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Abstract

Trait selection and co-existence in phytoplankton communities in partially mixed water col-

umns is investigated using trait based modelling. In the models employed, trait selection

results from phytoplankton competition for two limiting resources, light and nutrients. The

study employs spatially resolved models, in which the phytoplankton community is repre-

sented as a large number of trait-groups characterized by fixed trait combinations (trade-

offs). Results from the trait-group resolving model (RM) are compared to results from an

aggregated trait based model with adaptive traits (AM). Differences in specific production

resulting from a trade-off between the half saturation constants of light and nutrients are suf-

ficient to support evolutionary stable co-existence confirming that co-existence does not

require differences in resource consumption. If abiotic conditions lead to the selection of a

single trait group in RM, AM provides excellent approximations of the development of total

biomass, average community trait and trait variance in the phytoplankton community. How-

ever, if selection leads to bimodal trait distributions, e.g. to co-existence of two trait groups

(or species), functionally important properties of the phytoplankton community cannot be

adequately represented by the aggregated information provided by AM. Because the

increase in variance due to the development of bimodal trait distributions cannot be distin-

guished from an increase in variance due to an increase in trait diversity, the development of

trait variance in AM models is not a reliable measure of trait diversity. Furthermore, AM may

not provide reliable simulations of trophic interactions if the performance of the consumers

depends on the traits of their resources. However, AM may support exploration of the conse-

quences of environmental conditions and of the parameterization of species for co-exis-

tence within communities.

Introduction

The functioning and performance of aquatic ecosystems depend on the structure of the aquatic

community. Composition and dynamics of the community result from the response of the
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individual species and their interactions to changes in environmental conditions and in the

structure of the community itself. The study here focusses on phytoplankton communities in

partially mixed water columns and investigates the consequences of competition for light and

nutrients on community dynamics and composition, and specifically on selection and co-exis-

tence of phytoplankton.

In general, the prediction of community properties and dynamics based on the develop-

ment of individual species is difficult because detailed information is required to describe the

performance of the individual species and the often non-linear interactions between them. As

the functional traits of a species determines its fitness in a given environment, functional traits

have been rediscovered in recent years as promising basis for the prediction of community

development [1]. The seasonal dynamics and community structure of phytoplankton in

response to limiting resources can be well-predicted from lab-determined functional traits

[2,3] suggesting “that functional traits provide a mechanistic foundation for community ecol-

ogy, and that variation in community structure is predictable in spite of the complexity of eco-

logical communities” [2].

Long-term co-existence in homogeneous systems requires that species differ in their

resource consumption [4]. Consistently, stable co-existence of phytoplankton competing for

light and nutrients in vertically fully mixed systems requires that co-existing species differ in

traits related to resource consumption, i.e. in their specific light extinction coefficient k divided

by the product of their nutrient to carbon ratio γ and specific loss rate lbg, (k / (γ�lbg) [5,6]. In

partially mixed systems the condition for co-existence of phytoplankton is more complicated

than in fully mixed systems: Ryabov et al. [7] considered competition between two neutrally

buoyant species which co-existed if the species differed in traits characterizing resource con-

sumption, i.e. in their k/γ ratio. However, they showed that in the case of a sub-surface layer of

phytoplankton or a deep chlorophyll maximum (DCM) differences in half saturation con-

stants can modify the effects of differences in consumption rates [7]. Recently, a simulation

with an eco-evolutionary model that considered adaptation of monomorphic phytoplankton

species with respect to half saturation constants for light and nutrients in partially mixed sys-

tems revealed co-existence of three species each corresponding to a single point in trait space

[8]. Although this study did show co-existence in the absence of consumption differences, it

did not discuss the role of consumption differences versus production differences, i.e. differ-

ences in half-saturation constants, for allowing co-existence of phytoplankton species.

Here we investigate the dynamics of phytoplankton communities in partially mixed sys-

tems. The phytoplankton communities are composed of species differing only in traits related

to specific production but not with respect to resource consumption. We study the influence

of nutrient enrichment and mixing intensity on the occurrence of long-term co-existence. We

further investigate whether the selected community is restricted to very few narrow trait

groups as assumed in the genetic selection process used by [8].

Predictions of the response of aquatic ecosystems to changes in environmental conditions

are usually based on mathematical models that are typically solved numerically. Models have

always been concerned with the traits of species, as mathematically the model parameters

describing the performance of species correspond to the values of the traits of the species.

However, representation of plankton communities based on the traits of the numerous indi-

vidual species making up the community is usually not a practicable approach because model

performance could become slow and many of the parameters required to represent the traits

of the different species are not available or uncertain. Increasing the number of species consid-

ered in a model may therefore not necessarily increase predictive abilities of the model [9,10].

Instead of considering a large number of species with different combinations of traits, trait

based modelling represents communities by functional traits assuming that the trait space is
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continuous and trade-offs between traits can be described by functional relationships. The

dynamics of the traits of a community can be simulated by resolving the continuous trait space

using a finite number of discrete trait groups. However, this approach requires the dynamic

simulation of a large number of such trait groups and is therefore computationally not more

efficient than species based modelling of community dynamics.

Recently, aggregated trait-based modeling using adaptive traits to dynamically simulate

average community properties has been suggested as an alternative approach to investigate

community dynamics (e.g. [11–16]). Aggregated trait based modelling with adaptive traits does

not resolve details of the communities investigated but only models few statistical properties of

the community, typically the community biomass and the average and the variance of the com-

munity trait distribution. The models consider adaptive traits as they dynamically simulate the

change of the average community trait in response to changes in environmental conditions

and community properties. According to [17] trait variance is a key property in trait-based

analysis as it is a measure of trait diversity and it is proportional to the rate at which the average

community trait changes. Hence, aggregated trait based modeling with adaptive traits requires

the simulation of the temporal changes in average community traits and of the trait variance.

