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Abstract: Vegetarian diets can satisfy nutritional requirements and have lower environmental impacts
than those containing meat. However, fruits and vegetables are wasted at higher rates than meat.
Reducing both food waste (FW) and the environmental impacts associated with food production is
an important sustainability goal. Therefore, the aim of this study was to examine potential tradeoffs
between vegetarian meals’ lower impacts but potentially higher FW compared to meat-containing
meals. To examine this, seven consecutive days of plate FW data from Loma Linda University
Medical Center (LLUMC) patients were collected and recorded from 471 meals. Mean total FW and
associated greenhouse gas emissions (GHGE) were higher among meat-containing meals (293 g/plate,
604 g CO2-eq/plate) than vegetarian meals (259 g/plate, 357 g CO2-eq/plate) by 34 g (p = 0.05) and
240 g CO2-eq (p < 0.001), respectively. Statistically significant differences were observed in both FW
and associated GHGE across major food categories, except fruit, when comparing vegetarian and
meat-containing meals. Overall, vegetarian meals were preferable to meat-containing meals served
at LLUMC both in terms of minimizing FW and lowering environmental impacts. Other institutions
serving vegetarian meal options could expect similar advantages, especially in reduced GHGE due to
the high CO2 embodied in meat.

Keywords: food waste; global warming; vegetarian meals; hospital setting; plant based; sustainability;
public health

1. Introduction

Human activities cause global environmental changes that threaten to disrupt the
stability of the Earth’s systems, leading to potentially disastrous consequences [1]. This
recognition has prompted a widespread call for emergency action to limit global tempera-
ture increases, restore biodiversity, and protect health [2]. Food systems are responsible for
between 19 and 37% of global anthropogenic greenhouse gas emissions (GHGE), depend-
ing on what is included in the estimate [3,4]. A recent estimate attributed 34% of global
GHGE to food systems, with 71% coming from agriculture and land use, and the rest from
downstream supply chain activities [5].

Yet, current practices of food production and distribution are insufficient, as there
are 815 million people globally, or one in nine, who are undernourished [6]. In order to
end hunger, different scenarios predict that between 3 and 20% more food production
will be necessary, depending upon the approach, increasing the associated environmental
impacts [7]. This challenge will only become more difficult as the global population
continues to expand to approximately 9 billion people [8].
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Reducing the consumption of animal-based foods is a possible measure to reduce
environmental impacts while improving health outcomes, with the potential to reduce
diet-related GHGE by between 33 and 51% in the United States [9,10]. A systematic review
found that vegan diets could reduce GHGE by up to 70%, land use by up to 86%, and
water use by up to 70% [11]. Another review found that along with improved health,
shifting from current omnivorous dietary patterns to vegetarian or vegan diets increases
environmental sustainability while also improving health [12].

The Academy of Nutrition and Dietetics considers appropriately planned vegetarian
diets to be healthful and nutritionally adequate for all stages of the life cycle [13]. Consum-
ing vegetarian or vegan diets has been shown to lower risk for developing obesity [14],
cardiovascular diseases [15], hypertension [16], type 2 diabetes [17], and metabolic syn-
drome [18]. These health-protective effects may be due to the higher nutrient quality typical
of plant-based diets [19]. Notably, vegetarian and vegan diets tend to be lower in total fat,
saturated fat, monounsaturated fat, dietary cholesterol, protein, alcohol, and sodium, and
higher in polyunsaturated fat, fiber, and iron [19]. This is likely because plant-based diets
tend to be higher in fruits, greens, and pulses; subcategories of vegetables [19]. In addition,
plant-based diets have been found to sufficiently support athletic performance while also
contributing to better overall health and reducing environmental impacts [20–22].

Nonetheless, certain nutrients are less bioavailable or less frequently consumed on a
vegetarian or vegan diet. For example, as non-heme iron (found in plants) is less bioavail-
able compared to heme iron (from animals), the Recommended Dietary Allowance for iron
for vegetarians and vegans is 1.8-fold greater than that for omnivores [23]. Additionally,
vegans (who exclude all animal products) must be mindful to consume foods fortified
with vitamin B12 or take a vitamin B12 supplement as this vitamin is not present in plant
foods [13]. Lacto-ovo vegetarians typically consume at least the recommended intake for
calcium, while vegans may risk insufficiency. Furthermore, vitamin D is not abundant in
food and is a nutrient for which the use of supplements is frequently advised, regardless of
dietary pattern [24].

