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Abstract: Fine temperature control is essential in homeothermic animals. Both hyper- and hypother-
mia can have deleterious effects. Multiple, efficient and partly redundant mechanisms of adjusting the
body temperature to the value set by the internal thermostat exist. The neural circuitry of temperature
control and the neurotransmitters involved are reviewed. The GABAergic inhibitory output from
the brain thermostat in the preoptic area POA to subaltern neural circuitry of temperature control
(Nucleus Raphe Dorsalis and Nucleus Raphe Pallidus) is a function of the balance between the
(opposite) effects mediated by the transient receptor potential receptor TRPM2 and EP3 prostaglandin
receptors. Activation of TRPM2-expressing neurons in POA favors hypothermia, while inhibition
has the opposite effect. Conversely, EP3 receptors induce elevation in body temperature. Activation
of EP3-expressing neurons in POA results in hyperthermia, while inhibition has the opposite effect.
Agonists at TRPM2 and/or antagonists at EP3 could be beneficial in hyperthermia control. Activity
of the neural circuitry of temperature control is modulated by a variety of 5-HT receptors. Based
on the theoretical model presented the “ideal” antidote against serotonin syndrome hyperthermia
appears to be an antagonist at the 5-HT receptor subtypes 2, 4 and 6 and an agonist at the receptor
subtypes 1, 3 and 7. Very broadly speaking, such a profile translates in a sympatholytic effect. While a
compound with such an ideal profile is presently not available, better matches than the conventional
antidote cyproheptadine (used off-label in severe serotonin syndrome cases) appear to be possible
and need to be identified.

Keywords: serotonin syndrome; malignant neuroleptic syndrome; 5-HT receptors; dopamine;
cyproheptadine

1. Introduction

Fine temperature control is essential in homeothermic animals. Both hyper- and
hypothermia can have deleterious effects. Multiple, efficient and partly redundant mecha-
nisms of adjusting the body temperature to the value set by the internal thermostat exist.
Hyperthermia can be mitigated or avoided by:

• decreasing thermogenesis ↓ (reducing metabolic rate and brown adipose tissue (BAT)
catabolism). BAT is richly innervated by sympathetic efferent fibers and β3 receptor
activation induces BAT thermogenesis [1];

• diverting heat to the periphery (cholinergic vasodilation);
• increasing cooling (sweat production by the sudoriparous cholinergic glands and

evaporation);
• decreasing motor activity (↑ parasympathetic drive).

While certainly an oversimplification, these effects can be viewed as a consequence of a
decrease in sympathetic output to the periphery with a concomitant increase of parasympa-
thetic (vagal) influence. The opposite holds for hypothermia avoidance, where an increase
in sympathetic output is beneficial.

The preoptic area (POA), located in the anterior hypothalamus, is generally viewed as
the brain thermostat. Input to the POA comes both from somatosensory thermo(re)ceptors
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in the periphery (body temperature) and thermo(re)ceptors in the POA itself (core tem-
perature) [2]. Output from the POA is mainly–but not only–inhibitory GABAergic di-
rected towards the Sympatho-Motor Command System located in the Nucleus Raphe
Dorsalis (NRD).

POA thermoceptors are transient receptor potential (TRP) (mostly) cell membrane
channels; when activated, TRP channels open, allowing cation influx and activation (depo-
larization) of the cell. The dominant TRP channel expressed in the POA is member two of
the M-(melastatin) eight-member subfamily [3,4]. The M from melastatin is related to the
fact that the first member of this receptor subfamily (TRPM1) was isolated from melanoma
tissue [3,5,6]. The numbering of the members corresponds to the order of their discovery.
A must read review of the TRMP2 topic was recently published by Ali et al. [7].

Preoptic area (POA): The output from the POA is the result of the balance between
TRPM2 and EP3 prostaglandin receptors mediated effects.

TRPM2 (activation) protects against body temperature elevation by mediating body
cooling. Activation of TRPM2-expressing neurons in POA results in hypothermia, while
inhibition has the opposite effect [8,9].

Conversely, EP3 receptors induce elevation in body temperature. Activation of EP3-
expressing neurons in POA results in hyperthermia, while inhibition has the opposite effect
(Figure 1).

Figure 1. The output from the POA is the result of the balance between TRPM2 and EP3 prostaglandin
receptor mediated effects. TRMP2 activation by the endogenous intracellular agonist ADP-ribose
increases the POA neuronal activity, i.e., GABAergic inhibition of downstream subaltern structures.
Exogenous TRP M2 agonists (acetaminophen and possibly metamizole) have a similar effect. EP3
activation by the endogenous agonist PGE2 (dinoprostone) reduces POA neuronal activity i.e., reduces
GABAergic inhibition (disinhibition) of downstream subaltern structures. NSAIDs by inhibiting
cyclo-oxygenases reduce the availability of PGE2 and thus the activation of EP3. TRMP2 antagonists
are not (yet) in clinical use.