Resolved and aggregated trait based models have both limitations. Whereas resolved models

discretize trait space to a limited number of trait groups and therefore only approximate the

development of communities consisting of species occupying continuous trait space, aggre-

gated models consider continuous trait space but can only simulate aggregated statistical prop-

erties of the trait distributions. Comparison between results from aggregated trait based models

using adaptive trait simulation and simulations with resolved models are scarce and typically

have focused on predator prey interactions in zero dimensional systems (e.g. [12,18]). Compar-

isons of aggregated trait based models with field observations are rare and typically limited to

models that assume fully mixed conditions (e.g. [15,16]). An exception is [19] comparing

results from a vertically resolved aggregated trait based model with oceanic observations.

Whether aggregated trait based models considering competition of phytoplankton in vertically

resolved aquatic systems can be employed to assess the consequences of vertical transport on

plankton community dynamics and co-existence has not yet been explored in detail.

The dynamics of phytoplankton communities in lakes and oceans are strongly affected by

transport due to vertical turbulent diffusion and sinking, because the position of phytoplank-

ton within the water column determines availability of light and nutrients for production. The

persistence and dynamics of single phytoplankton species in vertical water columns have been

demonstrated to strongly depend on vertical turbulent diffusion (e.g. [20–23]). Intensity of

vertical mixing also affects the outcome of competition between phytoplankton species in ver-

tically resolved systems (e.g. [7,24–28]).

Most modelling studies investigating phytoplankton competition have considered the

simultaneous interaction of very few explicitly modelled species with prescribed trait combina-

tions and e.g. have tested whether these species can co-exist. Typically, the species considered

in these models differ in several parameters describing specific production and resource con-

sumption. Very few studies have considered a large number of phytoplankton species in verti-

cally resolved systems to investigate the development of community structure, e.g. [29]. The

latter study suggested the use of aggregated trait based approaches to reduce computational

effort. Because vertical transport strongly affects competition of light and nutrient limited phy-

toplankton such aggregated trait based models need to include transport processes to be able

to adequately simulate phytoplankton communities in lakes and oceans.

The study here employs vertically resolved models and uses two different approaches to

simulate the community dynamics of phytoplankton: In the first approach the temporal

changes in the phytoplankton community are simulated by resolving a large number of
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fixed trait combinations each representing a different trait-group, which can also be consid-

ered a species. In the second approach the development of statistical properties of the commu-

nity trait distributions is simulated using aggregated trait based models with adaptive traits.

In all our simulations phytoplankton competes for two limiting resources, light and nutri-

ents, which both vary with depth and depend on the phytoplankton development in the water

column. The phytoplankton species are assumed to differ not with respect to resource con-

sumption, but only with respect to specific production, i.e. the species differ only in their half

saturation constant for light, HI, and their half saturation constant for nutrients, HN. The half

saturation constants HI and HN will affect the degree of light and nutrient limitation, and are

linked by a trade-off function. Hence, the differences between all phytoplankton species can be

described by HI alone and HI may therefore be considered a master trait characterizing the dif-

ferences within the phytoplankton community.

In trait based approaches trait-space is typically assumed to be continuous, i.e. the species

in the phytoplankton community can assume any value of the half saturation constant HI

within an interval of trait values bounded by the evolutionary possible minimum and maxi-

mum HI of the community. The development of long term stable co-existence in a phytoplank-

ton community consisting of numerous species that differ in master trait HI can be interpreted

as the evolutionary stable co-existence for the specific trade-off between the half saturation

constants HI and HN.

Utilizing numerical experiments we address the following hypotheses:

1. In models resolving a large number of individual species and also in aggregated trait-based

models differences in specific production of phytoplankton, here resulting from differences

in the half saturation constants HI and HN, can be sufficient to support co-existence in par-

tially mixed water columns. In both models, differences in parameters related to resource

consumption, e.g. to light extinction or stoichiometry, are not necessarily required for co-

existence.

2. Evolutionary stable co-existence of phytoplankton differing only in traits related to specific

production is possible at low but not at high mixing intensities.

3. The statistical properties of trait distributions derived from trait based modelling of a large

number of individual trait groups agree with those simulated with aggregated adaptive trait

based models.

4. Aggregated adaptive trait based modelling can be employed to assess the conditions under

which evolutionary stable co-existence occurs.

Methods

The model and analysis of model results

The model applied in this study considers a community of light and nutrient limited phyto-

plankton in a partially mixed vertical water column. Individual phytoplankton species are sim-

ulated as in e.g. [24]. The model dynamically simulates the concentration of carbon Ci of the

phytoplankton species i, nutrient concentration in the water column, N, and a nutrient pool in

the sediments NS:

@Ciðt; zÞ
@t

¼ pspec;iðI;NÞ � Ci � lbg;i � Ci � vi �
@Ci

@z
þ
@

@z
Kz �

@Ci

@z

� �

ð1Þ
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@Nðt; zÞ
@t

¼ �
X

gi � ðpspec;iðI;NÞ � Ci � lbg;i � Ci Þ þ
@

@z
Kz �

@N
@z

� �

dNsðtÞ
dt
¼
X

vi � gi � CiðzmaxÞ � m � Ns

pspec;iðIðzÞ;NðzÞÞ ¼ mmax;i
IðzÞ

HI;i þ IðzÞ
�

NðzÞ
HN ;i þ NðzÞ

IðzÞ ¼ I0exp �

Zz

0

X
ðki � Ci þ kbgÞ�dz

0

@

1

A

Thereby, t represents time, z is depth below the water surface and zmax is z at maximum

water column depth. Specific production pspec,i of species i is limited by light intensity I and

nutrient concentration N. μmax,i is the maximum specific algal production rate, HI,i the half-

saturation constant of light-dependent algal production and HN,i the half saturation constant

with respect to nutrients of species i. The limitation of production by light and nutrients is

simulated using a product law. Note that Liebig’s minimum law is not compatible with aggre-

gated adaptive trait based models if phytoplankton differs in trait HI because the solution of

these models require the derivative of specific net production with respect to the traits (see Eq

