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Abstract

Motivation: A large number of distal enhancers and proximal promoters form enhancer–promoter

interactions to regulate target genes in the human genome. Although recent high-throughput

genome-wide mapping approaches have allowed us to more comprehensively recognize potential

enhancer–promoter interactions, it is still largely unknown whether sequence-based features alone

are sufficient to predict such interactions.

Results: Here, we develop a new computational method (named PEP) to predict enhancer–

promoter interactions based on sequence-based features only, when the locations of putative en-

hancers and promoters in a particular cell type are given. The two modules in PEP (PEP-Motif and

PEP-Word) use different but complementary feature extraction strategies to exploit sequence-

based information. The results across six different cell types demonstrate that our method is effect-

ive in predicting enhancer–promoter interactions as compared to the state-of-the-art methods that

use functional genomic signals. Our work demonstrates that sequence-based features alone can

reliably predict enhancer–promoter interactions genome-wide, which could potentially facilitate

the discovery of important sequence determinants for long-range gene regulation.

Availability and Implementation: The source code of PEP is available at: https://github.com/ma-

compbio/PEP.

Contact: jianma@cs.cmu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

High-throughput whole-genome mapping technologies such as Hi-C

(Lieberman-Aiden et al., 2009) and ChIA-PET (Tang et al., 2015)

have provided us with new opportunities to study genome-wide

chromatin interactions. In particular, these methods have allowed us

to identify enhancer–promoter interactions (EPIs) at much more

refined resolution. In mammalian and vertebrate genomes, gene pro-

moters and distal regulatory enhancers may be millions of base-pairs

away from each other; and an enhancer oftentimes does not regulate

its closest gene (Zhang et al., 2013; Dixon et al., 2015). Studies

using global chromatin interaction data based on Hi-C and ChIA-

PET have shown that a large fraction of enhancers form long-range

EPIs to regulate genes far away in the genome (Sanyal et al., 2012;

Li et al., 2012). However, the general principles at the sequence level

underlying such long-range EPIs remain largely elusive.

In this paper, our goal is to reveal whether there are sequence-

based features within enhancer elements and promoter elements that

are strongly predictive for EPIs. It is generally unclear whether, and

to what extent, the information encoded in the genome sequence

contains important potential instructions for forming EPIs. There

are recent computational methods in predicting EPIs based on func-

tional genomic features, in particular, RIPPLE (Roy et al., 2015)

and TargetFinder (Whalen et al., 2016). In both methods, many

functional genomic datasets were used, including DNase-seq, his-

tone marks, transcription factor (TF) ChIP-seq and gene expression.

In addition, TargetFinder also used CAGE and DNA methylation

data. The general approach of using functional genomic signals as

features for the machine learning classifier in both RIPPLE and

TargetFinder is similar. From these studies, we now know that sig-

nals from aforementioned functional genomic data are informative

to computationally distinguish EPIs from non-interacting enhancer–

promoter pairs. However, it is still unknown whether the informa-

tion in genome sequences within enhancers and promoters is

sufficient to distinguish EPIs. In this paper, we aim to answer the fol-

lowing question: if we are only given the locations of putative en-

hancers and promoters in a particular cell type, can we train a
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predictive model for that cell type to identify EPIs directly from the

genomic sequences without using any functional genomic signals?

Note that our main goal of this work is to build a predictive model

for individual cell type to assess if sequence features are sufficient

for EPI predictions.

An overview of our method is shown in Figure 1. We developed

an algorithm based on a boosted tree ensemble model to predict

long-range EPIs by incorporating two strategies for extracting fea-

tures directly from the DNA sequences of enhancer and promoter

elements. We call our algorithm PEP (Predicting Enhancer–

Promoter interactions) with two modules, PEP-Motif and

PEP-Word, which use different feature extraction approaches. In

PEP-Motif, we search for patterns of known transcription factor

binding site (TFBS) motifs in the sequences involved in EPI. The nor-

malized occurrence frequencies of these TFBS motifs are then used

as features representing an enhancer or a promoter. In PEP-Word,

we use the word embedding model (Mikolov et al., 2013a, 2013b)

to directly embed the sequences of enhancer and promoter regions

into a new feature space. Each sequence is then represented by a

continuous feature vector. In both PEP-Motif and PEP-Word mod-

ules, we concatenate the individual feature vectors to form feature

representations of any given enhancer–promoter pair. If the paired

regions have identified interactions based on Hi-C data, the pair is

labeled as a positive sample; otherwise, it is labeled as a negative

sample. We then developed a predictive model based on an ensemble

learning method—Gradient Tree Boosting (GTB) (Friedman, 2001).

We evaluated the performance of our method and compared with

TargetFinder (Whalen et al., 2016) as well as RIPPLE (Roy et al.,

2015). In six different cell lines, we show that PEP (both modules)

achieved competitive results as compared to the state-of-the-art

methods that use non-sequence features from functional genomic

signals. Overall, our results suggest that, without relying on infor-

mation from functional genomic signals, sequence-based features

alone are effective in predicting EPIs in a specific cell type, if we are

given the locations of putative enhancers and promoters in that cell

type. We believe that our new method has the potential to become a

generic model to allow us to elucidate sequence-based instructions

that determine long-range gene regulation.