Higher diet quality, as measured by the Healthy Eating Index, is associated with higher
food waste (FW), primarily in the form of fruits and vegetables [25]. FW is a significant
challenge, as 32% of all food produced in the world by weight or 24% by kilocalories
(kcal) is wasted [26]. If global FW were treated as its own country, it would be the third
largest emitter of GHGE, behind China and the United States, occupy 30% of the world’s
agricultural land area, and use the equivalent water of the annual discharge of the Volga
river in Russia (i.e., 250 km3) [27]. These FW statistics represent wasted resources and
wasted opportunities to eat health-promoting foods, which comprise a large portion of total
waste. In fact, the average global FW per capita per year could fulfill a person’s dietary
recommended intake (DRI) of 25 nutrients for 18 days [28]. Based on the types of food
wasted, that amount of FW contains between 25 and 50% of the DRI for vitamin C, K, zinc,
copper, manganese, and selenium for a person [28].

It is important to understand possible tradeoffs when promoting a solution to one
problem to ensure it does not exacerbate another. For example, given the relatively high
proportion of fruit and vegetable waste compared to meat waste, and the small proportion
of vegetarians in the general population, could there be higher FW as a result of reducing
meat-containing meals? Moreover, would the environmental impacts associated with that
FW be substantial enough to negate the benefits of serving vegetarian meals as the default
in large institutional settings? Although there are publications that assess hospital FW,
its environmental impacts, and techniques for FW reduction, no literature has previously
examined these questions [29–32].

Loma Linda University Medical Center (LLUMC) provides a unique setting to examine
the potential tradeoffs associated with serving lower environmental impact foods with
potentially higher FW compared to higher environmental impact foods with lower FW.
Unlike many hospitals, LLUMC serves lacto-ovo vegetarian meals to patients by default
for the first 24 h upon admission. However, patients have the option to reject the default
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and can choose their preferred meal items from standard menus, which include meat, after
24 h. As such, the aim of this case study was to examine the differences in FW and GHGE
between vegetarian meals and meat-containing meals served in a hospital setting.

2. Materials and Methods

A plate waste audit was performed by Loma Linda University dietetics graduate
students across seven consecutive days, from September 6 to 12, 2020 at LLUMC. Plates
audited included those served at breakfast, lunch, and dinner and were provided by meal
services on three hospital floors, which housed patients with the fewest special dietary
orders (e.g., liquid diets or “nil per os” (NPO, nothing by mouth)). At least 20 plates were
audited, upon tray return and prior to disposal, after each meal service. Each tray was
assigned a de-identifiable number and meal type (i.e., “meat-containing” or “vegetarian”)
based on the food items listed on the tray ticket, which reflected the patient’s menu order.
Trays returned without tray tickets and no remaining meat items were categorized as
unknown meal type. Floor number and diet order (regular or therapeutic) were also
noted for each tray. Institutional review board approval was not needed since no patient-
identifying information was collected. For each tray, all remaining individual food items
were removed and individually weighed in grams before being discarded. Liquid diet trays
were excluded from measurement due to the high proportion of total weight from liquid.

Data processing included removing container weight values from FW measured in
containers. LLUMC also provided recipes for composite foods such as cooked entrees and
soups, which were used to determine the proportional weights for individual ingredients
(e.g., spinach, cheese, and egg white for spinach quiche). In addition to FW weight,
GHGE were estimated using a combination of SimaPro life cycle assessment software
and published literature used to fill any gaps where SimaPro did not have appropriate
data [33–37]. The life cycle assessment (LCA) studies used for GHGE estimates all had
cradle to farm or manufacturer gate system boundaries and reported results using a weight-
based functional unit. The parameters of LCA studies included were system boundaries
from cradle to farm or manufacturer gate or distributor, excluding retail, consumption, and
disposal, and used a weight-based functional unit and attributional assumptions.