5). The vertical profile of light intensity is calculated by considering not only background

attenuation but also light attenuation by algae which leads to integro-partial-differential equa-

tions [20]. ki is the specific light-attenuation coefficient of algal biomass of species i, kbg the

background light attenuation. Algae and nutrients are transported by turbulent mixing which

is modelled as a diffusive type process that is characterized by a vertical turbulent diffusivity

Kz. Sedimentation of algae is simulated using a sinking velocity vi. As bottom boundary condi-

tion for the dissolved nutrients the model considers the nutrient flux from a sediment pool of

nutrients (NS) as in [22,23]. The sediment nutrient pool is filled with nutrients stored in the

phytoplankton sedimenting out of the water column into the sediments. These nutrients are

re-mineralized at rate m and returned to the bottom of the water column (see [23]). The fluxes

of phytoplankton and dissolved nutrient concentrations at the surface (Fs) and the bottom (Fb)
of the water column are FsCi = 0; FbCi = vi�Ci(zmax); FsN = 0; FbN = −m�Ns. All phytoplankton

species are assumed to have the same specific maximum growth rate μmax, specific loss rate lbg,
specific light extinction coefficient k, nutrient to carbon ratio γ, and sedimentation velocity v,

but to differ in their half saturation constants for light HI and nutrients HN. The trade-off

between HI and HN is modelled using a power law:

lnðHNÞ ¼ aþ b � lnðHIÞ ð2Þ

Thus, the phytoplankton species in the model can be considered as trait groups character-

ized by a master trait HI. The phytoplankton equation can be condensed into the form:

dCiðt; zÞ
dt

¼ rðHIi; I;NÞ � Ci � v �
@Ci

@z
þ
@

@z
Kz �

@Ci

@z

� �

; ð3Þ

and r is the specific net growth rate r = pspec(HIi,I,N) − lbg.
The development of the phytoplankton community is simulated using two different

approaches:

1. Discrete trait groups with different values of the master trait HI are resolved and simulated

simultaneously (resolved model RM). Specifically, we consider 101 trait groups that cover

HI between 20 and 120 μmol photons m-2 s-1 in steps of 1 μmol photons m-2 s-1.

Trait selection and co-existence
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2. Statistical properties of the community trait distribution c(s,z), i.e. the concentration per

unit trait at trait s at depth z, are simulated using an aggregated adaptive trait based commu-

nity model (AM). As continuous master trait s the model uses half saturation constant of

light HI. The model AM considers as state variables total phytoplankton concentration of

the community CT =
R
c (HI) � dHI and first and second moment of the community trait

distribution M1 =
R
c(HI) � HI � dHI and, M1 ¼

R
cðHIÞ � H2

I � dHI respectively, whereby the

integration is over trait space. The total community concentrations and the first moment of

the trait distribution provide the average community trait Trav,M = M1 / CT, and the second

moment M11 the variance of the trait distribution around the average community trait

Trvar;M ¼ M11=CT � Tr2
av;M .

The temporal changes of CT, M1 and M11 are given by:

@CTðt; zÞ
@t

¼

Z

rðHI; I;NÞ � cðHIÞ � dHI � v
@CT

@z
þ
@

@z
Kz
@CT

@z

� �

@M1ðt; zÞ
@t

¼

Z

rðHI ; I;NÞ � cðHIÞ � HI � dHI � v
@M1

@z
þ
@

@z
Kz
@M1

@z

� �

@M11ðt; zÞ
@t

¼

Z

rðHII;NÞ � cðHIÞ � HI
2 � dHI � v

@M11

@z
þ
@

@z
Kz
@M11

@z

� �

ð4Þ

whereby the state variables, light intensity, nutrient concentration and the community trait

distribution c are all dependent on z. The integrals in these differential equations are approxi-

mated using a Tailor expansion around the average community trait M1/CT. The Taylor

expansion leads to a dependence of the first and second moment on the 3rd and 4th moment of

the trait distribution. As the temporal development of moments of the trait distribution always

depends on higher order moments a closure scheme is required for the solution of the aggre-

gated trait based model.

Adopting the approach of [16] and [12], the integrals in Eq 4 were approximated using a

Taylor expansion and the assumption that the community trait distributions are of Gaussian

form:

Z

rðHI ; I;NÞ � cðHIÞ � dHI �

rm � CT þ
1

2
� M11 �

M1
2

CT

� �

�
@2r
@H2

I

�
�
�
�
M1=CT

Z

rðHI ; I;NÞ � cðHIÞ � HI � dHI �

rm �M1 þ M11 �
M1

2

CT

� �

�
@r
@HI

�
�
�
�
M1=CT

þ
1

2
�

M1 �M11

CT
�
M1

2

CT
2

� �

�
@2r
@H2

I

�
�
�
�
M1=CT

Z

rðHI ; I;NÞ � cðHIÞ � H
2

I � dHI �

rm �M11 þ 2 �
M1 �M11

CT
�
M1

3

CT
2

� �

�
@r
@HI

�
�
�
�
M1=CT

þ
1

2
� 2

M1
4

CT
3
� 5

M1
2 �M11

CT
2
þ 3

M11
2

CT

� �

�
@2r
@H2

I

�
�
�
�
M1=CT

ð5Þ

with rm = r (M1/CT,I,N) defined as the specific net growth rate at the average community mas-

ter trait HI. The trait HN is calculated from HI using the trade-off function given in Eq 2.