Must read reviews on the topic, such as the ones authored by Trevor and Barnes and
by Voronova, exist [10,11].
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2. TRPM2-Activators

ADP-ribose is the intracellular endogenous agonist at TRPM2; it is generated as a
defense response to i.a. oxidative stress. Reversible ribosylation of the TRPM2 protein
opens calcium channels and induces a cation current [12–14]. Kheradpezhouh et al., 2014
presented data suggesting that exposure of hepatocytes to acetaminophen (N-acetyl-p-
aminophenol; paracetamol), results in activation of TRPM2 channels and induces a cation
current similar to that activated by oxidative stress (hydrogen peroxide; H2O2) or the
intracellular application of ADP-ribose [15].

The therapeutic plasma concentration for acetaminophen is between 5 and 20 µg/mL
(33 to 132 µm) [16]. The brain: plasma ratio is ≈1:5 in humans [17].

The antipyretic efficacy of acetaminophen (paracetamol, a compound lacking sig-
nificant cyclooxygenase inhibitory ability), is likely to be associated with activation of
TRPM2 channels in POA. At the same time TRPM2 channels mediate liver injury induced
by acetaminophen toxicity.

3. EP3-Activators

PGE2 (dinoprostone) is the final mediator that triggers fever by acting directly on EP3
prostaglandin receptors (EP3) expressed on POA neurons [18]. PGE2 has extreme high
affinity (dissociation constant Kd ≈ 0.3 nm) for EP3. EP3 is an inhibitory GPCR prostanoid
receptor (Gi, inhibiting adenyl cyclase). EP3-deficient mice as well as mice selectively
deleted of EP3 expression in the brain’s preoptic nucleus fail to develop fever in response
to endotoxin (i.e., bacteria-derived lipopolysaccharide) or the host-derived regulator of
body temperature, IL-1β (endogenous pyrogen). These findings indicate that activation of
the EP3 receptor suppresses the GABAergic inhibitory tone (inhibition of inhibition) that
the preoptic hypothalamus has on thermogenic effector cells.

4. Exogenous TRPM2-Inhibitors

There are several known TRPM2 inhibitors, including amino-ethoxy-diphenyl borate
(2-APB), amino acids (anthranilic acid), azole antifungals (clotrimazol), fenamate NSAIDs,
and phenothiazine antipsychotics (chlorpromazine). However, this appears to be clinically of
little or no relevance as the concentrations required to achieve even a partial block are beyond
the respective safety margins. The lack of specificity is a further major limitation [19–23].

Toda et al., 2019 identified duloxetine (a dual inhibitor of serotonin and norepinephrine
reuptake with comparable single digit nanomolar affinities for both 5-HT and NE trans-
porters), as an inhibitor of oxidative stress-induced TRPM2 activation (open-channel block-
ing mechanism) [24]. Duloxetine inhibits TRPM2 independently from its ability to inhibit
serotonin and norepinephrine reuptake. The therapeutic serum concentration of duloxetine
ranges between 30 and 120 ng/mL (90–360 nm) [25]. The brain–blood ratio for duloxetine
ranges from ≈5 to 22 [26]. Theoretically, duloxetine should favor hyperthermia develop-
ment more than other reuptake inhibitors; clinically, however, this does not seem to be
the case.

Conceptually peripherally acting TRPM2 inhibitors could be organo-protective (hepa-
totoxicity) [7]. A clear clinical benefit from centrally acting TRPM2 inhibitors has not yet
been identified; such compounds favor an increase in temperature and could potentially be
useful in hypothermia.

• Output from the preoptic area (POA): The preoptic area of the anterior hypotha-
lamus sends inhibitory efferent output to a number of partner and subaltern sites
co-responsible for controlling body temperature;

• Dorsal Hypothalamic Area (DHA): Glutamatergic neurons located in the dorsal hy-
pothalamus are under tonic inhibition from POA. When activated (disinhibited) these
neurons cause an increase in body temperature via cascade activation of subaltern
downstream structures (raphe pallidus). In contrast, dopaminergic input (via D2 re-
ceptors) from the dorsal hypothalamus to raphe pallidus reduces thermogenesis [27];
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• Nucleus Raphe Pallidus (NRP): The term raphe refers to a ridge that separates two
symmetrical parts of the body, and was used in the naming of the raphe nuclei because
this collection of nuclei are clustered around the midline of the brainstem. They are
considered part of the reticular formation. The raphe nuclei are the primary location
in the brain for serotonin production, and the serotonin synthesized here is distributed
throughout the entire central nervous system. While the NRP receives input from the
dorsal hypothalamic area, the main input is from the Nucleus Raphe Dorsalis (NRD);

• Nucleus Raphe Dorsalis (NRD) represents the largest population of serotoninergic
neurons in the brain. Functionally NRD is viewed as the main Sympatho-Motor Com-
mand System. Serotonergic neurons from the sympatho-motor command system [28]
project to the nucleus raphe pallidus (NRP) and induce sympathetic activation [29–33]
(Figure 2).

