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Abstract

Emerging single cell technologies that simultaneously capture long-range inter-
actions of genomic loci together with their DNA methylation levels are advancing
our understanding of three-dimensional genome structure and its interplay with the
epigenome at the single cell level. While methods to analyze data from single cell
high throughput chromatin conformation capture (scHi-C) experiments are matur-
ing, methods that can jointly analyze multiple single cell modalities with scHi-C
data are lacking. Here, we introduce Muscle, a semi-nonnegative joint decomposi-
tion of Multiple single cell tensors, to jointly analyze 3D conformation and DNA
methylation data at the single cell level. Muscle takes advantage of the inherent
tensor structure of the scHi-C data, and integrates this modality with DNA methy-
lation. We developed an alternating least squares algorithm for estimating Muscle
parameters and established its optimality properties. Parameters estimated by Mus-
cle directly align with the key components of the downstream analysis of scHi-C data
in a cell type specific manner. Evaluations with data-driven experiments and simu-
lations demonstrate the advantages of the joint modeling framework of Muscle over
single modality modeling or a baseline multi modality modeling for cell type delin-
eation and elucidating associations between modalities. Muscle is publicly available
at https://github.com/keleslab/muscle.

Keywords : Single cell 3D genome, Single cell DNA methylation, Tensor decomposition,
Block term tensor decomposition.
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1 Introduction

Interactions between distal genomic regions (i.e., loci) that become in close proximity of

each other through chromatin loops and topologically associated domains (TADs) are key

elements of gene regulatory mechanisms. High-throughput Chromatin Conformation Cap-

ture (Hi-C) sequencing technology (Lieberman-Aiden et al., 2009a) captures snapshots of

the long-range interactions of the genomic loci at the whole-genome level. Data from this

technology consists of sequencing of millions of genomic locus pairs that are in physical

contact and is summarized by a symmetric Hi-C contact matrix, entries of which represent

a measure of physical contact between the locus pairs. Recent advancements in single cell

sequencing technologies of Hi-C (scHi-C) enabled profiling interactions between distant ge-

nomic loci in individual cells (Stevens et al., 2017; Ramani et al., 2017; Tan et al., 2021;

Ulianov et al., 2021) and even simultaneously with their DNA methylation status (sn-

m3C-seq (Lee et al., 2019; Liu et al., 2021), scMethyl-HiC (Li et al., 2019a)). These new

approaches have the potential to elucidate the interplay between the epigenetic mechanisms

and 3D genome structure in a wide variety of biological contexts. Statistical and compu-

tational approaches for specific scHi-C data inference tasks are appearing rapidly (e.g.,

scHiCluster (Zhou et al., 2019), scHiC Topics (Kim et al., 2020), Higashi (Zhang et al.,

2022a), BandNorm and 3DVI (Zheng et al., 2022), and Fast-Higashi (Zhang et al., 2022b),

SnapHiC (Yu et al., 2021), scHiCTools (Li et al., 2021), DeTOKI (Li et al., 2021)). However,

computational tools for integrating scHi-C with other data modalities such as transcrip-

tomics, epigenomics, and epigenetics are lagging behind. Notably, the only method that

can integrate scHi-C with scRNA-seq is scGAD (Shen et al., 2022). However, scGAD’s

common feature-based integration approach does not capitalize on the simultaneous pro-

filing of 3D conformation and DNA methylation status of cells as enabled by sn-m3C-seq
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(Lee et al., 2019; Liu et al., 2021) and scMethyl-HiC (Li et al., 2019a). In contrast, Hi-

gashi (Zhang et al., 2022a) facilitates joint analysis of scHi-C and DNA methylation data;

however, the inference implemented is limited to cell type clustering and lacks downstream

analysis, and its practical utility is hindered by its computational requirements, which led

to development of Fast-Higashi (Zhang et al., 2022b). Fast-Higashi improved scalability of

Higashi significantly; however, its current framework and implementation has not yet been

leveraged to handle multiple modalities jointly.

In addition to the lack of integrative modeling approaches for scHi-C and DNA methy-

lation, another key shortcoming of exiting scHi-C analysis methods, including scHiCluster,

scHiC Topics, Higashi, 3DVI, and Fast-Higashi, is a lack of alignment between the pa-

rameters estimated by these methods and the key parameters of interest in the scHi-C

analysis. While these methods are able to learn latent representations of individual cells

for downstream cell type identification and clustering, inferring chromosome organization

characteristics such as topologically associating domains (TADs) (Pombo and Dillon, 2015),

A/B compartments (Lieberman-Aiden et al., 2009b) from their output requires, often com-

plex, additional downstream processing of the estimated model parameters or denoised

data after aggregating contact maps of the cells within each inferred cell type. From a

strictly statistical perspective, the model parameters are estimated in isolation and with-

out consideration of the intended post-processing procedures, and as a result, this might

lead to unreliable and sub-optimal inference.

Here, we develop a new statistical model named Muscle for Multiple single cell tensors

to better align the estimated model parameters with the key inference parameters of scHi-C

analysis and to enable integration of scHi-C with other data modalities. Muscle’s multi-

ple tensor framework encodes parameters such as cell-specific loadings shared by all data
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modalities, loci loadings specific to data modalities, scHi-C eigen contact maps with one-to-

one alignments to the cell types, A/B compartment structures, loci groupings or TADs, cell

type specific methylation profiles, all of which are critical for 3D genome and methylation

analysis (Fig. 1). A key advantage of Muscle is that it can be deployed with only scHi-C

data as well as with multiple single cell data modalities. Application of Muscle to multiple

scHi-C datasets with ground truth (Lee et al., 2019; Kim et al., 2020; Ramani et al., 2017;

Li et al., 2019b) demonstrates that Muscle performs as well or even better than existing

methods for cell clustering and, more critically, can infer chromatin conformation structures

in a cell type specific manner. Simulation studies comparing the joint analysis of Muscle

to a baseline strategy of flatting out the tensor as a matrix and leveraging matrix decom-

position reveal consistently better performance by Muscle and supports the robustness of

Muscle to a wide range of signal-to-noise levels. Muscle in the joint analysis mode for the

sn-m3C-seq data (Lee et al., 2019; Liu et al., 2021) or scMethyl-HiC data (Li et al., 2019a)

successfully identifies cell type specific associations between DNA methylation profiles and

3D genome structure including TAD boundaries and compartment territories. Collectively,

Muscle represents a significant modeling advancement in the joint analysis of scHi-C data

with other data modalities.