Descriptive and statistical analyses were conducted using IBM SPSS Statistics for
Windows, version 28 (IBM Corp., Armonk, NY, USA). Tests for assumptions of normality
and homogeneity of variance were performed using Kolmogorov–Smirnov and Levene’s
test, respectively. To examine between-group differences in total FW and total GHGE,
independent t-tests were performed. Values that were ±2.5 standard deviations from the
mean were considered outliers. Visual assessment using boxplots indicated that there
were no outliers, defined as values that were ±2.5 standard deviations from the mean.
Post hoc exploratory analyses were also conducted using independent t-tests to compare
between-group differences for FW and GHGE by primary food categories. The exploratory
analyses were considered secondary analyses, which were not driven by hypothesis testing;
therefore, the significance level was not adjusted for multiple comparisons. In addition,
effect size was calculated using Hedges’ g for all primary and secondary outcomes. Data
are reported as the mean ± standard deviation and the level of statistical significance was
set at p = 0.05.

3. Results

Plate data were analyzed for 447 patient trays of the 471 that were collected. Twenty-
four patient trays were excluded from analysis due to unknown meal type and absence of
identifying characteristics (e.g., leftover meat or a tray ticket). Key findings of this study
were that mean total plate waste was higher among meat-containing meals, and that the
associated GHGE was lower among vegetarian meals.
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3.1. Food Waste
3.1.1. Descriptive Statistics

The corresponding means and standard error of mean are presented graphically in
Figure 1. The data for total FW were not normally distributed for either group (p < 0.05).
Skewness of variables prevented transformation to a normal distribution. Non-parametric
tests, such as the Mann–Whitney U test, resulted in unacceptable values (U > 10,000)
and are most appropriate for analyzing ordinal data. Thus, non-parametric testing was
excluded from the analytical approach. However, based on the central limit theorem, with
adequate sample sizes (n ≥ 30), violation of the normality assumption is unlikely to affect
statistical findings. Therefore, parametric tests were acceptable due to the large sample size.
Homogeneity of variances was observed (p = 0.64). Descriptive statistics for FW (g) by each
food category and meal type are provided in Table A1 in Appendix A.
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Figure 1. Categories of foods and their respective amounts of waste differentiated by meal type.
Error bars represent the standard error of mean.

Total mean FW was greater among meat-containing meals (292.51 ± 180.77 g/plate) com-
pared to vegetarian meals (258.46 ± 186.09 g/plate), with a mean difference of 34.05 g/plate,
t(445) = 1.96, p = 0.05, g = 0.19 (Figure 2). The largest FW source for meat-containing meals
was vegetables and fruit, while vegetarian meals had the most FW from grains and vegetables.
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Figure 2. Plate waste from meat-containing and vegetarian meals. Vegetarian meals had less FW
than meat-containing meals. Error bars represent the standard error of mean.
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3.1.2. Exploratory Analyses

Exploratory analyses revealed significant differences in FW and GHGE between
groups for analyzed food categories except fruit (Table 1). Vegetable and dessert waste
were significantly greater among the meat-containing meals, while grains, dairy, egg, and
plant protein waste were significantly greater among the vegetarian meals.

Table 1. Exploratory comparison analyses for food waste (g/plate) and GHGE (g CO2 eq/plate)
between meat-containing and vegetarian meal types by food category.

Food Waste (g/plate)
Total

(N = 447)
M ± SD SE t-Statistic p-Value Hedges’ g

Fruit 40.03 ± 50.19 2.37 0.80 0.43 0.08
Vegetable 1 140.06 ± 65.51 3.10 4.60 <0.001 0.44

Grains 44.27 ± 54.73 2.59 6.10 <0.001 0.57
Dairy 21.26 ± 45.69 2.16 4.40 <0.001 0.41
Egg 6.90 ± 17.79 0.84 6.62 <0.001 0.61

Plant Protein 2 4.20 ± 17.96 0.85 2.03 0.049 0.19
Dessert 17.74 ± 35.54 1.68 2.22 0.03 0.21