2 Results

2.1 Predicting EPIs using features based on TFBS motifs
We first evaluated the performance of PEP-Motif on the E/P

(Enhancer/Promoter) datasets (see Methods section) in six cell lines

(GM12878, K562, IMR90, HeLa-S3, HUVEC and NHEK), as com-

pared to TargetFinder (Whalen et al., 2016) based on its E/P/W per-

formance (i.e. functional genomic signals from enhancer, promoter

and the window between them) on the same datasets. Results are

shown in Figure 2 and Supplementary Table S3, where we also in-

clude results from PEP-Word and PEP-Integrate (discussed in the

following sections). Different metrics including AUROC (Area

Under the Receiver Operating Characteristic curve), AUPR (Area

Under the Precision-Recall curve), Precision, Recall, F1 score and

MCC were used to evaluate the predictions (see Supplementary

Methods A.8) based on 10-fold cross validation. Due to class imbal-

ance in our data (>95% of samples are negative), AUPR, F1 score

and MCC are more appropriate performance measures than

AUROC (Davis and Goadrich, 2006), though we include the latter

for completeness.

Our results show that PEP-Motif reaches comparable perform-

ance as compared to TargetFinder (E/P/W) on average, and achieves

improvement in certain cell types. The average AUPR achieved by

PEP-Motif across six cell lines is 0.84, similar to that of

TargetFinder (E/P/W) (0.86). We found that PEP-Motif outperforms

TargetFinder (E/P/W) with higher AUPR, F1 score, MCC, Precision

and Recall in GM12878, which has the largest sample size. PEP-

Motif also performs competitively as compared to TargetFinder

(E/P/W) in IMR90, reaching higher F1 score, MCC, Recall and simi-

lar Precision. In K562, NHEK, and HUVEC, TargetFinder performs

better than PEP-Motif. Overall, the performance of each method

varies across different cell lines. However, on average the perform-

ance of PEP-Motif is comparable to TargetFinder (E/P/W) (Fig. 2).

This suggests that using sequence features based on TF motifs alone

can achieve competitive results as compared to TargetFinder which

uses a large number of features of functional genomic signals. We

then asked if we can use a subset of the features to achieve similar

performance. Motif features were selected in PEP-Motif based on

importance ranking to reduce the feature dimension while maintain-

ing prediction performance (Supplementary Fig. S1). The feature im-

portance was estimated by the GTB model and features were ranked

accordingly (see Methods). We observed that AUPR initially in-

creases quickly as top-ranking features are being added. The per-

formance improvement then slows dramatically, approaching

saturation when the number of features exceeds around 100, which

is <8% of all the features (1280 in total). This suggests that most of

the prediction strength of PEP-Motif can be captured by a small sub-

set of important features.

2.2 Predicting EPIs using features based on word

embedding model
We evaluated PEP-Word using the same datasets from the six cell

lines as compared to TargetFinder (E/P/W) (Fig. 2 and

Supplementary Table S3). The average AUPR achieved by PEP-

Word across six cell lines is 0.85, similar to that of TargetFinder

(E/P/W) (0.86). The most significant overall improvement was

observed in IMR90. PEP-Word achieves AUPR, Precision, Recall, F1

score and MCC of 0.84, 0.90, 0.75, 0.82 and 0.81 in IMR90, re-

spectively, each of which is increased from that of TargetFinder

(E/P/W) (0.82, 0.85, 0.73, 0.78 and 0.78, respectively). We then

compared PEP-Word with PEP-Motif (Supplementary Table S3).

We found that on average PEP-Word can achieve better perform-

ance as compared to PEP-Motif. PEP-Word outperforms PEP-Motif

Fig. 1. Method overview of PEP
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in three out of the six cell lines (HUVEC, IMR90 and NHEK) with

about 2–3% improvement on AUPR, Precision, F1 score and MCC.

In particular, in NHEK, where PEP-Motif is not competitive to

TargetFinder (E/P/W), PEP-Word achieves 0.90 AUPR and 0.92

Precision, reaching comparable level with TargetFinder (E/P/W),

along with around 2.5% increase for Recall, F1 score and MCC as

compared to PEP-Motif. PEP-Motif performs slightly better in

HeLa-S3. The two modules achieve similar performance in

GM12878 and K562. These results suggest that PEP-Word can

achieve competitive performance as compared to TargetFinder (E/P/

W) using only sequence features based on word embedding, without

even relying on known TF binding motif models. In addition, PEP-

Word generally shows some improvement over PEP-Motif, although

these two PEP models seem to have different advantages in different

cell lines.

2.3 Integrating features from PEP-Motif and PEP-Word

to predict EPIs
To test if we can further improve the prediction by integrating PEP-

Motif and PEP-Word, we formed a combination of important fea-

tures from both modules. We call the result ‘PEP-Integrate’ features

(Supplementary Methods A.5). We used the top 300 important TF

motif features from PEP-Motif to concatenate with the PEP-Word

feature vector, followed by retraining of the GTB model and evalu-

ation (results in Fig. 2 and Supplementary Table S3). Here, the num-

ber of motif features to select for integration is evaluated

by sequentially increasing the feature selection set (Supplementary

Fig. S2).