2 Muscle model

2.1 Muscle model representation

Muscle is a multiple tensor framework for single-cell multi-modal omics data. Here, we

focus on scHi-C and DNA methylation and illustrate how Muscle parameters provide di-

rect intuitive integrative inference of these single cell data modalities. Fig. 1a provides
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an overview of Muscle, which starts out with a tensor view of multi-modal scHi-C data

and single cell DNA methylation data (top row). For scHi-C data modality, each set of

cis-interaction (i.e., only intra-chromosomal interactions) contact matrices of a single chro-

mosome is viewed as an order three tensor, with dimensions # of loci on the chromosome

(denoted with lchr), # of loci on the chromosome, and # of cells (denoted with C). Here,

each slice along the cell mode (or dimension) corresponds to a chromosome-specific scHi-C

contact map for a single cell. For the human genome, this results in 23 order three tensors

with the common cell mode but differing numbers of loci. For the single cell DNA methy-

lation data, we form a mCG (mCH) matrix (i.e., order two tensor) with dimensions # of

CpGs (non-CpGs) and # of cells, containing the CpG (non-CpG) site methylation level.

The cell mode dimension is shared between the scHi-C and methylation tensors because of

the multi-modality (i.e., scHi-C and methylation read outs are taken simultaneously from

a single cell) of the data.

After forming the entire order two and three tensors, Muscle parameterizes each of their

mean tensors (bottom row of Fig. 1a) following a semi-non negative Block Term Decom-

position (BTD) form. Specifically, each of the scHi-C tensors is modelled as a summation

of R “rank-1” modules,
{
(Achr,rB

T
chr,r) ◦ cr

∣∣∣r ∈ 1, · · · , R
}
. Note that we abuse the term

“rank-1” to denote a rank-(Kchr, Kchr, 1) tensor for simplicity in this paper, where Kchr is

defined as the block rank in BTD (De Lathauwer, 2008). Each rank-1 module captures

a latent contact pattern of the data. The two chromosome-specific loci loadings Achr,r,

Bchr,r ∈ Rlchr×Kchr harbor physical interaction information of the module and a nonnega-

tive data modality common cell loading vector (i.e., loadings shared by all data modalities)

cr ∈ RC
+ captures cell type information of the module. The methylation matrices are in

the form of a semi-non negative matrix factorization, which is similarly a summation of R
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rank-1 modules
{
vk
r ◦ cr

∣∣∣r ∈ 1, · · · , R
}
, where k ∈ {CG,CH}. Likewise, the data modal-

ity common cell loadings cr, shared with scHi-C, encodes modules specific to cell types,

and the methylation loci loadings vk
r identify cell type specific methylation patterns.

Muscle formulation has two unique components that allow it to leverage multiple data

modalities and enable direct inference for key parameters of interest. First, each cell loading

vector cr that is common to all data modalities (e.g., scHi-C and DNA methylation) learns

the cell type information jointly across all chromosomes and data modalities, and, hence,

is critical for the integrative analysis. Second, the non-negativity constraint on each cell

loading vector cr facilitates interpretation of each rank-1 module. For instance, if the cell

loading vector of rth module has large values for a subset of the cells, i.e., from the same

cell type, the matrix Achr,rB
T
chr,r encodes the contact pattern for these groups of cells. In

addition, the module’s loci loadings Achr,r, v
k
r convey the cell type specific characteristics

of genomic loci including A/B compartment structure and methylation profiles. We remark

that in a PARAFAC2 (Kiers et al., 1999) decomposition-based model, which was utilized

by the pioneering Fast-Higashi (Zhang et al., 2022b), similar interpretation is hindered

by the sign indeterminacy issues of singular vectors, which are the “cell embeddings” of

the Fast-Higashi. Specifically, aligning of modules with cell types can not be achieved

if a cell embedding vector of the module has both large negative and positive values for

different cell types. We discuss practical implications of this limitation in more detail

in Supplementary Material Section section 4. In contrast, Muscle’s formulation achieves

unification between model parameters and the key parameters needed for downstream

inference. As a consequence, Muscle enables intuitive and direct interpretation of the

model results as depicted in Fig. 1b. Each of Muscle’s model parameters or a combination

thereof aligns with key inference parameters of 3D chromatin organization along with the
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DNA methylation profile.

Figure 1: Overview of Muscle multiple single cell tensor model. a. Each chromosome-specific scHi-C tensor with size lchr × lchr × C is a

summation of R “rank-1” modules
{
(Achr,rB

T
chr,r) ◦ cr

∣∣∣r ∈ 1, · · · , R
}
, where lchr and C denote the # of loci for chromosome chr and the

# of cells, respectively. Each module contains three factor loadings. The data modality common cell loading cr ≥ 0 encodes which cell type

the module corresponds to and provides a “label/name tag” for the module. Each of the chromosome-specific loci loadings Achr,r , Bchr,r

encompass structural chromatin characteristics of a specific cell type, and the eigen contact Achr,rB
T
chr,r is the resulting interaction pattern

(i.e., eigen contact map) of the cell type. Both mCG, mCH methylation matrices with size
(∑

chr lchr
)
× C are also summation of “rank-1”

modules
{
vk
r ◦ cr

∣∣∣r ∈ 1, · · · , R
}
. vk

r , k ∈ {CG,CH}, encodes the methylation profile along the genome for the cell type inferred from the

cell loading cr . b . Muscle parameters align with the downstream analysis of interest. 1) The cell loading vectors {cr|r ∈ 1, · · · , R} enable

cell clustering and identification of modules corresponding to each cell type. 2) Low dimensional projection of loci loading Achr,r reveals loci

clustering structure and TADs. 3) The first column vector of loci loading Achr,r encodes A/B compartments which are large-scale genome

territories. 4) Direct visualization of eigen contact map Achr,rB
T
chr,r reveals contact pattern of the cell type that the rth module corresponds

to. 5) The methylation loci loading vector vk
r aligns with the eigen contact map Achr,rB

T
chr,r or scHi-C loci loading Achr,r to yield associations

between DNA methylation and 3D genome structure of the cell type identified by cell loading vector cr .
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2.2 Statistical framework of Muscle

In this section, we introduce the statistical framework of Muscle and a brief overview of

parameter estimation of Muscle in the next section. This exposition uses the following key

definitions and notations. A set of sequential numbers, e.g., {1, · · · , K}, are abbreviated

as [K]. For a third order tensor Y ∈ Rd1×d2×d3 , ∥Y∥F denotes the Frobenius norm. Finally,

◦ denotes outer product.

