepsis, and deficiency of S1PR2 in a sepsis mouse model improved bacterial clearance and survival [261].
S1PR2 also modulates endotoxin-induced inflammation in the endothelium [259]. In experimental
sepsis in mice, impaired function of the heart was improved by administration of FTY720, or by
deletion of SphK2, which in both cases resulted in increased serum-S1P levels, and preservation of
cardiac function [260]. S1P is a potent regulator of endothelial integrity; therefore, a reduction in
the levels of S1P may contribute to sepsis-induced organ failure by promoting capillary leakage and
impaired tissue perfusion contributing to opportunistic bacterial invasion and colonisation.

5.10. SphK/S1P/S1PR and Cardioprotection

Long-term or permanent heart damage is one of the extreme symptoms of COVID-19. There is a
broad consensus that S1P signalling plays a critical role in cardioprotection, by maintaining cardiac
cell survival and function [262,263]. Receptors for S1P are present in cardiac vascular endothelial
and smooth muscle cells, as well as cardiac fibroblasts [262,263]. The S1P receptors are involved in
the remodelling, differentiation, and proliferation of cardiac fibroblasts (mainly S1PR3) [262]. S1PR
knockout studies in mice strongly suggest that both S1PR2 and S1PR3 mediate cardioprotection from
ischaemia/reperfusion injury in vivo [262]. Conversely, significant increases in cardiac S1P, SphK1 and
S1PR1 are observed in postmyocardial infarction (MI) associated with the proinflammatory response,
and inhibition of this inflammatory pathway may benefit patients with MI [263].

5.11. SphK/S1P in Neuroinflammation and Neurodegeneration

Thromboembolic events are becoming frequently observed characteristics of COVID-19,
with young people presenting with cerebral venous system thrombosis [64,65]. SphK/S1P regulates
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all the different brain cell populations and is involved in most fundamental cell processes, including
neural development and survival. The role of SphK/S1P in the brain is complex and has been
likened to a “double-edged sword” in the brain [264]. SphK/S1P mediate vital signalling pathways
involved in the infiltration of peripheral immune cells in the CNS during neuroinflammation; however,
the protective immune response can quickly change into chronic neuroinflammation and can lead to
neurodegeneration, impaired cognition, and synaptic losses [265,266]. S1PR1 and S1PR2 are expressed
in the blood vessels of the brain where they mediate distinguishable cellular responses during an
acute ischaemic event. S1PR1 activation protects blood–brain-barrier (BBB) function and attenuates
inflammation whilst most studies suggest that S1PR2 promotes BBB loss of integrity and elicits a
proinflammatory phenotype [267]. Thus, selective S1PR1 ligands, particularly at the cerebrovascular
level, are gaining an appreciation as effective modulators of stroke pathogenesis due to the ability to
preserve BBB integrity and to attenuate the development of vascular inflammation [268]. The recent
probable association between SARS-CoV-2 infection and Parkinson’s disease has triggered the notion
that COVID-19 patients have an increased risk of developing Parkinson’s disease later in life and
possibly other long-term neurological disorders [67]. Recently reported, a positive neuroprotective
effect of S1PR modulators (SEW2871 and FTY720, Table 1) in a preclinical mouse model, demonstrated
reduced neuroinflammation and prevention of Parkinson’s disease symptoms [147], further supporting
ongoing S1P-therapy in the prevention of chronic COVID-19 neurological dysfunction.

6. Repurposing Anti-SphK-S1P-S1PR Compounds in Curtailing COVID-19 Symptoms

6.1. FTY720 in the Prevention of SARS-CoV-2 Infection and Therapy for COVID-19 Patients

The repositioning or repurposing of existing drugs to help reduce COVID-19 symptoms helps to
fast-track therapy. Toxicity studies, safe drug dosage, routes of administration, and adverse outcomes
are currently available for many drugs. Fingolimod (FTY720, Gilenya®, Novartis-2-amino-2-[2-(4-
octylphenyl)ethyl]propane-1,3-(diol)), a first-in-class S1PR immunomodulator, used successfully in
multiple sclerosis, is now in clinical trials as a potential adjuvant therapy for COVID-19 patients
(Clinicaltrials.gov Identifier: NCT04280588). As one of the best-characterised sphingolipid-based
drugs, it is a prime candidate for COVID-19 treatment. Many of the studies supporting the use of
this candidate modulator are based on both in vitro (cell culture) and in vivo (animal, and a vast
accumulation of human clinical data) data. As with most drugs, the outcome is very much dependent
on the dosage and timing of drug administration.