In general, PEP-Integrate achieves higher performance as com-

pared to PEP-Word and PEP-Motif individually. We also found that

overall PEP-Integrate is more competitive now as compared to

TargetFinder (E/P/W). The largest improvement was observed in

IMR90. PEP-Integrate achieves AUPR, F1 score and MCC of 0.85,

0.84 and 0.83, respectively, in IMR90, which are 3–5% higher than

those from TargetFinder (E/P/W) (AUPR: 0.82, F1 score: 0.78,

MCC: 0.78). PEP-Integrate also reaches higher Precision than

TargetFinder (E/P/W) in five of the six cell lines (GM12878, K562,

HeLa-S3, IMR90 and NHEK), with improvement ranging from 2%

to 8%. These results demonstrate that the integration of the features

from PEP-Motif and PEP-Word can lead to overall more accurate

EPI predictions.

2.4 Additional comparison with TargetFinder and

RIPPLE using EE/P datasets
We further tested PEP-Integrate, PEP-Word and PEP-Motif on the

EE/P (Extended Enhancer/Promoter) datasets (results shown in

Supplementary Fig. S3 and Table S4; see Methods section for the de-

scription of EE/P data). The EE/P data were used in Whalen et al.

(2016) for training and evaluating the model utilizing extended en-

hancer and promoter regions [TargetFinder (EE/P)]. Note that the

extended enhancers are similar in length (�6 kb) to the enhancers

(�5 kb) used by RIPPLE (Roy et al., 2015). Therefore, RIPPLE was

also applied to EE/P data for performance comparisons

(Supplementary Methods A.9).

Our results show that PEP-Integrate outperforms TargetFinder

(EE/P) with higher AUPR on five of the six cell lines (Supplementary

Table S4). PEP-Integrate also achieves higher F1 score and MCC in

three (GM12878, HUVEC and NHEK) and four (GM12878,

IMR90, HUVEC and NHEK) cell lines, respectively. PEP-Motif and

PEP-Word both achieve the same average of AUPR as TargetFinder

(EE/P) across the six cell lines, which is 0.85, but show different ad-

vantages. PEP-Motif outperforms TargetFinder (EE/P) in

GM12878, HeLa-S3 and HUVEC on AUPR, while PEP-Word

achieves higher AUPR than TargetFinder (EE/P) in HeLa-S3,

HUVEC and NHEK. Additionally, PEP-Motif, PEP-Word and PEP-

Integrate outperform RIPPLE in all six cell lines on almost all

metrics.

2.5 Important TFBS motif-based features discovered

by PEP-Motif
To assess the contribution of features in PEP-Motif, we ranked the

motif features according to their importance estimated by GTB.
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Fig. 2. Evaluation of PEP-Motif, PEP-Word and PEP-Integrate (K¼ 6 for K-mers) on E/P data from six cell lines in comparison with TargetFinder (E/P/W) in terms of

AUROC, AUPR, Precision, Recall, F1 and MCC
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We categorized the motif features into different importance levels

based on quantiles spaced at 5% of the feature importance distribu-

tion in each cell line. For instance, motif features ranked top 5% are

considered as the most important. Each motif corresponds to two

motif features (enhancer-associated or promoter-associated). The

top 5% important features are thus taken from the union of enhan-

cer and promoter features. We observed that top-ranked motif fea-

tures are mostly cell-type specific. Specifically, 135 motif features in

enhancers and 38 motif features in promoters are ranked top 5% in

importance in one cell line. However, some of these cell-type specific

important motifs share highly similar Position Weight Matrices

(PWMs) and can be grouped. Utilizing motif similarities we de-

veloped a motif clustering approach (Supplementary Methods A.2),

which resulted in 503 motif representatives, including 427 single

motifs and 76 small size clusters (each with 2–4 motifs). A motif rep-

resentative denotes a single motif or a motif cluster.

We next assessed motif feature importance at the level of motif

representatives to have more robust evaluation of cell-type specific

important features. For every motif cluster in each cell line, the high-

est feature importance of the member motifs is selected to represent

importance of the associated motif cluster. We found 139 motif rep-

resentatives in enhancers and 48 in promoters, respectively, that

have top 5% feature importance in at least one cell line. Among

these most predictive features, we discovered 98 motif representa-

tives in enhancers and 26 in promoters that have top 5% importance

in only one cell line. For more stringent discrimination of the cell-

type specificity of these motif representatives, we further examined

feature importance of motifs close to them in the constructed simi-

larity graph. For each member of a motif representative, we

searched for all motifs within distance of 2. If none of such neigh-

boring motifs has top 5% feature importance in other cell lines, the

examined motif representative is regarded as cell-type specific.

Using this approach, we found 79 cell-type specific top 5% import-

ant motif representatives in enhancers and 17 in promoters

(Supplementary Tables S5 and S6).

In addition to cell-type specific ones, some motif representatives

are recognized by multiple cell lines as highly predictive. We found

that 62 top 5% predictive motif representatives in enhancers and 29

in promoters are shared by at least two cell lines. Moreover, 31

motif representatives in enhancers and eight in promoters rank top

10% in at least four of the six cell lines. We also noticed that some

cell-type specific top 5% important motif features have predictive

effect in other cell lines, though at lower importance levels, which

can be observed from Figure 3.