Because the values of all other traits are assumed to be the same for all phytoplankton species,

the equations for dissolved nutrients, the nutrient concentration in the sediment, and the
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PLOS ONE | https://doi.org/10.1371/journal.pone.0194076 March 22, 2018 6 / 21

https://doi.org/10.1371/journal.pone.0194076


vertical profile of light intensity are given by:

@Nðt; zÞ
@t

¼ � g � rm � CT þ
1

2
� M11 �

M1
2

CT

� �

�
@2r
@s2

�
�
�
�
M1=CT

 !

þ
@

@z
Kz
@N
@z

� �

@Nsðt; zÞ
@t

¼ v � g � CTðzmaxÞ � m � Ns

Iðt; zÞ ¼ I0exp �

Zz

0

ðk � CTðt; zÞ þ kbgÞdz

0

@

1

A

ð6Þ

The full set of differential equations and the specific assumptions of the AM are provided in

Appendix A in S1 File. Variables and parameters employed in the simulations are summarized

in Table A in S1 File. The trade-off function between HI and HN is depicted in Figure A in S1

File.

The final equations do not provide exact solutions to Eq 4 because of the Taylor approxima-

tion and the assumption of normally distributed traits. However, Eqs 5 and 6 provide approxi-

mations to the correct solution with the similar limitations as in earlier studies using

aggregated trait based models [12,15,16].

The same initial condition for the trait distribution of the phytoplankton community

was used in AM and RM simulations, i.e. in both model types we used at all water depths a

normal distribution with a total phytoplankton concentration CT = 200 mgC m-3, a mean trait

HI = 70 μmol photons m-2 s-1 and a community trait variance of 100 (μmol photons m-2 s-1)2

around the mean trait as initial condition. The initial nutrient concentration in the sediment

was NSini = 0 mgCm-2. We analysed competition with a range of initial nutrient concentrations

Nini between 10 and 90 mgP m-3 and a range of turbulent diffusivities between 2 and 1 x 10−3

m2 s-1. Incident light intensity was I0 = 300 μmol Photons m-2 s-1 and the maximum water

depth was zmax = 50 m.

The model equations were solved numerically by discretizing the spatial dimension in 0.5

m steps. The advection equation was discretized using a third order upwind scheme as in

[20,24]. The remaining system was solved as in [22] using the ode15s solver of MATLAB for

the resulting system of coupled ordinary differential equations.

Model comparison and statistical properties

The properties CT, M1 and M11 simulated with AM include the entire continuous trait space

whereas in RM the trait space is limited by the range of the trait groups considered, i.e. RM

considers 101 trait groups located at HI from 20 to 120 μmol Photons m-2 s-1 in steps of 1 μmol

Photons m-2 s-1. Thus, for the comparison of the model results obtained with AM and RM we

derived from the statistical properties provided by AM concentrations of the trait groups Ci at

the same trait values as in RM. The concentration density distribution c(HI) was calculated

from CT, M1 and M11 simulated with AM assuming a Gaussian distribution. The concentra-

tions Ci of AM for the same trait groups as in RM were obtained by integrating c(HI) over

intervals of 1 μmol Photons m-2 s-1 centered at the HIi considered in RM. These concentrations

Ci, were utilized to calculate all statistical properties of the trait distribution and diversity indi-

ces mentioned below. Based on the Ci obtained from AM and RM total concentration CT, aver-

age trait Trav, and trait variance Trvar of the phytoplankton community within the trait range

Trait selection and co-existence
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of RM were calculated from:

CT ¼
X

i

Ci; M1 ¼
X

i

Ci � HI;i; M11 ¼
X

i

Ci � H2
I;i

Trav ¼
M1

CT

Trvar ¼
M11

CT
� Tr 2

av

ð7Þ

All diversity indices and properties characterizing the trait distributions were calculated

from the Ci obtained with RM and the Ci derived from AM. Functional richness, Frich, is the

number of trait groups with concentrations larger than 10−3 mgC m-3. A threshold is required

for richness calculations because in numerical simulations disappearing species do not become

extinct, but only asymptotically approach zero concentrations. Our results are robust regard-

ing the magnitude of the threshold, e.g. similar conclusions are obtained for a threshold of

10−6 mgCm-3 or whether it was defined as 0.01% of the maximum concentration.

The index of functional divergence (FD80) employed in this study is a generalized form of

the functional divergence index described in [30] and quantifies a range in trait space that is

occupied by 80% of the total phytoplankton concentration utilizing the 10% and 90% percen-

tile in the cumulated trait distribution. The trait range obtained is normalized by the maxi-

mum range of trait space:

FD80 ¼
HI;90 � HI;10

HI;max � HI;0
; with

ZHI;10

HI;0

cðHIÞdHI ¼ 0:1 � CT and
ZHI;90

HI;0

cðHIÞdHI ¼ 0:9 � CT ð8Þ

and HI,0 is the smallest and HI,max the largest trait value HI considered, i.e. 20 and 120 μmol

m-2 s-1, respectively. The integrals in Eq 8 implicitly provide HI,10 and HI,90, which are the trait

values at the limits of the central trait region occupied by 80% of the phytoplankton commu-

nity. Since we compare discrete trait groups with concentrations Ci the integrals in Eq 8 were

replaced by sums of Ci obtaining the boundaries of the occupied trait range by summing start-

ing from the lowest HIi until the threshold of 0.1�CT and 0.9�CT, respectively, is exceeded for

the first time.