For a single cell c ∈ [C], we have Chr number of chromosomes and a symmetric Hi-C

contact matrix of size lchr × lchr for each chr ∈ [Chr], where each (i, j)th entry of a contact

map quantifies the observed physical interaction (e.g., contact) level between genomic loci

i and j. For chromosome chr, the contact matrices stacked along cells have the same

size lchr × lchr. Hence, the data can be viewed as a (lchr, lchr, C)- dimensional tensor for

each chromosome. We denote each pre-processed (e.g., natural log transformed for this

specific setting) chromosome specific scHi-C tensor as Ychr ∈ Rlchr×lchr×C , chr ∈ [Chr].

Further details about data pre-processing are discussed in Supplementary Material Section

section 3.

The scHi-C tensors {Ychr ∈ Rlchr×lchr×C |chr ∈ [Chr]} and methylation matricesYCG,YCH ∈

R
∑

chr lchr×C , binned at 1Mb resolution (e.g., locus size), are modeled as

Ychr = Mchr + Echr, ϵi,j,c,chr
i.i.d∼ N(0, σ2

1), ∀chr ∈ [Chr], (1)

Yk = Mk + Ek, ϵkl,c
i.i.d∼ N(0, σ2

2), for k ∈ {CG,CH},

s.t. Mchr =
R∑

r=1

(Achr,rB
T
chr,r) ◦ cr, Mk =

R∑
r=1

vk
r ◦ cr, for k ∈ {CG,CH}, (2)

cr ≥ 0, ∥cr∥ = 1, BT
chr,rBchr,r = I, Achr,r = Bchr,rDchr,r, (3)

and
σ2
1

σ2
2

=
Nh

Nm

, ∀r ∈ [R], ∀chr ∈ [Chr], (4)

where all the chromosome specific signal and noise tensors Mchr, Echr ∈ Rlchr×lchr×C , and
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mCG, mCH methylation signal and error matrices MCG, MCH , ECG, ECH ∈ R
∑

chr lchr×C .

Also note that Dchr,r = diag(λchr,r,k)
Kchr
k=1 ∈ RKchr×Kchr and λchr,r,k > 0 so that Achr,r ∈

Rlchr×Kchr and Bchr,r ∈ Rlchr×Kchr are equivalent up to multiplication of diagonal matrix

absorbing the magnitude of the module. Here, the total size of scHi-C tensors is defined

as Nh = C ×
∑

chr l
2
chr, and, similarly, the size of a methylation matrix is defined as

Nm = C ×
∑

chr lchr. These size terms are leveraged to model the proportion of the

variances of the two sources of data (Eqn. (4)). The signal tensor Mchr is in the form of

block term decomposition (De Lathauwer, 2008) and, the mean methylation matricesMCG,

MCH have the form of a semi-nonnegative matrix factorization. A key component of this

integrative framework is that the non-negative cell loading vectors cr ∈ RC
+, r ∈ [R], are

shared between the methylation model and scHi-C tensor model, enabling the cell loadings

to be learnt by leveraging both data modalities. We next provide an overview of parameter

estimation for Muscle and refer to Supplementary Material Section section 1 for details.

2.3 Muscle model estimation

We introduce the estimation problem and a brief overview of the algorithm for Muscle.

Given the scHi-C tensors {Ychr ∈ Rlchr×lchr×C |chr ∈ [Chr]} and methylation matrices

YCG,YCH ∈ R
∑

chr lchr×C , Muscle solves the following Maximum Likelihood Estimation

equivalent problem

min
Achr,r,Bchr,r,cr

vCG
r ,vCH

r

 1

Nh

Chr∑
chr=1

∥∥∥∥∥Ychr −
R∑

r=1

(Achr,rB
T
chr,r) ◦ cr

∥∥∥∥∥
2

F

+
1

Nm

∑
k∈{CG,CH}

∥∥∥∥∥Yk −
R∑

r=1

vk
r ◦ cr

∥∥∥∥∥
2

F

 .

(5)

In order to solve this non-convex problem, we derive an Alternating Least Squares (ALS)

algorithm (Algorithm 1 as described in the Supplementary Material Section section 1).

The ALS algoritm iteratively obtains loci loading parameters Achr,r, Bchr,r, and vk
r given
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the cell loadings cr that are shared by both data modalities across all the chromosomes,

and updates cr by pooling all the loci loading information across the chromosomes. The

estimation step of the cell loadings cr is the key integrative part of Muscle. We derive the

optimality properties of the ALS updates in Supplementary Material Section section 2.

3 Benchmarking with datasets with ground truth

3.1 Muscle is widely applicable for cell type identification with

even single modality scHi-C data

We start out by exploring Muscle’s applicability with single modality scHi-C data by eval-

uating its cell clustering performance with multiple 3D genome datasets (Lee et al., 2019;

Kim et al., 2020; Ramani et al., 2017; Li et al., 2019b). Details on parameter settings

are provided in the Supplementary Material Section section 3. The ranks (R) of the low

dimensional cell embeddings for Muscle and Fast-Higashi were set to be the same with

the exception of the Lee et al. (2019) dataset which required a larger rank (R = 250) for

Fast-Higashi to reveal cell types. Muscle enables cell clustering through the estimated cell

loadings {cr ∈ RC
+|r ∈ [R]}. Fig. 2a,b display the scatter plots of the first two UMAP co-

ordinates of cell embeddings from Muscle and other scHi-C analysis methods (Zheng et al.,

2022; Li et al., 2021; Zhang et al., 2022a; Zhou et al., 2019; Kim et al., 2020) for the Li

et al. (2019b) and Kim et al. (2020) datasets, which have the least and the most numbers of

cells, respectively. Similar displays for rest of the datasets are available in Supplementary

Material (Fig. S2). Fig. 2a highlights that Muscle and Higashi (Zhang et al., 2022a) are

the only models that can separate Serum 1 cells from the others. Similarly, in Fig. 2b, the

separation of the four major cell types (GM12878, H1Esc, HFF, HAP1) is more evident
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for Muscle, scHiC Topics (Kim et al., 2020), and 3DVI (Zheng et al., 2022) compared to

the others. Next, we systematically evaluated the “cell type identification by clustering”

performances of the methods. We used both the learned embeddings of the methods (e.g.,

cell loadings cr, r ∈ [R] for Muscle) and their low dimensional projections with UMAP and

tSNE for cell clustering with k-means and employed the Adjusted Rand Index (ARI) and

Average Silhouette Score metrics for evaluation based on ground truth cell labels (Fig. 2c).