Fig. 3. Estimated feature importance of motifs in PEP-Motif that have top 5% importance in at least one cell line. The feature importance is scaled between 0 (low

importance) and 1 (high importance). Of the 503 motif representatives (427 single motifs and 76 motif clusters) found by PEP-Motif, 139 in enhancers and 48 in

promoters have top 5% feature importance in at least one cell line. Here we display the top 100 of 139 predictive motif representatives in enhancers and all 48 pre-

dictive motif representatives in promoters. Each motif is represented by the name of its corresponding TF. If a TF has multiple associated motifs, alternative

motifs are marked according to their identities in the database [e.g. EHF(S) denotes a single site motif of EHF (Kulakovskiy et al., 2016)]. If a motif represents a

motif cluster, names of all the member motifs are shown in combination. We performed hierarchical clustering on both motifs (rows of the feature importance

matrix) and cell types (columns) to have the motif features grouped. A cell is highlighted with white border if the corresponding motif has top 5% feature import-

ance in the respective cell type
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TFs associated with predictive motifs or motif representatives

may belong to a TF family. We found that some TF families are en-

riched with highly predictive TFs. FOX, STAT, TEAD, IRF, SOX,

SPI, E2F, ERR, ETS and SP/KLF are among those families. For ex-

ample, motifs of FOXA1, FOXO3, FOXG1, FOXH1, FOXO1 and

FOXO4 each have top 5% feature importance but in different cell

lines. All are from the FOX family, which is featured by a conserved

DNA-binding domain and important in regulating cell growth.

Overall, PEP-Motif systematically estimated predictive power of all

TFBS motifs for EPIs from one of the most complete and up-to-date

motif databases. Results in six cell lines reveal either cell-type spe-

cific or more ubiquitous feature importance of different TF motifs.

2.6 Estimated important TFBS motifs are consistent

with existing studies
Based on feature importance estimation for motif based features from

PEP-Motif, we found that the highly predictive motif features are gen-

erally quite consistent with existing studies. For example, we found

that the CTCF motif in enhancer regions (extended with flanking re-

gions) is among the top 5% most important features across all of the

six cell lines, reflecting the fact that CTCF is a key player in mediating

chromatin loops (Ong and Corces, 2014; Bonev and Cavalli, 2016).

In addition, ZNF143 has been identified by recent studies as a

chromatin-looping factor with sequence specificity dependency at

promoters (Bailey et al., 2015), where ZNF143 binds directly to pro-

moters and contributes to chromatin interactions connecting pro-

moters to distal regulatory elements. Other studies have strongly

implicated that ZNF143 partners with CTCF in establishing the con-

served chromatin structure by cooperating with cohesin (Ye et al.,

2016). The results of PEP-Motif demonstrated that ZNF143 motif in

promoters ranks top 30% in estimated feature importance across four

cell lines (GM12878, K562, HeLa-S3 and NHEK), with much higher

feature importance than ZNF143’s importance in enhancers, support-

ing that it functions mainly through promoters.

The important TF motifs estimated by PEP-Motif (which uses se-

quence features only) are also quite consistent with the results from

TargetFinder (where functional genomic signals including many TF

ChIP-seq data were used). TargetFinder has 209 types of functional

genomic features in total across all cell lines for a single region (en-

hancer/window/promoter), of which 162 are TF ChIP-seq signals.

However, not all the TFs used by TargetFinder (E/P/W) with ChIP-

seq data have binding site models in HOCOMOCO Human v10

motif database (Kulakovskiy et al., 2016) used by PEP-Motif. We

therefore focused on the TFs shared by both methods to have a fair

comparison. Similar to the feature ranking approach used in PEP-

Motif, we categorized all the features in TargetFinder (E/P/W) into

different importance levels based on quantiles spaced at 5% of the

feature importance distribution estimated in (Whalen et al., 2016).

We found that there are 60, 59, 29, 7, 6 and 1 comparable TFs (i.e.

shared between TargetFinder and PEP-Motif) in GM12878, K562,

HeLa-S3, IMR90, HUVEC and NHEK, respectively, mainly because

GM12878, K562 and HeLa-S3 cell lines have more available func-

tional genomic features than the other three cell lines. Recall that

TFs in enhancer/window regions and those in promoter regions are

considered distinct features. For enhancer/window, on average more

than 95% of the comparable TFs with medium or high feature im-

portance (ranked top 50%) in TargetFinder (E/P/W) are also at top

50% importance level estimated by PEP-Motif (Supplementary

Table S7). At the high importance level, there are 21, 27 and 12 TFs

estimated as top 25% in importance by both methods in GM12878,

K562 and HeLa-S3, respectively (Supplementary Table S8). Among

the TFs identified by both methods as important features, ZNF384,

TBP, RUNX3, SPI1, SP1, CEBPB, SRF, JUND and MAX may have

received less attention on their functions in mediating EPIs, as

pointed out in TargetFinder (Whalen et al., 2016). In PEP-Motif,

motifs for these TFs in enhancers were all estimated as top 30%

most important in multiple cell lines. We also identified common

promoter-associated important TFs for the two methods

(Supplementary Table S9).