GHGE (g CO2 eq/plate)
Fruit 19.56 ± 29.32 1.39 0.90 0.38 0.09

Vegetable 1 30.27 ± 33.16 1.57 4.17 <0.001 0.39
Grains 41.61 ± 54.44 2.57 4.38 <0.001 0.41
Dairy 77.84 ± 161.04 7.62 3.82 <0.001 0.36
Egg 23.40 ± 60.18 2.85 6.14 <0.001 0.61

Plant Protein 2 5.32 ± 19.93 0.94 2.42 0.008 0.23
Dessert 108.08 ± 323.83 15.32 2.67 0.004 0.25

1 Includes vegetables and starchy vegetables; 2 Plant protein items consist of peanut butter, tofu, black beans,
brown lentils, and hummus.

There were statistically significant differences between meat-containing meals and
vegetarian meals for every major food category shared by both meal types except fruit.

3.2. Global Warming Potential

Descriptive statistics for GHGE by food category and meal type are provided in
Table A2. The difference in total GHGE was also compared between meal types. The data
were not normally distributed (p < 0.001) and homogeneity of variance was not observed
(p < 0.001). The ratio of the meat-containing meals to the vegetarian meals is 1.1; thus,
this violation is unlikely to affect statistical findings. Total GHGE was significantly greater
for meat-containing meals (604.20 ± 643.45 g CO2 eq) compared to vegetarian meals
(356.66 ± 376.98 g CO2 eq), t(445) = 4.995, p < 0.001, g = 0.47 (Figure 3).
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Total GHGE were significantly higher for FW from meat-containing meals than for
vegetarian. The highest contributor to GHGE was animal protein, followed by dessert. The
highest contributor to FW from vegetarian meals was dairy, followed by dessert.

GHGE from both meat-containing and vegetarian meals’ waste had a high standard
error of means. GHGE from vegetarian meals’ waste was much lower than that from
meat-containing meals’ waste.

GHGE was significantly greater among meat-containing meals for the vegetable and
dessert food categories compared to vegetarian meals. GHGE was significantly greater
among vegetarian meals for grains, dairy, egg, and plant protein.

GHGE associated with plate waste showed statistically significant differences across
all food categories except fruit when comparing plate waste from meat-containing meals to
plate waste from vegetarian meals.

4. Discussion

The objective of this study was to examine the differences in FW and GHGE between
vegetarian meals and meat-containing meals to determine if greater FW among vegetarian
meals offset the associated environmental benefits when compared to meat-containing
meals. Analysis of plate FW failed to demonstrate evidence that vegetarian meals are
associated with more FW or corresponding GHGE. Therefore, there does not appear to be a
tradeoff or downside to providing vegetarian meals to patients by default for the first 24 h
following their admission to a hospital setting from this perspective.

Previous work has not investigated the possibility that extra FW would be generated
by providing vegetarian meals by default, which could potentially negate the environ-
mental benefit of doing so, when compared to serving meat-containing meals by default.
Only a couple of studies have reported actual FW in hospitals at the item level [29,32].
Change in meal service style from traditional foodservice to room service can reduce FW
by approximately one-third [30]. GHGE from meals in a hospital setting were estimated to
be approximately 5 kg CO2-eq per day for a 2000 kcal diet, with a range between approxi-
mately 0.5 and 8 kg CO2-eq for liquid diets and high protein diets, respectively [31]. GHGE
from plate waste itself amounted to an average of approximately 1 kg waste per patient
per day, which was associated with approximately 1.8 kg CO2-eq [32]. Plate waste refers
to food that was served to a patient but not consumed, as opposed to tray waste, which
includes other non-food waste, such as packaging [38]. Numerous studies indicate that the
GHGE from animal-based foods are higher than those from plant-based foods [9,10,33,35].