Fig. 2d summarizes the median ranking of the clustering performances for each of the com-

binations in Fig. 2c, and yields that Muscle shows the best ranking for cell clustering solely

based on scHi-C data. This establishes Muscle’s applicability with scHi-C data even in the

single data modality setting. In addition to these large-scale benchmarking experiments,

we further explored the practical implications of the differences in the formulations of Mus-

cle and PARAFAC2-based Fast-Higashi on the Kim et al. (2020) scHi-C dataset in more

depth in Supplementary Section section 4.

3.2 Integrative framework of Muscle improves cell type cluster-

ing in the multi-modal setting

After establishing Muscle’s on par performance with existing methods in the single modal-

ity setting, we turned our attention to the integrative framework. We utilized the Lee

et al. (2019) and Liu et al. (2021) sn-m3C-seq datasets, which simultaneously profiled

3D genome and DNA methylation in 14 human brain prefrontal cortex cell types and 10

mouse hippocampal cell types, respectively. In the integrative analysis, the cell loadings

{cr ∈ RC
+|r ∈ [R]} are learnt utilizing both data modalities. Fig. 3a,c provide a direct com-

parison of matrix factorization via singular value decomposition (SVD) using only DNA

methylation components (only mCG or only mCH; top middle, top right panel of Fig. 3a,c)
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Figure 2: Computational evaluation and benchmarking of Muscle cell clustering with scHi-C data. a, b. UMAP coordinates of the cells from

Li et al. (2019b) and Kim et al. (2020) scHi-C datasets. Muscle UMAP coordinates are obtained from estimated {cr ∈ RC
+|r ∈ [R]}. Cells are

colored based on known cell type labels. c. Evaluation of the cell clustering by different methods. Larger and redder circles correspond to larger

scores. d. Median ranking of the methods across the multiple evaluation settings in panel c.

and Muscle using only the scHi-C (top left panel of Fig. 3a,c) with the integrative Muscle

(bottom right panel of Fig. 3a,c). Visual inspection of Fig. 3a,c reveal how Muscle lever-

ages different data modalities. Specifically, for Lee et al. (2019) data, the integrative model

(bottom right panel of Fig. 3a) provides complete separation of the inhibitory neuoronal

cell types (Ndnf, Pvalb, Sst, Vip cells), while the results for scHi-C only and mCG only

modalities lack such a separation (top left, top middle). The separation of excitatory cells

(L23, L4, L5, L6 cells) for multi modal Muscle is as evident as in the result from mCG only

case (top middle), and markedly more apparent than that of the scHi-C only case (top left).

While the OPC and ODC cells are not separated in mCG and mCH only modalities (top
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middle, top right), these cells can be separated in the integrative analysis (bottom right).

We also compared the Muscle cell clustering results in the multi-modal setting (Fig. 3a

bottom right) with a baseline approach (Fig. 3a bottom left) that performed principal

component analysis on the matricized “cell × locus pair” scHi-C data concatenated with

mCG, mCH matrices. This approach used the same rank as the Muscle rank R, and the

resulting R principal components were utilized to generate the UMAP embeddings. The

bottom left panel of Fig. 3a shows that the cell type separation from this baseline approach

is inferior to that of Muscle depicted in Fig. 3a. Moreover, the baseline approach is sus-

ceptible to the batch effects in the excitatory and inhibitory neuronal cell types, whereas

the Muscle result is relatively free of this effect (Fig. S3a). The overall performances of

these settings, which reveal the marked improvement by the Muscle multi modal setting,

are summarized in Fig. 3b.

Analysis of a more recent sn-m3C-seq dataset from mouse hippocampus (Liu et al.,

2021) provided insights similar to those of the above analysis. Specifically, results from the

analysis of this dataset revealed that the integrative Muscle enabled complete separation of

the cell types CA1 and CA3 (Fig. 3c bottom right). These cell types appeared to be less

separated in the scHi-C only and mCG only analysis (Fig. 3c top left and middle). In this

case, Muscle leveraged the cell type separation information of CA1 and CA3 cells from the

mCH modality (Fig. 3c top right). Similarly, while delineation of the cell type ASC from

only the mCH modality exhibited ambiguity (Fig. 3c top right), the integrative Muscle

model achieved good separation of this cell type from the others (Fig. 3c bottom right)

by leveraging the cell type separation information from the scHi-C modality (Fig. 3c top

left). The overall performances of these settings, which reveal the marked improvement by

the Muscle multi modal setting over integrative baseline method and single modalities, are
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summarized in Fig. 3d.
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Figure 3: Computational evaluation and benchmarking of Muscle cell clustering with the multi-modal set up. a. (Top-left) UMAP coordinates

of the cells from Lee et al. (2019) sn-m3C-seq data based only on scHi-C modality. Muscle UMAP coordinates are obtained from estimated cell

loading vectors {cr ∈ RC
+|r ∈ [R]}. Cells are colored based on known cell type labels. (Top-middle) UMAP coordinates of the cells from Lee

et al. (2019) sn-m3C-seq data based only on the mCG methylation modality. The UMAP coordinates are obtained from estimated cell loading

vectors {cr ∈ RC
+|r ∈ [R]} of SVD. (Top-right) UMAP coordinates of the cells based only on mCH methylation modality. (Bottom-left) UMAP

coordinates of the cells based on both scHi-C and DNA methylation modalities, obtained from baseline matricization method. The UMAP

coordinates are obtained from principal components of the concatenated (matricized) scHi-C and DNA methylation datasets. (Bottom-right)