We next explored the interacting enhancer-associated motif fea-

tures and promoter-associated motif features (E-P feature inter-

actions), utilizing the feature combination structures learned by the

decision trees of the GTB model. As an ensemble of decision trees,

the GTB model is able to learn high order of feature interactions

(Friedman, 2001, 2002). We utilized the method XGBFIR

(Kostenko, 2016) to analyze the GTB model in PEP-Motif and ex-

tracted predictive feature interactions in each cell type. Results are

shown in Supplementary Table S10 and Figures S8–S10. We found

that existing studies support some of our predicted feature inter-

actions. For examples, the interaction between CTCF in enhancer

region and CTCF in promoter region has been identified as import-

ant feature interaction across multiple cell lines (Supplementary

Table S10), which reflects the role of CTCF in mediating chromatin

loops (Ong and Corces, 2014; Bonev and Cavalli, 2016).

Additionally, we found many other TF motif features involved in

predictive feature interactions, although the overall significance of

these pairs have yet to be determined (Supplementary Table S10 and

Fig. S8–S10). Nevertheless, the feature interactions detected from

our model can be used to further study more complicated combin-

ations of TFs in mediating EPI.

2.7 Potentially important TFs identified only by

PEP-Motif
PEP-Motif also identified potentially important TF motif features

that may play key role in mediating EPIs but were not studied by

TargetFinder due to data unavailability. To mitigate variance due to

small training sample size in a single cell line, we considered only

features found to be important in at least two cell lines at specified

feature importance levels. With all the TF features used by both

TargetFinder and PEP-Motif in any of the six cell lines excluded, we

discovered 24 enhancer-associated TFs and six promoter associated

TFs that have top 5% feature importance in at least two cell lines

(Table 1). There are six enhancer-associated TFs that have top 10%

feature importance in at least four cell lines, including ANDR (clus-

tered with GCR and PRGR in the motif similarity graph), EGR3,

EHF, ETV5, HAND1 and ZSC16. In particular, EHF is ranked top

25% in HeLa-S3 and top 5% in the other five cell lines. Among the

highly predictive promoter-associated TFs, MNT (clustered with

SPIC) is ranked top 5% in three cell lines (GM12878, K562 and

HeLa-S3). HOXD8 (clustered with POU5F1B, POU2F2 and

POU3F3) and KLF4 (clustered with KLF1 and KLF3) are both

ranked top 15% in five cell lines. There is experimental evidence

from existing research regarding the functions of some of these TFs.

For example, recent studies showed that KLF4 plays an important

role in organizing long-range chromatin interactions with POU5F1

(OCT4) by recruiting cohesin to POU5F1 enhancer (Wei et al.,

2013). In addition, it was reported that POU2F2 can interact with

ANDR, PRGR and GCR (also named AR, PGR and NR3C1)

(Préfontaine et al., 1999), consistent with the estimated importance

of these TFs by PEP-Motif in forming EPIs. Although the exact func-

tions of these TFs in forming EPIs have yet to be further investi-

gated, our results suggest that PEP-Motif can identify potentially
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important TF motifs based on known PWMs without using ChIP-

seq data, further highlighting its ability to discover key sequence fea-

tures that may be involved in mediating EPIs.

2.8 PEP-Word features are informative in

identifying EPIs
Different from PEP-Motif, PEP-Word uses word embedding model

to directly embed sequences into a numerical feature space, without

utilizing information of TF binding motif models. Therefore, the ex-

tracted features are abstract and not limited to explicit association

with certain TFBS. We then assessed whether these features are in-

formative for discriminating between EPIs and non-EPIs.

We used t-Distributed Stochastic Neighbor Embedding (t-SNE)

(Van Der Maaten, 2014) to visualize the feature vectors of randomly

selected positive samples (EPI) and negative samples (non-EPI)

(Supplementary Fig. S6). The n dimensional (n¼600) features were

reduced to two dimensions. We found that the positive samples and

negative samples exhibit visibly different distributions in the

two-dimensional space, even though dimension reduction for visual-

ization causes some information loss of discriminative features. We

further examined the distribution of positive and negative samples

on the original dimensions of the embedded feature space

(Supplementary Fig. S7) and found that the features are quite differ-

ent between the two classes. The results suggest that EPIs and non-

EPIs are distributed differently in the new feature space constructed

from the word embedding model of PEP-Word. Therefore, PEP-

Word is shown to be effective in feature representation of EPIs using

only DNA sequences.

3 Methods

3.1 Datasets
In this work we used the same datasets in TargetFinder (Whalen

et al., 2016), which include enhancer–promoter interaction data in six

cell lines (GM12878, K562, IMR90, HeLa-S3, HUVEC and NHEK).

The dataset of each cell line has cell-line specific annotations of puta-

tive enhancers and promoters as well as interacting and non-

interacting enhancer–promoter pairs. Active enhancers and promoters

in each cell line were identified using annotations from the ENCODE

Project (ENCODE Project Consortium et al., 2012) and the Roadmap

Epigenomics Project (Kundaje et al., 2015). The Hi-C data (Rao

et al., 2014) were used to annotate EPIs in (Whalen et al., 2016). For

each positive sample, 20 negative samples were sampled, following

the same constraint of distance between the positive pairs (Whalen

et al., 2016). Thus, the negative sample size is 20 times of the positive

sample size on each cell line. The distance between the paired enhan-

cer and promoter in the datasets ranges from 10kb to 2 Mb.