Figure 2. The preoptic area (POA) of the anterior hypothalamus (area) sends GABAergic inhibitory
efferent output to a number of partner and subaltern sites co-responsible for controlling body
temperature. Glutamatergic neurons in the dorsal hypothalamic area (DHA) are under such inhibitory
control. When disinhibited they activate the nucleus raphe pallidus (NRP) that subsequently activates
sympathetic neurons. NRP is also under inhibitory dopaminergic control originating from the DHA.
The nucleus raphe dorsalis (NRD; Sympatho-Motor Command System) is also tonically inhibited
by POA. When disinhibited it allows serotoninergic activation of the nucleus raphe pallidus (NRP)
with subsequent sympathetic activation. Direct activation of sympathetic neurons (bypassing the
NRP) is also possible. An increase in sympathetic output favors heat generation (BAT catabolism)
and reduces heat loss (peripheral vasoconstriction).

5. Neurotransmitters

Systemic administration of dopamine (DA) receptor agonists leads to falls in the body
temperature [27]. Since dopamine itself has a very limited ability to cross the blood–brain
barrier this is likely a peripheral effect, mediated by vasodilation. Centrally, dopamine and
dopamine receptor agonists also have a protective effect against temperature increase as
evidenced by development of hyperthermia associated with dopaminergic blockade or
abrupt withdrawal of dopaminergic agonists. This is consistent with the model proposed
here, where the nucleus raphe pallidus’s activation by serotonin is opposed by dopaminer-
gic inhibition. Such an explanation was put forward already in 1989 by Kato and Yamawaki
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who stated that, “hyperthermia in neuroleptic malignant syndrome is due to the dominant
effect of serotonin in the thermoregulatory center either by blocking the dopamine receptor
or by enhancing the serotonin secretion.” [34]. It is accepted that increasing serotonin neu-
rotransmitter concentration in the brain favors the development of hyperthermia (Serotonin
Syndrome; SS) while dopamine depletion or antagonism has a similar effect, known as
Neuroleptic Malignant Syndrome (NMS).

The activity of the brain neuro-circuitry is modulated by a large variety of serotonin-
ergic auto- and heteroreceptors that need to be considered when deciding therapeutic
approaches. Clinical treatment of SS, in addition to withdrawal of the offending agent
and supportive care, involves the possible administration (off-label) of cyproheptadine,
a first-generation promiscuous tricyclic compound with antihistamine, anticholinergic,
antiserotonergic, and local anesthetic (sodium channel blocking) properties. Its use as
an antidote in severe cases of SS is complicated by the lack of availability of a parenteral
formulation and its lack of selectivity among serotonin receptors.

The lack of a parenteral formulation is relevant considering that many patients will
have received activated charcoal, thus making the uptake of either orally or via NG tube
administered drugs, if not difficult or impossible, certainly unreliable. Considering the
variety of serotonin receptors and the spectrum of effects mediated, a more selective
instrument could be advantageous. For comparison purposes, data for aripiprazole, an
atypical antipsychotic, are presented.

5.1. 5-HT1A Receptors

Transgenic mice overexpressing 5-HT1A receptors show prolonged episodes of brady-
cardia, and 5-HT1A agonists induce bradycardia [35–39]. The 5-HT1A receptor agonists
produce miosis in humans [40]. Measurement of pupil size seems to provide a valuable
and sensitive index of 5-HT1A receptor function [41]. The 5-HT1A gene knockout animals
showed increased fear and sympatho-activation under experimental conditions [42]. In
conclusion, stimulation of 5-HT1A receptors causes central sympatho-inhibition and an
increase in cardiac vagal drive [35]. In line with these findings, pharmacological and
receptor knockout approaches support a role for 5-HT1A receptors in defense against
hyperthermia [43–46]. Microinjection of a selective 5-HT1A receptor antagonist into the
raphe pallidus attenuates 8-OH-DPAT-induced hypothermia [31], while a selective 5-HT1A
receptor agonist induced hypothermia. Similarly, activation of 5-HT1A receptors in raphe
pallidus inhibits leptin-evoked increases in brown adipose tissue thermogenesis [47].