FTY720 is a sphingosine analogue and, like sphingosine, requires SphK for phosphorylation and
activation, and is, therefore, classified as a prodrug. FTY720 acts as a substrate and is transformed into
its active state, FTY720-P, by the action of SphK (SphK1 and SphK2) isozymes, with a much higher
affinity for SphK2 (30-fold more efficient), compared to SphK1 [269]. Activated FTY720 (FTY720-P) acts
paradoxically as both an agonist and antagonist. FTY720 is an unselected agonist for four of the five
G-protein-coupled-S1PRs, namely S1PR1,3,4,5 (Figure 1). However, unlike the naturally produced S1P,
FTY720-P also acts as a selective antagonist for S1PR1 by specifically inducing S1PR1 internalisation
and downregulation [266,270]. In this way, the intracellular S1PR1-mediated signalling pathway is
desensitised (see Section 5.4, The S1P/S1PR Paracrine “Outside–Inside” Response).

One of the potential positive effects of FTY720-P antagonism of S1PR1 in COVID-19 therapy is the
curbing of hyperinflammation or “the cytokine storm”. Lymphocytes normally circulate between the
blood (high levels of S1P) and the lymphoid tissue (low levels of S1P) as regulated through the S1P
gradient whereby S1P binds to S1PR1,3,4,5 receptors on the lymphocytes signalling them to travel to
the lymph [115]. The binding of FTY720-P to the S1PR1 on lymphocytes leads first to activation and
then subsequent S1PR1 downregulation (i.e., by the internalisation and degradation of S1PR1 on the
lymphocytes), thus preventing aggressive infiltration of lymphocytes from the lymphoid tissue into the
blood, bringing about a state of peripheral lymphopenia, and limiting the inflammatory response [115].
Thus, FTY720-P can limit blood vessel damage caused by excessive inflammation.
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S1P/S1PR1-3 is essential for maintaining vascular integrity. Similarly, FTY720, and a selective
S1PR1 agonist, AUY954 (Figure 1, Table 1), have been shown to reduce microvascular permeability as
well as inflammation in animal models [246]. Conversely, two specific S1PR1 antagonists, W146 and
NIBR-0213 (Figure 1 and Table 1), demonstrated loss of capillary integrity in animal models [146,271].

These combined results essentially imply that the agonist effect of the S1P-mimetics may be
useful in suppressing damage to blood vessels and preserving blood vessel barrier integrity, whilst
the antagonist effects of FTY720-P reduce inflammation by reducing aggressive lymphocyte egress.
In contrast to most immunosuppressants, FTY720 sequestration of lymphocytes in the lymphoid tissue
appears not to cause cytotoxicity [178,272].

The S1P1 receptors have been likened to the central orchestrators of cytokine storm suppression in
pathogenesis [230], therefore, a secondary effect of FTY720 is through desensitisation of intracellular S1PR
pathways by acting as a functional antagonist, thus acting to deactivate the potential inflammatory S1PR
intracellular pathways [217,227,228] (also see Section 3.1, The S1P/S1PR Paracrine “Outside–Inside” Response).

The FTY720 prodrug can pass through the blood–brain barrier (BBB) and exert several direct effects
in the CNS, from neuroprotection to reduction of neuroinflammation. As an approved FDA-drug,
FTY720 may help in early intervention and prevention of the more severe neurological side effects
of COVID-19. One such example is FTY720-P inhibition of aggressive egress of lymphocytes to the
CNS by lymphocyte confinement in the lymphoid tissues, thus limiting neuroinflammation [266]
(see Section 5.11 SphK/S1P in Neuroinflammation and Neurodegeneration). A second example is
the potential of reduction of blood clots in the brain underlying the causation of strokes in younger
COVID-19 patients [10].