In our performance evaluation, we used both E/P (Enhancer/

Promoter) data and EE/P (Extended Enhancer/Promoter) data defined

in Whalen et al. (2016) for the six cell lines. In EE/P data, an extended

enhancer is defined as an enhancer with 3 kb flanking regions on both

sides (Whalen et al., 2016) and interactions are identified on basis of

extended enhancers and promoters. The numbers of interacting and

non-interacting enhancer–promoter pairs in each of the six cell line

datasets are given in Supplementary Tables S1 and S2.

3.2 Classification using gradient tree boosting model
In PEP, we use Gradient Tree Boosting (GTB) as the predictive

learning algorithm to predict EPI based on feature representations

generated by PEP-Motif or PEP-Word. GTB is a specialized

Gradient Boosting Machine (GBM) (Friedman, 2001, 2002) with

decision trees used as base learners. Given the training samples

fxi; yigN
i¼1, the GTB model aims to learn a mapping function F�ðxÞ

from x to y. Here xi is the feature vector of the i-th sample and yi is

its label (see Supplementary Methods A.1 for details). In our study

the prediction of long-range EPI is formulated as a two-class classifi-

cation problem. Numerical features are extracted from sample DNA

sequences of the paired regions based on either TFBS motifs (for

PEP-Motif) or word embedding model (for PEP-Word). We used the

XGBClassifier implemented by the XGBoost learning library (Chen

and Guestrin, 2016a, 2016b) to train the model. We performed

10-fold cross validation to train and tune a classifier on each cell

line. The classifier estimates the probabilities of a sample belonging

to the two classes. We merged predictions on the test data of each

fold, obtaining predictions on the whole dataset. As the positive and

negative samples are heavily imbalanced, when training the classi-

fier, positive samples were given a larger weight (proportional to the

ratio of negative sample size to positive sample size). Accordingly,

several different metrics were used to measure performance during

evaluation. Note that the evaluation and comparisons were per-

formed with consistent 10-fold cross-validation approach for all

methods. More details on the GTB model and the definitions of

evaluation metrics are in Supplementary Methods A.1 and A.9.

3.3 Feature extraction for TFBS motifs in PEP-Motif
The sequences for enhancer/promoter annotations used in this study

are based on human genome assembly hg19. In Whalen et al. (2016)

Table 1. Important TF motifs discovered by PEP-Motif (but not by

TargetFinder) to be of top 5% feature importance in at least two

cell lines (the upper part) and those of top 10% feature importance

in at least three cell lines (the lower part)

Cell lines Potential novel predictive TF of top 5% importance

(in PEP-Motif but not in TargetFinder)

2 (E) (PRGR, ANDR, GCR), BHE23, (TBX4,TBR1,TBX21),

CEBPE, EGR3, ENOA,(EVX1, FOXG1,FOXL1),

FOXO1,

HAND1, HBP1, HOXA1, MCR, (NFAT5,NFAC3),

STAT6,

(NR1I2, NR1I3), RHXF1, SMAD3, SOX10, SOX4,

BRAC, TEAD3, ZNF713

3 (E) EHF, ZSC16

2 (P) AP2D, (KLF4, KLF1,KLF3), NKX32, PLAG1

3 (P) (HOXD8, POU5F1B, POU2F2, POU3F3), (MNT,SPIC)

Cell lines Potential novel predictive TF of top 10% importance

(in PEP-Motif but not in TargetFinder)

3 (E) BHE23, ERR2, ENOA, EOMES, FEV, GCM1,

(HSF1, HSF2, HOXB2, HSF4), HOXA1, (KLF3, KLF1,

KLF4),

MCR, MITF, MYOD1, (RORG, RORA, NR1D1),

(NR1I2, NR1I3), SMAD3, TEAD3, TF7L2, ZBT18,

ZNF713

4 (E) (ANDR, PRGR, GCR), EGR3, ETV5, HAND1, ZSC16

5 (E) EHF

3 (P) (HOXD8, POU5F1B, POU2F2, POU3F3), PLAG1

4 (P) (KLF4, KLF1, KLF3), (MNT, SPIC)

Note: Each TF is represented by one or multiple motifs. If the correspond-

ing motif is associated with a motif cluster, all members of the cluster are dis-

played and the motif reaching the specified importance level is in italic. ‘E’

represents enhancer regions and ‘P’ represents promoter regions. The row

name represents the exact number of cell lines where the motif reaches the

specified importance level, e.g. ‘2 (E)’ denotes that the feature in the enhancer

region has top 5% importance in exactly two cell lines.
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the authors found that epigenetic markers within the window be-

tween an enhancer–promoter pair are highly useful in predicting the

interactions, and much of the prediction strength can be recovered

by only exploiting 3 kb flanking regions of the enhancers on both

sides. We used the 4 kb extended flanking regions of enhancers to

extract sequence-based features by balancing of computational effi-

ciency and performance robustness, although we also evaluated dif-

ferent lengths of flanking regions (Supplementary Methods A.6 and

Fig. S5). We used FIMO (Grant et al., 2011) for motif scanning

along the sequences with the PWMs from HOCOMOCO Human

v10 database (Kulakovskiy et al., 2016), one of the most compre-

hensive human TF binding motif databases, with 641 non-

redundant TF binding PWMs for 601 TFs. We used a P-value

threshold of 1e-04 to identify motif matches from FIMO. For a cer-

tain motif, we computed the normalized motif occurrences for each

of the enhancer or promoter sequences to form the feature vector.