However, FW from vegetarian meals in this study was approximately 11% lower
than that from meat-containing meals, which represents a difference that is approximately
half the reduction in FW observed in another study that examined FW reduction from a
transition to room service rather than traditional foodservice [30]. Additionally, the average
GHGE from daily plate waste per patient reported here for meat-containing and vegetarian
meals was approximately 36% and 21%, respectively, of the average GHGE per day for a
2000 kcal diet in a hospital setting reported in another study [31]. In addition, the GHGE
per patient per day in this study of approximately 1.8 kg CO2 eq for meat-containing meals
matches the value reported in another study of hospital FW and emissions of 1.8 kg CO2 eq
per patient per day [32].

Meal provision is considered an “environmental hot spot” in hospitals [39]. To address
this, it has been proposed to list vegetarian meal choices first on menus and to offer more
vegetarian meal options in hospitals [39]. The European Society for Clinical Nutrition
and Metabolism (ESPEN) affirms the importance of providing vegetarian meals and other
specialized dietary patterns to be respective of religious and dietary preferences to patients
as well, noting the increased demand for vegetarian meals by patients [40]. Providing
vegetarian meals in hospital settings may have synergistic benefits beyond reducing FW
and environmental impacts by also promoting health.

California licensed health care facilities and state prisons are required by law to
make available “wholesome, plant-based meal options” to meet patient needs and follow
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physicians’ diet orders according to CA Senate Bill No. 1138 [41]. Additional California
law (Senate Bill No. 1383) sets targets for statewide organics recycling to reduce short-lived
climate pollutants, such as methane from food waste sent to landfill [42]. The American
Medical Association passed a resolution in 2017 (H-150.949) calling on US hospitals to
“improve the health of patients, staff, and visitors by providing a variety of healthy food,
including plant-based meals” [43]. As hospitals work to comply with such laws and
resolutions, this study demonstrates that serving plant-based or vegetarian meals may
provide overall reductions in FW and GHGE generated from meal service.

United States federal regulations require that hospitals provide “a nourishing, palat-
able, well-balanced diet that meets the daily nutritional and special dietary needs” of
patients (42 Code of Federal Regulations 483.35), informed by the recommendations of
a qualified registered dietitian, and that menus meet nutritional needs as recommended
by the Food and Nutrition Board of the National Research Council, National Academy
of Sciences [44]. While maintaining compliance with such regulations, as well as specific
state regulations, there may be particular advantages conveyed by providing vegetarian
meals. For example, there is a clear connection between proper nutrition and a healthy
immune system to protect against infections [45]. Of particular relevance currently, healthy
diets as measured by the Plant-Based Diet Score are associated with lower risk and severity
of COVID-19 [46]. Health care workers (who often eat meals provided by the hospital
cafeteria) who reported following plant-based diets and low-meat diets also had lower
odds of moderate to severe COVID-19 [47].

There were some limitations to this study. Some food categories were excluded
from exploratory statistical analysis due to inherent differences between meal types (e.g.,
vegetarian meals contained no animal protein). Some additional food categories were
excluded due to having near negligible mean values. The food categories excluded were
meat analogues, animal protein, sugars, condiments, and sauces. The larger amount of
plant protein waste from vegetarian meals was expected, as these trays were more likely to
contain higher amounts of plant proteins including peanut butter, tofu, black beans, brown
lentils, and hummus.

Future research should include measurements of initial food weights to understand
the proportion of each meal wasted and facilitate comparison across meals with different
starting weights. It may also be useful to explore differences when correcting for kcal
content of meals. Additional research could also examine correlations between meal
type (e.g., liquid, dysphagia, cardiac, and low sodium), patient ward (e.g., surgery and
intensive care), and outcomes (e.g., length of stay), as well as explore differences based on
demographic factors such as sex or age.

Generalizability of the findings from this research is likely most applicable to other
hospitals and similar settings where food is provided, but from fairly limited options and
with few if any alternatives. In a hospital setting, there are often limited choices and the
consumer may be feeling unwell, both of which increase the likelihood of them wasting
food. In contrast, consumers are normally able to choose from a wide array of foods in
a variety of settings, reducing the likelihood that they will waste the food they choose to
consume. Therefore, it is unlikely that similar levels of food waste would be observed
outside a hospital setting. It is unclear whether or not a proportional difference in food
waste between vegetarian and meat-containing meals would be maintained outside a
hospital setting. However, it is well known that the environmental impacts associated with
meat are greater than those associated with most vegetarian foods, so it is reasonable to
expect that food waste from meat-containing meals would still have higher GHGE for a
similar amount of food wasted.