Approximately 20% of COVID-19 patients experience cardiovascular symptoms,
with approximately 40% of deaths related to cardiovascular complications [14,40,49–51]. As mentioned,
maintenance of S1P/S1PR signalling plays an important and protective role against cardiovascular
endothelial dysfunction; however, overstimulation of the inflammatory response by S1P/S1PR1 is also
a major factor in heart disease and heart failure. Blocking the S1P/S1PR1-mediated inflammatory
response by FTY720 administration has been shown to exhibit positive effects against heart disease [57],
and, as observed in ischaemia and hypoxic injury mouse models, it has been proven to be protective
against acute and chronic myocardial injury [263,273].

Other potential beneficial effects of FTY720 agonism on S1PR1,3,4,5 in COVID-19 treatment include
the regulation of thrombopoiesis through S1PR4 activation. Severe SARS-CoV-2 infections can lead to
sepsis, a fatal side effect in COVID-19 patients, mediated by inflammation-elicited endothelial barrier
leakage and cytokine release; however, this can be alleviated by FTY720 [274].

On a note of caution, prolonged treatment has been shown to compromise barrier
function, increasing permeability and vasculature leakage in cell and mouse models [115,275–277].
Controversially, FTY720 increases lymphopenia, which is associated with a poorer prognosis and death,
especially in younger COVID-19 patients [278,279]. Nonetheless, the beneficial effects of FTY720 on
hyperinflammation, vascular integrity, thrombosis, sepsis, and heart disease associated with severe
COVID-19, as discussed in this review, could alleviate the worsening symptoms associated with these
severe COVID-19 cases. Hence, timing and dosage of FTY720 are important, “too much of a good thing
can turn bad”.

Whilst FTY720 is a prime candidate for COVID-19 adjunct therapy, due to its proven safety and
efficacy as an immunomodulator, there are potential detriments with continuous use and overuse of
this drug. New generations of S1PR agonist and antagonist drugs have/are being developed and some
are currently undergoing clinical trials. An updated list can be viewed in Table 1 [115,133,141,183,280].

In the past two years, two additional selective S1PR immunomodulatory drugs have been
FDA-approved. In March 2019, Mayzent (Siponimod, Novartis) was approved, and in March 2020,
Ozanimod. Both drugs are agonists for S1PR1 and S1PR5.
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6.2. Ozanimod—A safer COVID-19 Alternative S1PR Therapy

Recently, Ozanimod (RPC1063, molecular formula, C23H24N4O3, trade name Zeposia®), a more
specific S1PR agonist drug, targeting two SIP receptors (S1PR1,5) [281], has received FDA approval
(March 2020) as an immune modulator [282]. Similarly to FTY720, binding of Ozanimod to S1PR1,5 leads
to the internalisation and degradation of the S1P receptors and a reduction in circulating lymphocytes.
Unlike FTY720-P, Ozanimod does not bind and activate S1PR3 [281]. This may confer a drug advantage
in the clinic, as Ozanimod does not demonstrate cardiac conduction abnormalities or hypertension,
and there was no evidence of fibrosis observed in the clinical use of FTY720 [281]. Having a much shorter
half-life, Ozanimod (t1/2 is 19 h in humans), compared to FTY720 (t1/2 is 24–25 h in humans), and with a
much shorter lymphocyte recovery (Ozanimod = three days compared to FTY720 = 4–8 weeks), confers
some advantages including flexibility of treatment with other immune modulators if complications do
occur with S1PR-targeted treatment. Two examples where the rapid cessation of immune modulators
was imperative are provided. The first is the occurrence of opportunistic infections, where treatment
with FTY720 was linked to several cases of opportunistic fungal infections where, if left untreated,
could have caused severe fungal meningitis, as cited [117]. In a second example S1PR1 inhibitors are
known teratogens and, therefore, cannot be used during pregnancy. In this case, the washout period is
much longer with FTY720 compared to Ozanimod [281].

6.3. Opaganib—A SphK2 Specific Inhibitor in COVID-19 Therapy

Recently, Opaganib (ABC294640, 3-(4-chlorophenyl)-adamantane-1-carboxylic acid (pyridin-4-ylmethyl)
amide, or trade name Yeliva®) [133,196], a specific SphK2 inhibitor, has been listed to start
global randomised phase II/III clinical trials for COVID-19 patients (ClinicalTrials.gov Identifier:
NCT04467840), and a United States randomised phase II study (ClinicalTrials.gov Identifier:
NCT04414618). Opaganib is a sphingosine mimetic, which competitively binds SphK2, thus preventing
phosphorylation of sphingosine to its active form S1P and, therefore, effectively reducing intracellular
levels of S1P and reducing intracellular signalling-induced inflammatory pathways [200].