Given M motifs, let l
ðiÞ
1 ; l

ðiÞ
2 ; . . . ; l

ðiÞ
M be the number of occurrences of

the respective motifs in the i-th sequence with length Li. The feature

vector of the i-th sequence is f ðiÞ ¼ ðf ðiÞ1 ; . . . ; f
ðiÞ
M Þ, where

f
ðiÞ
m ¼ l

ðiÞ
m =Li;m ¼ 1; . . . ;M. Finally, to formulate the feature repre-

sentation of an enhancer–promoter pair, we concatenated the fea-

ture vectors of the enhancer region and the promoter region.

We then estimated feature importance for each of the motif fea-

tures based on our GTB model. The importance is first estimated for

a single decision tree based on how the feature at each split point im-

proves the performance, which is then normalized by the number of

samples classified by the corresponding split node. The feature im-

portance estimates from individual trees are then averaged across all

the decision trees in the ensemble. Additionally, we explored whether

the prediction strength of PEP-Motif can be captured by a selected

subset of the motif features. Features were ranked by their estimated

importance in descending order. We sequentially added features to

the selection set based on their importance rankings. A subset of fea-

tures was used for model training and evaluation each time.

3.4 Feature extraction in PEP-Word based on word

embedding model
PEP-Word uses a continuous distributed representation of sequences

to extract informative features encoded in the enhancer–promoter

sequence pairs. PEP-Word is based on word embedding (Mikolov

et al., 2013a, 2013b), which was initially developed in the field of

Natural Language Processing (NLP) to obtain continuous distrib-

uted representation of words. In our model, a DNA subsequence of

length K (denoted as K-mer) is used as a word. The model is trained

to embed each K-mer into a new n-dimensional feature space.

Weighted pooling is then performed to generate feature vectors for

sequences of varied lengths. The word embedding model can be pre-

sented as a projection matrix of size jVj � n, where jVj is the vo-

cabulary size and n is the dimensionality of the embedded feature

space. The vocabulary V is the set of all distinct words of interest. In

our case jVj � 4K since our words are K-mers of nucleotides. Each

row of the matrix represents the embedded n-dimensional feature

vector of the corresponding word.

We use the Continuous Bag-of-Words (CBOW) method

(Mikolov et al., 2013b) to implement word embedding. In CBOW,

our goal is to maximize the following objective function:

arg max
h

Y
wt2V

Y
c2CðwtÞ

pðwtjc; hÞ; (1)

where h represents the model parameters, wt is the target word, c is

a context word of wt, V is the vocabulary, and CðwtÞ is the set of all

the context words of wt, which depends on the context window size.

For example, if 20 words prior to the target word are used as con-

text, the context window size is 20. pðwtjcÞ is the probability of

observing the target word wt given the context c. Originally, pðwtjcÞ
is formulated by a softmax function:

pðwtjc; hÞ ¼ exp ðvT
c vwt
ÞP

w2V exp ðvT
c vwÞ

; (2)

where vwt
and vc represent the embedded feature vectors of a target

word wt and a context word c obtained from the word embedding

model, respectively. vT
c vwt

is a score measuring the compatibility be-

tween vc and vwt
. However, it is computationally expensive to nor-

malize these probabilities over all word pairs. Instead, negative

sampling is used to generate negative samples of word pairs, by

which a set of negative samples are selected instead of all word pairs.

A positive sample ðwt; cÞ is a pair of a target word and its context.

A negative sample ð ~w; cÞ is a pair of a context c and a noise word ~w

not associated with the context. The problem is then formulated as

binary logistic regression. Our goal is to optimize the word embed-

ding model for better discrimination between positive and negative

samples. Negative sampling is a variation of Noise Contrastive

Estimation (NCE) (Mnih and Kavukcuoglu, 2013). The objective

function is to maximize:

X
ðwt ;cÞ2D

log QhðD ¼ 1jwt; cÞ þ
Xk

i¼1

E½log QhðD ¼ 0j ~wi; cÞ�
( )

; (3)

where wt and c denote the target word and the context, respectively.

~wi represents a noise word and ~wi � PnoiseðwÞ, where PnoiseðwÞ is the

probability distribution of noise words. k is the number of negative

samples drawn from the noise distribution per positive sample. D

represents the training data of pairs of target word and context.