Voronova, 2021 states that 5-HT1A activation, as a rule, leads to the development of
hypothermia in animals at warm ambient temperature [10]. Antagonism at these receptors
by cyproheptadine (Ki ≈ 60 nm) in the context of SS does not appear to be beneficial or
desirable (Figure 3).

Figure 3. Assumed effect of centrally acting 5-HT1A agonists and antagonists on temperature.
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5.2. 5-HT2 Receptors

The group of 5-HT2 receptors are the most sensitive ones to the inhibitory effects of
cyproheptadine with Ki values in the single digit nanomolar range. The dose of cyprohep-
tadine recommended to ensure blockade of the 5-HT2 receptors for serotonin syndrome is
20 to 30 mg [48].

Activation of 5-HT2A and 5-HT2B receptors has predominantly excitatory effects.
Some authors understand SS as a consequence of excessive activation of 5-HT2A recep-
tors [49]. The available evidence supports the view that activation of these receptors is
associated with hyperthermia, while inhibition of the same favors hypothermia [10,50,51].

The 5-HT2C receptors (Gq) are structurally similar to 5-HT2A receptors, and the two
coexist in many brain regions and on the same neurons. Functionally, 5-HT2A and 5-HT2C
are mostly (but not always) antagonists. While they generally play opposing facilitative
and inhibitory roles, this does not seem to be the case in thermoregulation [52].

The activation of 5-HT2C inhibits neurotransmitter (dopamine) release, thus reducing
dopaminergic inhibition of the NRP and increasing activation of sympathetic structures.
The activation of 5-HT2C thus inhibits vagal activity and favors hyperthermia [36,53].
Antagonism (5-HT2C inhibition) is, however, apparently not so sufficient as to induce
hypothermia (Figure 4).

Figure 4. Assumed effect of centrally acting 5-HT2 agonists and antagonists on temperature.

Antagonism at these receptors by cyproheptadine appears to be beneficial.

5.3. 5-HT3 Receptors

The 5-HT3 receptors are the only ionotropic serotonin receptors. Activation of cen-
tral 5-HT3 receptors are effective in hypothermia induction due to marked decrease in
thermogenesis and increase in heat loss. The implication of central 5-HT3 receptors in ther-
moregulation and the interaction with 5-HT1A receptors was reported [10,54]; a centrally
administered 5-HT3 agonist dose-dependently reduced temperature [55]. Voronova, 2021
concludes that, “all available data indicate that central 5-HT3 receptors activation leads
to a decrease in body temperature of a warm-blooded organism, and this occurs due to a
decrease in heat production and an increase in heat loss.” [10] (Figure 5).

Figure 5. Assumed effect of centrally acting 5-HT3 agonists and antagonists on temperature.
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Antagonism at these receptors by cyproheptadine (Ki ≈ 230 nM) does not appear to
be beneficial.

5.4. 5-HT4 Receptor

Stimulation of 5-HT4 receptors facilitates cholinergic neurotransmission at many sites,
including in the brain. The activation of 5-HT4 receptor has an excitatory effect; these
receptors exert both a tonic and a phasic, positive, frequency-related control on NRD
5-HT firing activity [56,57]. Inhibition of these receptors reduces the NRD5-HT firing
activity. The 5-HT4 receptor agonists and antagonists increase and decrease 5-HT cell firing,
respectively [58,59].

Antagonism at these receptors by cyproheptadine–if exerted–could be beneficial. No
information concerning the cyproheptadine effect at 5-HT4 receptors is available to us.

5.5. 5-HT5 Receptors

The 5-HT5 receptor occurs in brain areas that are implicated in learning and mem-
ory [60]. These Gi protein coupled receptors are poorly explored due to lack of selective
ligands [61].

No information concerning the cyproheptadine effect at 5HT5 is available to us.

5.6. 5-HT6 Receptors

The 5-HT6 receptors, expressed almost exclusively in the brain, are Gs protein cou-
pled and mediate excitatory neurotransmission. It was recognized that 5-HT6 receptors
modulate primarily GABA and glutamate levels, influencing the secondary release of other
neurotransmitters [62].