In addition to the functional diversity indices we determined the trait value TrCmax at maxi-

mum concentration Cmax. Cmax is the maximal concentration in the trait distribution Ci

obtained from RM or determined from the simulation results of AM. Further, we calculated

the ratio between the concentration at average community trait CTrav and Cmax:

fCTrav=Cmax ¼
CTrav

Cmax

ð9Þ

Results

The simulations with RM indicate that competition of phytoplankton for light and nutrients

results in a strong selection of species. At a vertical diffusivity of 5�10−5 m2s-1 the selection of

traits, i.e. survival of trait groups with specific traits, and the co-existence of trait groups

depend on the nutrients initially available in the system (Fig 1). For initial nutrient concentra-

tions Nini < 50 mgP m-3 the trait distribution of the community develops within a 100 yr time

period from an initial unimodal normal trait distribution into a bimodal trait distribution (Fig

1A–1C). The bimodal trait distributions after 100yr and 1000 yr simulation time are character-

ized by high abundances in two very narrow trait regions that are separated in trait space
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indicating extinction of trait groups with intermediate HI (Figs 1A–1C and 2A–2D). At Nini �

30 mgP m-3 one of the co-existing trait groups has a HI at the upper boundary of the trait space

considered to be available for the community (see Figs 1A and 2A for Nini = 30 mgP m-3).

With nutrient enrichment, the value of HI of the co-existing trait group is shifted away from

the upper boundary of the trait space. The larger Nini the smaller is the difference between the

HI at the two local maxima of the final bimodal trait distribution. At Nini � 50 mgP m-3 the

trait distribution does not develop into a bimodal distribution but remains unimodal with

essentially one species out-competing all other species after 100 yrs and 1000 yrs development

time (Figs 1D–1F and 2E–2G). The larger Nini the lower is HI of the surviving species. The

Fig 1. Temporal development of trait distributions at different nutrient enrichments (Nini) (A-F) simulated with RM. Displayed are concentration (mgC m-3) in

101 equally spaced trait intervals as function of master trait HI (μmol Photons m2 s-1) and depth (m). In all simulations turbulent diffusion is Kz = 5�10−5 m2 s-1.

https://doi.org/10.1371/journal.pone.0194076.g001
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traits selected by competition are independent of the depth within the water column (Figs 1

and 3).

Model results for the trait distribution obtained with AM agree very well with the results

from RM as long as the trait distributions are unimodal, i.e. at Nini � 50 mgP m-3 (Figs 2 and

4). In these cases total concentration CT, average community trait and variance of the trait dis-

tribution, functional richness, index of functional divergence, as well as trait at maximum con-

centration and concentration ratio at maximum trait agree very well between RM and AM

(Fig 4). In cases in which RM simulated bimodal trait distributions (i.e. at Nini < 50 mgP m-3),

AM predicts average community traits that are typically between the trait values at the two

local maxima of the bimodal distribution predicted by RM (Fig 2A–2D red arrows, and Fig

4E). The variance of the trait distribution simulated with AM is large, implying very broad

trait distributions, and similar to the trait variance determined from the results of RM (Fig

4C). The total concentration of the phytoplankton community after 100 and 1000 years of

development agree well between RM and AM independent of Nini (Fig 4A). Note that Fig 4

depicts the results at 0.75 m water depth (center of the second grid cell from the top) after 1000

years (symbols and solid lines) and after 100 years (dashed lines) of community development

Fig 2. Comparison of the temporal development of trait distributions simulated with RM (blue) and AM (red) with Nini ranging from 30 to

90 mgP m-3 (Fig A-G). Displayed are trait distributions at 0.75 m water depth (depth of the center of the second grid cell from the surface)

resolving 101 discrete equally spaced trait intervals. The red arrows indicate the location of Trav in AM for simulations in which Trvar is very large.

In all simulations turbulent diffusion was Kz = 5�10−5 m2 s-1.

https://doi.org/10.1371/journal.pone.0194076.g002
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time. In many cases the results after 100 years are essentially the same as after 1000 years.

Exceptions are the variance and the functional richness of unimodal trait distributions that are

smaller after 1000 years than after 100 years simulation time.

In case of the development of bimodal trait distributions, simulation results obtained with

RM and AM differ significantly with respect to several functionally relevant properties of the

trait distributions despite the good agreement in the predicted total concentration of phyto-

plankton and the predicted variance of the trait distributions. In particular, the simulations

with AM suggest that for Nini < 45 mgP m-3 functional richness includes all trait groups in the

entire trait space considered, whereas in RM only few trait groups survive 1000 yr simulation

time (Fig 4D). Furthermore, AM assumes that the phytoplankton concentration distribution

of the community has its maximum at the mean community trait, whereas RM predicts extinc-

tion of phytoplankton at intermediate trait values including the mean community trait, e.g. for

Nini < 50 mgPm-3 after 100 and more years of simulation time (Fig 2A–2D) and for Nini = 30

mgPm-3 from 4 years simulation time onwards (Fig 2A). At 100 and 1000 years simulation

time and at Nini < 50 mgP m-3 the ratio of the concentration at mean trait to the maximum

concentration fCTrav/Cmax becomes essentially zero in case of RM (Fig 4G), whereas in all AM

simulations fCTrav/Cmax equals 1 because of the assumption that trait distributions are of Gauss-

ian form.

Another characteristic of the trait distribution of the phytoplankton community important

for trophic interactions is the trait at which the phytoplankton concentration distribution has

its maximum. (TrCmax). In case of AM, TrCmax is equal to the average community trait Trav
(compare Fig 4E to 4B), whereas in case of RM this is only true for unimodal distributions but

not for bimodal distributions developing in the simulations with Nini < 50 mgP m-3 (Fig 4E).