UMAP coordinates of the cells based on both scHi-C and DNA methylation modalities, obtained from Muscle. b. Left : The ARI scores from

k-means clustering of the cells with the learned embeddings under single (scHi-C only, mCG only, mCH only) and multi-modal settings (Muscle,

baseline). Right : K Nearest Neighborhood (KNN) classification accuracy with cell loadings as features and ground truth cell type labels as

classes. KNN results are averaged over 20 sets of training-test data splits where test data harbored 10% of the randomly selected cells. The

number of neighbours was set as K = 20. c. (Top-left) UMAP coordinates of the cells from Liu et al. (2021) sn-m3C-seq data based only on

scHi-C modality. Muscle UMAP coordinates are obtained from estimated cell loading vectors {cr ∈ RC
+|r ∈ [R]}. Cells are colored based on

known cell type labels. (Top-middle) UMAP coordinates of the cells from Liu et al. (2021) sn-m3C-seq data only on the mCG methylation

modality. The UMAP coordinates are obtained from estimated cell loading vectors {cr ∈ RC
+|r ∈ [R]} of SVD. (Top-right) UMAP coordinates

of the cells based only on mCH methylation modality. (Bottom-left) UMAP coordinates of the cells based on both scHi-C and DNA methylation

modalities, obtained from baseline matricization method. The UMAP coordinates are obtained from principal components of the concatenated

(matricized) scHi-C and DNA methylation dataset. (Bottom-right) UMAP coordinates of the cells based on both scHi-C and DNA methylation

modalities, obtained from Muscle. d. Left : The ARI scores from k-means clustering of the cells with the learned embeddings under single

(scHi-C only, mCG only, mCH only) and multi-modal settings (Muscle, baseline). Right : K Nearest Neighborhood (KNN) classification accuracy

with cell loadings as features and ground truth cell type labels as classes. KNN results are averaged over 20 sets of training-test data splits

where test data harbored 10% of the randomly selected cells. The number of neighbours was set as K = 20.
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3.3 Muscle yields cell type specific modules that delineate cell

type specific contact maps

Next, we explored the inference readily available from Muscle for downstream scHi-C anal-

ysis with the Kim et al. (2020) data, containing five human cell lines (GM12878, H1Esc,

HAP1, HFF, and IMR90). Muscle’s rank-1 modules (Achr,rB
T
chr,r) ◦ cr capture parsimo-

nious representations of the cell types. The magnitudes of the Muscle cell loading vectors,

e.g., cr ≥ 0, r = 1, · · · , R, delineate cells corresponding to the same cell type/state, there-

fore linking modules to specific cell groups. Consequently, the corresponding loci loadings,

Achr,rB
T
chr,r, for module r describe the denoised contact map of the corresponding cell type.

For example, Muscle cell loading vector c7 has exclusively large values for the GM12878

cells (Fig. 4b). Hence, the eigen contact map A1,7B
T
1,7 depicted in Fig. 4e corresponds to

the mean contact pattern of chr 1 in GM12878 cells. Similarly, A1,8B
T
1,8 in Fig. 4f displays

the HFF specific contact pattern because the cell loading vector c8 of this module is spe-

cific to cell type HFF, i.e., with large positive entries for HFF cells (Fig. 4c). In addition,

notice that c1 has constant values throughout cells (Fig. 4a). Hence, this module can be

interpreted as a grand mean pattern of the entire cell types, and the first module’s eigen

contact map A1,1B
T
1,1 depicted in Fig. 4d corresponds to the grand average contact map

of all the cell types.

To validate that the eigen contact maps, A1,rB
T
1,r, are indeed cell type specific, we

calculated HiCRep similarity scores (Yang et al., 2017), a modified version of Spearman

correlation to compare two Hi-C contact matrices, between cell type specific contact maps

(A1,rB
T
1,r, where different r values correspond to different cell types) and cell type specific

contact maps generated from the gold standard cell type specific bulk data (Kim et al.,

2020). The heatmap in Fig. 4g displays the entire cell loading vectors cr and clearly demar-
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cates modules specific to each cell type. While several cell types have multiple modules, we

chose r ∈ {7, 8, 9, 10}, each of which had the largest size ∥A1,r∥F (i.e., parameters with the

largest effect sizes) among the modules corresponding to the cell types GM12878, H1Esc,

HFF, and HAP1, respectively. Fig. 4h demonstrates that the similarity score is the high-

est when the eigen contact map A1,rB
T
1,r of a cell type is compared against its own gold

standard bulk data (i.e., largest similarity scores along the diagonal). Collectively, these

results further proffer the main advantages of Muscle’s tensor decomposition framework

which targets the key parameters.

3.4 Muscle yields cell type specific TADs and A/B compartments

Topologically associating domains (TADs) constitute large genomic regions with larger

numbers of interactions between loci within the region compared to interactions of loci

with the loci outside the region. TADs are highly cell type specific since they recapitulate

cell type specific regulation (Yu and Ren, 2017). Muscle parameters Achr,r reveal TADs

for module r, and the cell type of the module is delineated by the positive entries of cr.

We note that the loci loading Achr,r is used instead of Bchr,r for elucidating TADs. These

two are identical up to module magnitude multiplication because of the symmetry of the

cell contact matrices, and Achr,r is more appropriate for inference since it absorbs the

magnitude of the module r (see Eqn. (3)).

We next investigate the TADs for the Kim et al. (2020) scHi-C data analyzed in the

previous section. Fig. 5a displays the UMAP plot of loci loadings A1,8 of module 8, which

corresponds to cell type HFF (as depicted in Fig. 4b), for chr 1. Coloring the loci in this plot

according to the TADs identified from the gold standard HFF bulk data (Supplementary

Fig. S4) reveals that the loci loading A1,8 of Muscle organizes the loci within a chromosome
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Figure 4: Cell type specific eigen-contact captures by Muscle. a, b, c. Muscle cell loading vectors c1, c7, c8 depicted as barplots, respectively.