SphK2 is a critical host factor in viral replication, supporting a conceivable role in the
replication-transcriptional complex of positive single-stranded RNA viruses. Therefore, blocking
SphK2 using Opaganib reduces both viral reproduction and minimises the potential risk of resistance
due to viral mutation development [200].

An intriguing attribute of SphK2 is that blocking SphK2 leads to increased circulating S1P levels in
mice (three times the normal level), whereas blocking SphK1 results in decreased levels of circulating
S1P (approximately half the normal level) [133]. As circulating S1P is important in vascular integrity,
there is some validity in opanganib therapy, on the one hand, reducing the viral load by inhibiting
viral replication and pathological inflammation, whilst, on the other hand, increasing S1P production
through SphK1 activation to maintain vascular endothelial integrity.

One of the perceived negative downsides of using SphK2 inhibitors is that SphK2 deletion
increases inflammatory cytokine production and macrophage activation [132], which may contribute
to detrimental side effects for COVID-19 patients. However, in preclinical studies, Opaganib has
demonstrated anti-inflammatory properties against pathological inflammation, decreased fatality in
an influenza virus mouse model, and improved Pseudomonas aeruginosa-induced lung injury [214]. In a
recently completed clinical trial for “compassionate use” (ClinicalTrials.gov Identifier: NCT04435106),
in a small cohort of Opaganib treated COVID-19 patients with severe symptoms, the drug was safe
and well tolerated, with clinical and laboratory improvement in all patients.

7. Concluding Remarks

Effective innate and adaptive inflammatory immune responses are important in curtailing virus
infection. When the virus has invaded the host cell, it is difficult to eradicate and the body’s immune
system may overreact (i.e., a hyperinflammatory response), as demonstrated effectively in the case
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of many COVID-19 patients. A unifying theme underlying most of the COVID-19 symptoms is
the loss of vascular integrity affecting the major organs of the body, including the lungs, heart,
and brain. Specific targeting of components of the SphK/S1P/S1PRs signalling pathway can subvert
many of the severe complications of COVID-19, including (a) reduction of the hyperinflammatory
response (cytokine storm) whilst preserving vascular endothelial integrity, which is seemingly a major
route of COVID-19 maliciousness in multiorgan failure (specifically protection against pulmonary,
neurological and cardiovascular symptoms), (b) reduction/prevention of blood disorders such as
thrombotic complications (clot formation), (c) attenuation of sepsis and importantly, (d) overall averting
rapid clinical COVID-19 patient deterioration.

We started writing this review based on a question, “can modulating the SphK-S1P-S1PR
pathway reduce severe COVID-19 disease symptoms?” From historical and contemporary data on
the involvement of the sphingolipid pathway in viral infections, inflammation, and vascular integrity
there is strong support demonstrating a role for modulating components of the SphK-S1P-S1PR in
COVID-19 disease management. The immunomodulatory properties of the sphingolipids produce a
plethora of beneficial effects, not only in curtailing SARS-CoV-2 infectivity and treatment of COVID-19,
but also for the ongoing management of the acute and chronic severe side effects of COVID-19. To date,
three S1P-based FDA-approved drugs, FTY720, Ozanimod, and Opaganib are being repurposed for
COVID-19 treatment and are currently in clinical trials highlighting the potential for targeting the
SphK-S1P-S1PRs to reduce COVID-19 symptoms. However, more specific agonist and antagonist
drugs targeted to individual and multiple S1P receptors have been developed (Tables 1 and 2), firstly,
to explore the complex biological signalling and function of the SphK isozymes and the five S1PRs
(G-protein-coupled transmembrane receptors), and, secondly, to assess their potential as therapeutics.
S1P-S1PR targeting, alongside antiviral treatment, may prove to be beneficial in the prevention of
COVID-19 deaths and the control of future coronavirus infections.
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