QhðD ¼ 1jwt; cÞ is the probability that the word pair ðwt; cÞ is

observed in D, given the parameters h of the word embedding

model. QhðD ¼ 0j ~wi; cÞ is the probability that ð ~wi; cÞ is not observed

in D, given h. The expectation E in the second term of Equation (3)

represents the expected log probability of producing a negative sam-

ple under the noise distribution. For negative sampling, the objective

function takes the following alternative form (Goldberg and Levy,

2014), which is approximately equivalent to Equation (3):

arg max
h

Y
ðwt ;cÞ2D

QhðD ¼ 1jwt; cÞ
Y

ðwt ;cÞ2D0

QhðD ¼ 0jwt; cÞ; (4)

where

QhðD ¼ 1jwt; cÞ ¼
1

1þ exp ð�vT
wt

vcÞ
; (5)

QhðD ¼ 0jwt; cÞ ¼
1

1þ exp ðvT
wt

vcÞ
: (6)

D0 represents the set of randomly sampled negative word pairs.

In PEP-Word, cell-type specific word embedding models are

trained for both enhancer regions and promoter regions, respect-

ively. Features resulted from the respective models of the paired re-

gions are then concatenated to form a feature representation of the

pair. For a given cell line, we extracted the DNA sequences of all the

annotated enhancers (or promoters). An overlapping window of size

K and sliding stride 1 was used to obtain all the K-mers in the

sequence sequentially. Thus, a sequence of length L generates

ðL� Kþ 1Þ K-mers in order, forming a ‘sentence’. Sentences from

all the enhancers (or promoters) were pooled to form a corpus used
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for unsupervised training of a word embedding model. In our imple-

mentation, we set K¼6, the feature vector size n to be 300, and the

context window size of a target word (K-mer) to be 20. Namely, 20

context words of a target word were used in training. We chose

K¼6 to keep the balance between computational efficiency and in-

formation complexity contained by each K-mer (Supplementary Fig.

S5). We also tested by varying the embedding dimension n from 100

to 600 and found that setting n¼300 best balanced computational

efficiency and performance (Supplementary Fig. S5).

We then used the trained word embedding model to formulate

feature representations of enhancers (or promoters). Similar to PEP-

Motif, 4 kb flanking regions of the enhancers were included in

sequence extraction and feature representation. Evaluation with re-

spect to different choices of flanking region size is shown in

Supplementary Fig. S5. The feature vector representing the i-th se-

quence is: fi ¼
PjVj

k¼1 aðwk; siÞvwk
, where wk is the k-th word (K-mer)

in the vocabulary, aðwk; siÞ is the weight of wk for sequence si and

vwk
is the feature vector of wk generated by the word embedding

model. In our method aðwk; siÞ ¼ tfidfðwk; si;DÞ based on weighted

pooling (see Supplementary Methods A.3).

4 Conclusion and discussion

Although new high-throughput mapping approaches such as Hi-C

and ChIA-PET have become increasingly useful to identify potential

long-range interactions between enhancers and promoters genome-

wide, it is still unclear whether the sequence-based features are suffi-

cient to define and predict EPIs. In this work, we have developed

PEP to answer this question. We use two different but complemen-

tary approaches in PEP, including PEP-Motif, which only uses TF

binding motifs as features, and PEP-Word, which uses word embed-

ding model to extract more generic sequence features. Based on our

results, we have demonstrated that sequenced-based features alone

can indeed effectively predict EPIs in a cell type if we are given the

genomic locations of putative enhancers and promoters in that par-

ticular cell type. We found that features based on TF binding motifs

only (from PEP-Motif) and features based on word embedding

(from PEP-Word) can both achieve performance competitive with

the state-of-the-art methods that use non-sequence-based, functional

genomic signals. In addition, the combined model (from PEP-

Integrate) showed further improvement in predicting EPIs. Overall,

we demonstrated that PEP is a promising predictive model with the

potential to reveal important sequence-level instructions that guide

long-range gene regulation in the genome. Such a model may be fur-

ther developed into a powerful tool to predict non-coding variants

that may disrupt long-range interactions.

There are a number of areas that our model can be improved.

For example, we have limited ability to interpret the features ex-

tracted from word embedding model due to the difficulty in intui-

tively explaining the embedded space. This is actually also a

challenge in the field of NLP even though word embedding strat-

egies have been applied in NLP widely. Indeed, visualization meth-

ods such as t-SNE can be used to provide an idea of the embedded

space and its ability in distinguishing the samples. Therefore, even

though we have shown that PEP-Word seems to achieve better per-

formance than PEP-Motif in most cell lines, we are not able to

clearly identify the sequence features captured by PEP-Word but not

by PEP-Motif. Nevertheless, the comparison between PEP-Motif

and PEP-Word together with the findings from PEP-Integrate pro-

vides useful insights that the important sequence-based features that

determine EPIs are likely to be a combination of TF binding motifs

and other non-motif sequence features; and such combination may

vary across different cell types. Additionally, if we use the PEP clas-

sifier trained on one cell line to predict EPIs in another cell line, the

performance is generally quite low. Using functional genomic sig-

nals, the recently developed method RIPPLE (Roy et al., 2015)

explored cross-cell-type EPI prediction and found that multiple

types of functional genomic signals from multiple cell types can be

utilized to make predictions of regulatory interaction in a new cell

type. Therefore, it would be interesting to explore new approaches

of optimally selecting sequence-based features and functional gen-

omic features in order to achieve the strongest possible predictions

in a different cell type, especially for a new cell type where the func-

tional genomic data have yet to be generated. Such an effort would

be highly informative to better understand EPIs and their variation

across different cell types.
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