The cell loading vectors are constrained to be non-negative and yield the representative cell type of each module. X-axis labels are colored based

on the true cell type labels of the cells in panel g. Top and bottom 30 cell loadings are displayed for brevity. d, e, f. Visualization of Muscle

eigen contact maps (A1,rB
T
1,r terms) for r = 1, 7, 8, which capture grand average, GM12878 and HFF contact patterns. In panels d,e,f, darker

entries indicate higher interactions between the loci. g. Heatmap of the entire set of Muscle cell loading vectors {cr ∈ RC
+|r ∈ [R]}. Each row

displays the estimated cell loadings cr of the module and each column corresponds to a cell. h. HiCrep score comparison of Muscle eigen contact

maps A1,rB
T
1,r of modules r = 7 (GM12878), r = 8 (HFF), r = 9 (H1Esc), and r = 10 (HAP1) against the gold standard cell type specific bulk

contact maps. The y-axis denotes inferred cell type specific eigen contact maps and the x-axis denotes the cell type specific bulk contact maps.
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in a way consistent with their TAD structures.

A/B compartments, which constitute genome territories with high (A) or low (B) gene

expression compared to other territories, is another class of genome compartmentalization

that can be inferred from scHi-C data (Lieberman-Aiden et al., 2009b). In addition to

identifying TADs, the first column vector ofAchr,r for each chr ∈ [Chr] and r ∈ [R] provides

the A/B compartment structures in a cell type specific manner. This is because the loci

loadings Achr,r,Bchr,r are obtained from an eigen decomposition of the projected scHi-C

tensor Ychr onto the subspace spanned by cr (Algorithm 1), and hence, the first column

of Achr,r is formed by the multiplication of the largest eigenvalue and the corresponding

eigenvector. As a result, the first column ofAchr,r captures the major contact pattern of the

module r, which would represent the largest scale genome territory, i.e., A/B compartments.

Fig. 5b displays the exact same loci clustering of A1,8 as in Fig. 5a where the labels of loci

are now obtained by the sign of the first column of A1,8. The interior loci in Fig. 5b are

inferred to be in A compartments, while the loci in the exterior are in the B compartments.

We validated this labeling by comparing it to the labeling from the gold standard HFF

bulk Hi-C data’s A/B compartment structure (Fig. 5c). We further evaluated the A/B

compartment inference for each cell type (as identified by modules r ∈ {7, 8, 9, 10}) by

comparing inferred compartmentalizations (averaged over all the 23 chromosomes) with

those from the cell type specific bulk data (Fig. 5d). This evaluation yielded that, on

average, 72% and 75% of the true A and B compartment loci were correctly identified,

respectively, by Muscle. In summary, the estimation targets of Muscle directly matches the

parameters of interest in scHi-C data analysis and the estimated parameters readily reveal

TAD and A/B compartment structures of the cell types without additional downstream

analysis.
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Figure 5: TAD and A/B compartment identification from estimated Muscle parameters. a. UMAP coordinates of Muscle estimated A1,8 of

(Kim et al., 2020) dataset. Each data point corresponds to one locus of chr 1 and the colors are based on the gold standard TADs from the

bulk HFF Hi-C contact map depicted in Fig. S4. b.UMAP coordinates of chr 1 loci from panel (a) colored with respect to the signs of the first

column of A1,8, with “+” depicted in blue and corresponding to A compartment and “-” depicted in red and corresponding to B compartment.

c. UMAP coordinates of chr 1 loci from panel (a) colored with respect to the gold standard A/B compartment results from HFF bulk Hi-C data.

d. Evaluation of A/B compartment territory inference of Muscle based on the gold standard A/B compartments from cell type specific bulk

Hi-C data. Each barplot represents a cell type (module) and displays the mean proportion of correctly inferred A (or B) compartments averaged

across the chromosomes. The first element of a label (e.g., AB) is for true compartment and the other element is for inferred compartment. The

regions corresponding to the centromere are excluded from the analysis.

3.5 Muscle unveils cell type specific associations between chro-

matin conformation structures inferred from scHi-C data

modality and DNA methylation modality

DNA methylation in both the CpG and non-CpG sites is generally negatively correlated

with the gene expression levels in mammallian neuronal cells (Luo et al., 2018; Lister et al.,

2013). Using Muscle integrative analysis results of Lee et al. (2019) sn-m3C-seq data, we

explored whether a given module’s methylation loci loadings vCG
r , vCH

r associated with

the A/B compartment structure of the loci inferred from scHi-C modality loci loadings

Achr,r[ , 1]. Specifically, we investigated the association between genome compartmental-

ization and DNA methylation pattern in an excitatory neuronal cell type (L5) and in an

inhibitory neuronal cell type (Vip). These two cell types are shown to be well-separated

in the integrative Muscle analysis (bottom right panel of Fig. 3a). We observed that, as

expected, the mCG and mCH methylation loci loadings vCG
r , vCH

r displayed show negative

association with scHi-C loci loadings A1,r[ , 1], where r = 15 and r = 21 denote cell types
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L5 (Fig. 6a) and Vip (Fig. 6d), respectively. Formal evaluation of association between

fitted methylation (aggregated over a cell type) and A/B compartmentalization confirmed

this observation (Fig. 6b, e) and revealed that the association is cell type specific. In Vip

cells, loci in B compartment territory have significantly higher methylation levels on CpG

sites than those of the loci in the A compartment (p = 9.7 × 10−6), while the association

in L5 cells was not as significant as that of Vip cells (p = 0.07). Similarly, the differences

of non-CpG methylation over the A and B compartments varied in a cell type specific

manner as well. For Vip cells, non-CpG methylation over the A and B compartments did

not exhibit statistically significant differences (p = 0.34, right panel of Fig. 6e). However,

for L5 cells, non-CpG methylation differed between A and B compartments more than

that of the CpG methylation (p = 0.031, Fig. 6b). These reinstate that association of

loci methylation levels with genome territorial structures is cell and methylation site type

(CpG or non-CpG) specific.