If RM predicts a bimodal trait distribution, TrCmax is the trait of one of the co-existing trait

Fig 3. Vertical distribution of aggregated properties of the trait distributions simulated with RM and AM at two Nini resulting in either

unimodal or bimodal trait distributions (Nini = 35 mgP m-3, bimodal, Fig A-C; Nini = 50 mgP m-3, unimodal, Fig E-G). The trait

distributions at 0.75m and 9.75 m depth predicted by RM and AM are shown in (D) for Nini = 35 mgP m-3 and in (H) for Nini = 50 mgP m-3. The

aggregated properties obtained from RM and AM are indicated by black and red lines respectively. Depicted are total concentration CT (A, E),

average trait Trav and trait at maximum concentration Trcmax (B,F) and trait diversity FD80 (C,G). Note that Trcmax ofRM is indicated by a green

line whereas in AM Trcmax = Trav and therefore identical to the red line. In all simulations turbulent diffusion was Kz = 5�10−5 m2 s-1 and

simulation time was 1000 yr.

https://doi.org/10.1371/journal.pone.0194076.g003
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groups. In contrast to functional richness the index of functional divergence FD80 of the trait

distributions predicted by AM and RM agrees well not only in case of unimodal but also in

case of bimodal trait distributions (Fig 4F). The only exception is at Nini = 10 mgP m-3, for

which RM predicts a very small divergence index (Fig 4F), because the phytoplankton concen-

tration of one of the two co-existing trait groups is larger than 90% of the total phytoplankton

concentration at this depth.

The general characteristics of the trait distributions, i.e. unimodal or bimodal, remain the

same throughout the vertical water column and depend on Nini (Fig 1). Total abundance

decreases with water depth except very near the surface where CT slightly increases with water

depth (Fig 3A and 3E). The depth of the concentration maximum depends on Nini and co-

existing trait groups typically have their concentration maximum at different depths (see

Figure B in S1 File). RM and AM provide similar vertical profiles of CT in case of bimodal trait

distributions (e.g. at Nini = 35 mgP m-3, Fig 3A) and also in case of unimodal trait distributions

(e.g. at Nini = 50 mgP m-3, Fig 3E). In case of unimodal trait distributions average community

trait and functional diversity index FD80 are essentially independent of water depth and have

the same values for RM and AM (Fig 3F and 3G). In case of bimodal trait distributions average

community trait value of master trait HI decreases with increasing depth in both models (Fig

3B). In AM this change in average community trait with depth results from a shift of the

Gaussian trait distribution in trait space. However, in case of RM only two trait groups co-

exist that differ in their traits but the traits of the two groups do not change within the entire

water column. In RM the shift in average community trait results from a change in the relative

abundance of the two trait groups (Fig 3D). Hence, in the vertical dimension the trait at

Fig 4. Aggregated properties of the trait distributions, diversity indices and additional characteristics of the trait distributions as a function

of nutrient enrichment (Nini) after 100 years (dotted lines) and 1000 years (symbols and solid lines) simulation time. Results are based on

simulations with RM (black) and AM (red). (A) Total concentration (CT), (B) Community average of the master trait HI (TRav), (C) Community

trait variance (TRvar) of master trait HI, (D) Functional richness (Frich), i.e the number of trait groups exceeding 10−3 mgC m-3, (E) master trait HI
at maximum concentration Cmax (TrCmax), (F) Functional divergence (FD80), and (G) ratio between concentration at Trav and the maximum

concentration (fCTrav/Cmax). All characteristics shown were recorded at 0.75 m water depth. The symbols indicate Nini for which simulations were

performed, the lines connect these results, but do not imply that simulation results must fall on these lines. I.e. it is not clear whether AM predicts a

smooth transition or a discontinuous jump from low to high values Trav around 40 mgP L-1. In all simulations turbulent diffusion was Kz = 5�10−5

m2 s-1.

https://doi.org/10.1371/journal.pone.0194076.g004
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maximum abundance TrCmax only shifts between two distinct trait values in RM, whereas in

AM TrCmax changes continuously with depth assuming intermediate values between the two

trait values of the trait groups co-existing in RM (Fig 3B). Note that in AM TrCmax = Trav and

is therefore covered by the red line in Fig 3B.

Total phytoplankton concentration and the properties of the trait distribution of the phyto-

plankton community persisting after 100 years development time depend on Nini and on Kz

(Fig 5). CT increases with increasing nutrient enrichment (increasing Nini) and with increasing

mixing intensity (Kz) for diffusivities below 10−4 m2s-1 (Fig 5A and 5B). At larger mixing inten-

sities CT declines with increasing Kz because intense mixing in the 50 m deep water column

enhances light limitation (Fig 5C). This argument is supported by the decrease in the average

community trait HI with increasing mixing intensity (Fig 5F).

RM and AM predict similar changes of CT with changes in Nini and Kz (Fig 5A and 5B),

whereas the predictions of Trav agree between the model approaches not for all combinations

of Nini and Kz but only when Nini and Kz are high (Fig 5D, 5E, 5G and 5H). RM and AM pre-

dict sharp transitions from very low to high values of FD80 and these transitions occur at essen-

tially the same combinations of Nini and Kz in both models (Fig 5G and 5H). The exception are

few simulations considering low Nini and low Kz in which FD80 of RM is low and of AM is

high. For all other combinations of Nini and Kz at which the transitions of FD80 occur the con-

centration ratio fCTrav/Cmax of the trait distributions predicted by RM changes from high to low

values (Fig 5J) indicating a transition from a state with co-existence to a state with persistence

of a single trait group. At large Kz FD80 is small (Fig 5G–5I) suggesting that low mixing intensi-

ties are required for evolutionary stable co-existence to occur. Similarly, nutrient enrichment

leads to small FD80 suggesting that low rather than high nutrients support evolutionary stable

co-existence, if phytoplankton differs only with respect to half saturation constants HI and HN.