5. Conclusions

It is important both to reduce the GHGE associated with food provision and reduce the
proportion of food that goes to waste as part of efforts to limit the negative environmental
consequences of food systems. Fortunately, the case study examined here provides an exam-
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ple where one choice—serving vegetarian meals to patients by default for their first 24 h in
a hospital setting—improves both outcomes. Food waste from vegetarian meals was lower
in both total weight and associated GHGE than food waste from meat-containing meals.
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Appendix A

Table A1. Descriptive statistics for plate waste (g/plate) by meal type and food category, presented
as M ± SD.

Food Category
Meat-Containing Meals Vegetarian Meals Total

(N = 214) (N = 233) (N = 447)

Fruit 42.00 ± 50.78 38.21 ± 49.69 40.03 ± 50.19
Vegetable 73.33 ± 77.09 48.64 ± 80.20 60.46 ± 79.60

Starchy Vegetable 34.12 ± 46.64 16.42 ± 37.06 24.90 ± 42.80
Grains 28.74 ± 36.74 58.54 ± 63.97 44.27 ± 54.73
Dairy 11.72 ± 32.52 30.02 ± 53.68 21.26 ± 45.69
Egg 1.51 ± 8.23 11.86 ± 22.24 6.90 ± 17.79

Plant Protein 2.45 ± 11.75 5.80 ± 22.09 4.20 ± 17.96
Meat Analogue 0.79 ± 9.46 11.32 ± 27.24 6.28 ± 21.36
Animal Protein 33.39 ± 36.41 0.00 ± 0.00 15.98 ± 30.20

Dessert 21.64 ± 38.00 14.16 ± 32.79 17.74 ± 35.54
Sugars 0.72 ± 4.59 2.91 ± 9.04 1.86 ± 7.33

Condiments 12.67 ± 15.22 11.50 ± 10.27 12.06 ± 12.88
Sauces 7.72 ± 14.77 1.50 ± 4.53 4.48 ± 11.16

Total Plate Waste 292.51 ± 180.77 258.46 ± 186.09 274.76 ± 181.15

Table A2. Descriptive statistics for GHGE (g CO2 eq/plate) by meal type and food category, presented
as M ± SD.

GHGE by Food
Category

Meat-Containing Meals Vegetarian Meals Total
(N = 214) (N = 233) (N = 447)

Fruit 20.87 ± 32.00 18.36 ± 49.69 19.56 ± 29.32
Vegetable 26.95 ± 32.05 18.05 ± 28.79 22.31 ± 30.74

Starchy Vegetable 9.47 ± 13.40 4.66 ± 10.94 6.96 ± 12.43
Grains 30.04 ± 45.03 52.24 ± 59.81 41.61 ± 54.44
Dairy 47.87 ± 122.28 105.37 ± 185.29 77.84 ± 161.04
Egg 5.12 ± 27.79 40.20 ± 75.08 23.40 ± 60.18

Plant Protein 2.95 ± 12.95 7.50 ± 24.42 5.32 ± 19.93
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Table A2. Cont.

GHGE by Food
Category

Meat-Containing Meals Vegetarian Meals Total
(N = 214) (N = 233) (N = 447)

Meat Analogue 1.315 ± 15.84 20.92 ± 51.04 11.54 ± 39.71
Animal Protein 285.01 ± 398.24 0.00 ± 0.00 136.45 ± 310.83

Dessert 150.53 ± 380.48 69.09 ± 254.16 108.08 ± 323.83
Sugars 0.55 ± 3.47 2.22 ± 7.10 1.42 ± 5.72

Condiments 22.21 ± 40.88 16.68 ± 31.06 19.33 ± 1.35
Sauces 1.31 ± 2.45 1.50 ± 4.53 1.37 ± 4.21
Total 604.21 ± 643.45 356.66 ± 374.98 475.17 ± 536.09
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