Finally, we exploited the integrative analysis results from the point of CCCTC-binding

Factor (CTCF) DNA binding protein. The activities of CTCF are inhibited by DNA

methylation around the CTCF binding sites (Wang et al., 2012). In particular, DNA

methylation plays a significant role in disruption of CTCF binding around key tumor

suppressing genes in cancer (Rodriguez et al., 2010). CTCF is also a key player in folding

of chromatin into domains. Specifically, TAD boundaries, where cohesin and CTCF form a

DNA binding complex to hold the DNA loops together, are enriched for CTCF binding sites

(Pombo and Dillon, 2015; Rao et al., 2014). As a result, we expect that the TAD boundary

regions have more CTCF binding, and hence less DNA methylation that would hinder

CTCF binding activity. Fig. 6c, f display methylation patterns from the methylation loci

loading parameter vCG
r and the insulation scores (Gong et al., 2018), which quantify how
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unlikely a locus is to be a TAD boundary, from the eigen contact map A1,rB
T
1,r, together

with the display of the corresponding eigen contact maps. These comparisons reveal that

insulation score patterns align well with the large-scale methylation patterns for both cell

types. It further corroborates that genomic loci that are likely to be TAD boundaries (i.e.,

with low insulation scores marked with the blue dashed lines) have low methylation levels.

Figure 6: Association analysis of methylation patterns with broader 3D chromatin structures. a, d. Heatmap displays of the: (left) mCG

methylation loci loading vCG
r along chr 1 loci (r = 15 for panel (a) and r = 21 for panel (d)), (middle) the loci loading vector A1,r [ , 1] of chr 1

from the scHi-C part of the model, (right) mCH methylation loci loading vCH
r along chr 1 loci (r = 15 for panel (a) and r = 21 for panel (d)). Y-

axis denotes the genomic loci of chr 1. b, e. Boxplots of fitted methylation levels averaged over cell type L5(b) and Vip(e) stratified with respect

to CpG (mCG) and non-CpG (mCH) and within A/B compartments for L5 (panel b, identified from A1,15[ , 1]) and Vip (panel e, identified

from A1,21[ , 1]) cells. Differences in methylation levels are evaluated with a Wilcoxon rank-sum test. c, f. Top row of the panel: the dotted red

line displays the inferred methylation pattern along chr 1 loci, scaled as vCG
1 /

∥∥∥vCG
1

∥∥∥+vCG
r /

∥∥∥vCG
r

∥∥∥. The solid black line represents insulation

scores obtained from scaled eigen contact maps, A1,1B
T
1,1/

∥∥∥A1,1B
T
1,1

∥∥∥
F

+A1,rB
T
1,r/

∥∥∥A1,rB
T
1,r

∥∥∥
F
. Bottom rows of the panels display scaled

eigen contact maps. Note that cell type specific eigen contact maps are obtained by aggregating scaled eigen contact maps of modules common

to all cell types (e.g., module r = 1 for this application) and cell type specific modules: A1,1B
T
1,1/

∥∥∥A1,1B
T
1,1

∥∥∥
F

+ A1,rB
T
1,r/

∥∥∥A1,rB
T
1,r

∥∥∥
F
,

where r = 15 (cell type L5) in panel c and r = 21 (cell type Vip) in panel f.
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4 Simulation studies

Datasets with known cell types enabled us to illustrate the superior performance of the joint

analysis with Muscle against both the single modality analysis and a baseline integrative

approach. We further studied advantages of the tensor decomposition framework of Muscle

over the matricization-based baseline method with simulation experiments. In these exper-

iments, we ensured that the data generation process does not conform with Muscle’s model

(given in Eqn. (1)-(4)) to quantify Muscle’s robustness against model misspecification.

4.1 Data generation

The scHi-C tensor Y ∈ R40×40×120 and the DNA methylation matrix Y ∈ R40×120, for 40

genomic loci and 120 cells across three cell types (with 40 cells from each cell type), were

simulated from the following Negative binomial models:

Yijc
i.i.d∼ NB

(
Mijc, size =

Mijc

ϕ1 − 1

)
, for all i ∈ [40], j ∈ [40], c ∈ [120]

Ylc
i.i.d∼ NB

(
Mlc, size =

Mlc

ϕ2 − 1

)
, for all l ∈ [40], c ∈ [120]

M =
3∑

r=1

(ArB
T
r ) ◦ cr, Ar,Br ∈ R40×2,

M =
3∑

r=1

vr ◦ cr, cr ≥ 0, ∥cr∥ = 1, vr ∈ R40,

ϕ1

ϕ2

=
Nh

Nm

= 40.

We generated three cell types by setting the entries 1 to 40 of c1, 41 to 80 of c2, and 81 to 120

of c3 to 3.1 and all the other entries of the cell loading vectors to 1 before size normalization.

For each module r, r ∈ [3], the first column of loci loading matrix Ar ∈ R40×2 is set to

represent the A/B compartment structure (checker board-like pattern) of a contact map

and the other column is set to represent a single TAD structure (square box-like pattern)
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along the diagonals of a contact map. The scHi-C loci loading matrix Br ∈ R40×2 is a

column-wise normalization of Ar so that it becomes equivalent to Ar up to module size

magnitude. This formulation, in turn, generates each eigen contact of the contact map

ArB
T
r as in Fig. S6a-c. The methylation loadings vr are randomly generated from a

Poisson distribution with rate parameter λ = 0.23. The constructed methylation modules

vr ◦ cr are displayed in Fig. S6j-l. The distributional assumptions on Y and Y result in

E[Yijc] = Mijc, V ar(Yijc) = Mijc +
M2

ijc

Mijc

(ϕ1 − 1) = Mijcϕ1

E[Ylc] = Mlc, V ar(Ylc) = Mlc +
M2

lc

Mlc

(ϕ2 − 1) = Mlcϕ2.

This data generation set up further ensures that Mijc ≈ Mlc for all i, j, l, c (the difference

between the medians is < 0.2, and the difference between the means is < 0.2) as depicted

in Fig. S7e. Consequently, the proportion of the variances between two data modalities

approximately satisfies

V ar(Yijc)

V ar(Ylc)
=

Mijcϕ1

Mlcϕ2

≈ ϕ1

ϕ2

,

and allows us to vary the proportion of the variances of the two sources of data by modulat-

ing ϕ1, ϕ2. Under this data generation scheme, the resulting scHi-C and DNA methylation

data exhibit general characteristics of the observed scHi-C and DNA methylation datasets

(examples are provided in Fig. S7a-d).