Fig 5. Properties of the trait distributions as function of nutrient enrichment and turbulent diffusivity. Depicted

are the results at 0.75m depth after 100 yr development time. The units of CT and Trav are mgC m-3 and μmol photons

m-2 s-1, respectively.

https://doi.org/10.1371/journal.pone.0194076.g005
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Similar results on selection and co-existence and on the agreement between RM and AM as

above can also be obtained for another trade-off function between HI and HN and a smaller

range of HI (see Figures A and C in S1 File).

The conditions under which two competing phytoplankton species with fixed traits co-

exist was additionally explored using a model considering only two-species (Figure D in S1

File) and compared to the conditions supporting evolutionary stable coexistence arising from

selection in a multi-species community. At same trophic state, i.e. same Nini, the two species

model predicts co-existence for several combinations of HI (Figure D in S1 File). Further-

more, co-existence occurs for a wide range of trophic states, e.g. at Nini from 10 to 70 mgPm-3

(Figure D in S1 File). In contrast, competition in the multi-species community model leads

for each Nini to the selection of a unique single trait group or a unique combination of two

traits groups in case of evolutionary stable co-existence (Fig 4). At the same mixing conditions

as in the two-species model (Kz = 5 10−5 m2 s-1) evolutionary stable co-existence occurs at a

much narrower range of Nini, i.e. only if Nini < 50 mgPm-3 (Figs 2 and 4) than in the two-spe-

cies model.

Discussion

This study investigates trait selection within a phytoplankton community limited by light and

nutrients in partially mixed systems. Most model studies on competition of light and nutrient

limited phytoplankton have been performed assuming fully mixed systems (e.g.[5,6]) or con-

sidered the competition between two prescribed species (e.g. [7,25]). In the following we first

discuss our results from the community resolving trait-based model RM with respect to trait

selection by competition within a phytoplankton community and the development of evolu-

tionary stable co-existence. Afterwards, the potential and limitations of aggregated trait based

models with adaptive traits to contribute to an understanding of community dynamics are

discussed.

Trait selection and long-term co-existence

The phytoplankton community considered in RM consists of a large number of species such

that the available trait space of the master trait is essentially covered continuously. Trait

selection and co-existence result from competition within this community for the two

limiting resources, nutrients and light. Competition lead either to evolutionary stable co-

existence of essentially two trait groups and the development of bimodal trait distributions,

or to the extinction of all trait groups but one and unimodal trait distributions (Fig 1). The

transition from the development of bimodal to unimodal trait distributions with nutrient

enrichment, i.e. an increase in Nini, and with an increase in Kz is associated with a strong

change in FD80 from values close to one to values close to zero (Fig 4F) and an opposite

change in fCTrmax/Cmax (Fig 4G). Changes of FD80 and fCTrmax/Cmax in opposite directions

thus suggest transitions of the final state, i.e. between the co-existence of two and the persis-

tence of one trait group. In few RM simulations with low Nini and low Kz one of the two co-

existing trait groups had concentrations below 10% of CT leading to very small FD80 (Figs 4F

and 5G). In these cases, low FD80 are associated with low concentration ratios fCTrmax/Cmax

(Figs 4G and 5J) the latter correctly indicating co-existence despite the low FD80. Note that

in these cases FD80 of the distributions simulated with AM are large (Figs 4F and 5H) and

thus are a better indicator of co-existence than FD80 of the simulated distributions obtained

with RM.

In fully mixed systems co-existence of light and nutrient limited phytoplankton requires

differences in resource consumption [5,6]. Our simulation results show that in partially
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mixed systems differences in resource consumption are not required but that differences in

specific production, i.e. due to differences in half saturation constants HI and HN, are suffi-

cient to support evolutionary stable co-existence of phytoplankton (Fig 1A–1C). In our simu-

lations with RM the selection process within a community consisting of numerous groups

with different trait combinations reduces the functional richness of the original community

and leads to the persistence of one or the coexistence of two very narrow trait groups. This

result is consistent with results from an eco-evolutionary model with adaptive dynamics sim-

ulating monomorphic species of phytoplankton using essentially the same phytoplankton

model as in the study here and predicting evolutionary stable co-existence of singular trait

groups [8].

In case of the development of evolutionary stable coexistence, competition within the com-

munity leads to selection of one trait groups that has comparatively low HI supporting efficient

use of light at low light intensities in deeper waters where the nutrient concentrations are typi-

cally higher than in the surface waters. The other co-existing trait group selected sacrifices

good performance at low light conditions for good performance at low nutrient levels (HI is

large and HN low). The latter trait group benefits from high light intensities at the lake surface

but must be efficient at low nutrient levels because nutrient concentrations decrease towards

the surface due to nutrient uptake by the phytoplankton in deeper waters. Note that the co-

existing trait groups are not separated in the vertical dimension but also co-exist at the same

water depths (Fig 3D and Figure B in S1 File). The conditions at a specific depth of co-exis-

tences may not support persistence of both trait groups but vertical transport of the trait

groups from other depths with higher net production may compensate for local losses. Thus

transport from different niches in the vertical water column enables co-existence although the

competing species do not differ in their resource consumption. According to [31] and [32] co-

existence of a superior and an inferior competitor is possible if spatial niches exist and the infe-

rior competitor is the more fugitive species, i.e. has a higher colonization rate. In our model all

individuals have the same spatial mobility, i.e. the same sinking rate. However, the vertical dis-

tributions of the populations with different traits differ and therefore the vertical transport due

to turbulent diffusion differs between trait groups. Hence, differences in the spatial distribu-

tion of the populations causing differences in diffusive fluxes rather than differences in indi-

vidual mobility support co-existence of our phytoplankton community differing only with

respect to half saturation constants for light and nutrients. Co-existence of more phytoplank-

ton species than limiting resources (see [8]) may also be explained by the combination of spa-

tial niches with differences in the transport of species due to differences in their vertical

distribution patterns. Our results thus suggest that conclusions on the conditions for co-exis-

tence of phytoplankton derived from analyses of fully mixed systems as in [5] or [6] may not

necessarily be directly applicable to partially mixed systems that allow for variation in the habi-

tat conditions in the vertical dimension.