The Trevor Sharp and his group at Oxford found pharmacological evidence for 5-HT6
receptor modulation of serotoninergic neuron firing in vivo. The group investigated the
effect of intravenous administration of high affinity and selectivity 5-HT6 agonists and
antagonists, on the firing of 5-HT neurons in the NRD in vivo. The Wyeth–Ayerst 5-HT6
receptor agonist WAY-181187 caused a dose-dependent increase in the 5-HT neuron firing
rate. In contrast, the Glaxo–Smith–Kline antagonist SB-399885 caused a dose-dependent
decrease in the 5-HT neuron firing rate, an effect reversed by WAY-181187 [59]. They
conclude that, “5-HT4 and 5-HT6 receptors might act in concert to provide a homeostatic
positive feedback control of 5-HT neurons, whereas other 5-HT receptor subtypes, including
5-HT1A and 5-HT1B receptors, provide a balancing negative feedback control.”

Taken together, these findings seem to indicate that antagonism at this receptor by
cyproheptadine might be desirable (Figure 6).

Figure 6. Assumed effect of centrally acting 5-HT4 and 6 agonists and antagonists on temperature.

5.7. 5-HT7 Receptors

Pharmacological and receptor knockout approaches support a role for 5-HT7 receptors
in fine-tuning of homeostatic regulation of body temperature [43–46,63]. Pharmacological
evidence supports a role for serotonergic systems, acting via 5-HT7 receptors, in thermoreg-
ulatory cooling [45,63,64].



Int. J. Mol. Sci. 2022, 23, 3365 8 of 12

Landry et al. (2006) point out that stimulation of 5-HT7 receptors primarily results in
hypothermia, a view confirmed by Naumenko’s group [65,66]. The effect is similar to that
achieved by stimulation of 5-HT1A receptors (Figure 7).

Figure 7. Assumed effect of centrally acting 5-HT7 agonists and antagonists on temperature.

6. Cyproheptadine

Based on the aforementioned, the ideal antidote for SS appears to be an antagonist
at the even receptor subtypes and an antagonist at the uneven ones (with the exception
of 5-HT5, for which no data are presently available). A compound with such a profile
does not exist, or at least is unknown to us. Any drug used as an antidote will need to
be a compromise solution. The relative importance of the various receptor subtypes in
temperature control is difficult to estimate, but probably an atypical antipsychotic profile
(aripiprazole-like) might be a reasonable approximation of desirable profile. Cyprohepta-
dine is an antagonist at most (probably all) serotonin receptor subtypes; while antagonism
at even receptor subtypes is desirable, such an effect at uneven receptors is probably less so.
Aripiprazole is an antagonist at serotonin receptor subtypes 2A and 6 and a partial agonist
at 1A and weak agonist at 2C and 7 (Figure 8 and Table 1).

Figure 8. Cyproheptadine (left panel) is an antagonist at most (probably all) serotonin receptor
subtypes; while antagonism at even receptor subtypes is desirable (thumbs-up), such an effect at
uneven receptors is probably less so (thumbs-down). Aripiprazole (right panel) is an antagonist at
serotonin receptor subtypes 2A and 6 and a partial agonist at 1A (Emax ≈ 70% of 5-HT effect) and
very weak agonist at 2C and 7 (Emax ≈ 10%).
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Table 1. Cyproheptadine (antagonist), aripiprazole (mixed effects) and serotonin (endogenous
agonist) approximate affinities (Ki nM) for serotonin receptor subtypes and the serotonin transporter
(SERT). The interpretation of such data, especially concerning partial or weak agonism is difficult,
as the effect (Emax as percentage of serotonin effect) of the exogenous ligand depends on the site
concentration of the endogenous ligand. The origin of affinity values is the PDSP Ki database.
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7. Conclusions

The GABAergic output from the brain thermostat in the preoptic area (POA) to subal-
tern neural circuitry of temperature control (Nucleus Raphe Dorsalis and Nucleus Raphe
Pallidus) is inhibitory. Its magnitude is a function of the balance between the (opposite)
effects mediated by the transient receptor potential receptor TRPM2 and EP3 prostaglandin
receptors. Activation of TRPM2-expressing neurons in POA favor hypothermia, while
inhibition has the opposite effect. Conversely, EP3 receptors induce elevation in body
temperature. Activation of EP3-expressing neurons in POA results in hyperthermia, while
inhibition has the opposite effect. Agonists at TRPM2 and/or antagonists at EP3 could be
beneficial in hyperthermia control. Activity of the neural circuitry of temperature control
is modulated by a variety of 5-HT receptors. Based on the theoretical model presented
the “ideal” antidote against serotonin syndrome hyperthermia appears to be an antagonist
at the 5-HT receptor subtypes 2, 4 and 6 and an agonist at the receptor subtypes 1, 3 and
7. Very broadly speaking such a profile translates into a sympatholytic effect. While a
compound with such an ideal profile is presently not available, better matches than the
conventional antidote cyproheptadine appear to be possible and need to be identified.
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