4.2 Simulation results

We varied the noise level of the methylation data as ϕ2 ∈ {1.1, 1.2, · · · , 3} and the noise

level of the scHi-C data ϕ1 is automatically determined based on the proportional variance

construction as described in the previous section. For each of the ϕ2 values, we generated

30 simulation replicates and quantified the performances of Muscle and the matricization-
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based baseline method across these replicates. For each Muscle fit, the proportion of the

variance was set to 40. The rank R was set R = 4 for both methods.

Comparison of the cell clustering performances of the methods revealed that Muscle

results in significantly higher ARI scores than the baseline method, with a median difference

of 0.05 across all the noise levels, ϕ2 (Fig. 7a,b, p = 0.043 based on Wilcoxon rank-sum

test of the ARIs of the two methods).

We next investigated how well each method recovers the true means M and M. Specif-

ically, we evaluated the Spearman correlation between the true M and estimated M̂ for

the scHi-C modality and the Spearman correlation between the true M and estimated

M̂ for the DNA methylation modality for both of the methods. Fig. 7c illustrates that

the estimates from the baseline model have almost zero correlations with the true mean

scHi-C contact matrices, whereas Muscle estimates have markedly higher correlation values

(≈ 0.7) across all the noise levels ϕ2. This is also evident visually from Fig. S6. While the

baseline method results in markedly noisy eigen contacts (Fig. S6g-i), the Muscle eigen

contacts reasonably capture the cell type specific modules (Fig. S6d-f). Likewise, Fig. 7d

also illustrates that the baseline model results in low correlations with the true mean DNA

methylation matrix (≈ 0.15), while Muscle achieves markedly higher correlation values

(≈ 0.8) across all the noise levels ϕ2. This can also be visualized in Fig. S6j-r, which high-

lights that the modules derived from the baseline method is not denoised enough compared

to those from Muscle.

More detailed results on the cell clustering and the recovery of the mean scHi-C tensor

M and mean methylation matrix M are provided in Fig. S8. These specifically summarize

the results based on the setting with the noise level ϕ2 = 1.1. The UMAP plots of the

cell loadings depicted in Fig. S8a-b show that Muscle exhibits more apparent cell clus-
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tering than the baseline method (clustering ARIs of 0.3 and 0.5 for the baseline method

and Muscle, respectively). Fig. S8c-d directly compare the true and the estimated mean

methylation matrices and indicate that Muscle’s recovery of the mean methylation matrix

better aligns with the true M compared to that of the baseline method. In addition, associ-

ation between the true mean scHi-C M and the Muscle estimate is more evident compared

to the estimate from the baseline method (Fig. S8e-f).
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Figure 7: Evaluation of multi-modality analysis by Muscle and the matricization-based baseline method with simulation studies. a. ARI scores

of the methods across all the noise levels ϕ2 averaged over 30 replicates. b. ARI scores of the baseline and Muscle results across all the noise

levels, ϕ2. Results for fixed ϕ2 are averaged across the simulation replicates. Differences in ARI scores are evaluated with a Wilcoxon rank-sum

test. c. Spearman correlations of the methods between the true scHi-C mean tensor M and the estimated mean tensor M̂ across noise levels

ϕ2 averaged over 30 replicates. d. Spearman correlations of the methods between the true mean DNA methylation matrix M and the estimated

mean methylation matrix M̂ across noise levels ϕ2 averaged over 30 replicates.
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5 Discussion

We presented Muscle as a semi-non negative joint tensor decomposition framework for inte-

grative analysis of chromosome conformation capture and DNA methylation data. Compu-

tational experiments with labelled real data and simulated data demonstrated that Mus-

cle’s integrative framework can leverage multiple single cell data modalities to enhance

cell type identification. Furthermore, Muscle performed on par or better than existing

approaches when presented with single modality scHi-C data. We showcased how Muscle’s

parametrization encodes key parameters of interest (cell type specific contact maps, TADs,

A/B compartments).

Our application focused on the setting where multiple data modalities are measured

simultaneously from individual cells. However, Muscle framework is amenable to extension

to cases where individual modalities are separately profiled from cells by employing cell

alignment tools such as optimal transport. In applications of Muscle, we observed that

the Muscle cell loading parameter that is shared across multiple modalities plays a crucial

role in integrative inference. This parameter can be sensitive to the level of variability

between the data modalities, necessitating appropriate modeling of the variance terms to

balance the contribution of different modalities during integration. We utilized a propor-

tional variance assumption for the scHi-C and methylation modalities and were able to

capitalize on the discriminative abilities of the individual modalities for cell types (Fig. 3).

A more flexible variance modeling approach might be beneficial for integration of addi-

tional data modalities. Our implementation of Muscle relied on the Gaussian distribution

assumption on the transformed count data. This assumption can be relaxed with tensor

models that incorporate Poisson or Negative Binomial distributions (Hong et al., 2020).

Another important point in tensor analysis is the selection of the tensor rank. While ten-
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sor rank determination is an NP-hard problem compared to matrix rank selection (H̊astad,

1990), Fast-Higashi provided a tensor view point on scHi-C without justifying relatively

high rank, R ≈ 250, in their applications. In Muscle, we employed a heuristic approach to

penalize over-fitting; however, a direct regularization term, e.g., group LASSO (Yuan and

Lin, 2006), on a collection of rank-1 components could also be employed.

Lastly, while Muscle provides integration, inference, and interpretation advantages com-

pared to alternative methods, its current implementation is relatively slow compared to

some of the fast scHi-C analysis methods and warrants further advancement. Specifically,

for Lee et al. (2019) scHi-C data at 1Mb resolution, an unoptimized implementation of

Muscle required 18 hours (23 cores CPU), while Higashi took 49 hours (10 cores CPU),

scHiC Topics took 36 hours (1 core CPU), 3DVI took 4 hours (23 cores GPU), Fast-Higashi

took 1 hour (23 cores CPU), scHiCluster took 30 minutes (23 cores CPU), and BandNorm

took 15 minutes (23 cores CPU). The speed bottleneck of Muscle is mainly due to ad-

ditional decomposition steps for estimating loci loadings, which encode key downstream

parameters of interests, and warrants further computational developments.
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