According to the results on trait selection from RM, functional divergence FD80 (Fig 4G),

i.e. the trait difference of the co-existing species, increases with decreasing Nini (Figs 4G and

2A–2D). This result suggests that reducing nutrients may support communities consisting of

species with extreme traits.

The trophic state Nini under which two competing species can co-exist depends not only on

the trade-off function between trades but also on the specific values of the master trait available

for the two species (Figure D in S1 File). This suggests that the eco-physiological limits of the

trait space for a community consisting of multiple species with different traits but the same

trade-offs, will influence the conditions under which co-existence can occur.
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Limitations and potential of aggregated trait based approaches with

adaptive traits

The above conclusions were derived from simulation results obtained with RM, i.e. a model

that resolves individual trait groups. In the following we address the question, whether and in

which way aggregated trait based approaches can support the investigation of the response of

community dynamics to changing conditions.

AM and RM agree very well for unimodal trait distributions, not only after long simulation

times (e.g. Fig 4 for Nini � 50 mg m-3) but also during the dynamic development of phyto-

plankton communities from the initial trait distribution to the final state (Fig 2) and in the ver-

tical dimension (Fig 3E–3H). This excellent agreement between AM and RM indicates that the

mathematical approach and numerical implementation of AM designed to simulate aggre-

gated properties of phytoplankton trait distributions in vertically resolved systems is adequate.

At low values of Nini the trait distributions change their shape from normal to non-normal

distributions and eventually become bimodal (e.g. Fig 1A–1C and RM in Fig 2A–2D).

Although in these cases the assumption of normal trait distributions employed in the solution

of AM is not valid, the estimates of total concentration and the functional divergence of the

trait community agree well between AM and RM (Fig 4A and 4F). In contrast, the average

community trait is shifted to lower values in AM compared to RM (e.g. Figs 4B and 3B), and

functional richness and the concentration ratio fCTrav/Cmax of the trait distributions simulated

with AM and RM, respectively, strongly differ after long simulation times (Fig 4D and 4G).

The disagreements reflect the differences between the bimodal trait distributions obtained

with RM after long simulation times and the trait distributions inferred from the statistical

properties predicted by AM using the underlying assumption of normal trait distributions

(Fig 2A–2D).

Thus, although some of the statistical properties of the trait distributions predicted from

RM and AM are similar, the trait distributions themselves differ in functionally important

aspects which may have severe implications for the understanding of e.g. trophic interactions

between zooplankton and the phytoplankton community. Assuming normal trait distributions

as in AM, an average community trait Trav at intermediate trait values suggests that phyto-

plankton concentrations at intermediate trait values are large and the phytoplankton commu-

nity thus supports zooplankton feeding on phytoplankton with intermediate traits. Note, that

traits typically correlate with size of the organisms [33] and availability of phytoplankton at

intermediate traits thus suggests availability of phytoplankton at intermediate size. Further, the

abundances of specific zooplankton groups as well as overall zooplankton trait distributions

are closely coupled to the traits of phytoplankton [34]. However, the results from RM indicate,

that Trav at intermediate trait values may also result from the abundance of two distinct trait

groups at the outer range of the trait space and that phytoplankton with trait values Trav have

become extinct and are not available for grazing. This suggests that in case of bimodal trait dis-

tributions obtained from RM simulations, the corresponding AM simulations would errone-

ously predict high abundances at intermediate trait values, which should support different

zooplankton taxa and/or zooplankton trait distributions compared to RM simulations. Like-

wise AM simulations erroneously suggest different niches for zooplankton with depth as they

assume normal trait distributions and predict continuous shifts in the average phytoplankton

community trait with increasing depth (Fig 3B). RM simulations clarify that this shift in aver-

age community trait results from changes in the relative abundance of two persisting trait

groups.

Aggregated trait based modelling approaches may provide reasonable approximations of

statistical properties of the trait distribution of the community, but the statistical properties
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calculated with AM, i.e. CT, Trav and Trvar, do not provide sufficient information to infer

unique trait distributions and the availability of phytoplankton at certain trait values. Further,

Trvar may be an important characteristic of the trait distribution relevant for the prediction of

the change in average community trait, but it does not correlate with functional richness.

Hence, even if AM and RM may provide similar results on CT, Trav and Trvar, these statistical

properties do not allow reliable conclusions on community dynamics, community diversity,

competitive abilities and selection, or trophic interactions between communities. The compar-

ison of the predictions from RM and AM and the properties of the trait distributions simulated

with RM point to a rather general difficulty of aggregated trait based approaches: The assess-

ment of a few statistical properties of trait distributions. i.e. CT, Trav and Trvar, apparently is

not a sufficient basis for an understanding of community dynamics if the communities do not

have normal trait distributions but develop multimodal trait distributions.

There is no observational evidence demonstrating normally distributed or at least unimodal

trait distributions in phytoplankton. Furthermore, in partially mixed environments multimod-

ality of trait distributions of plankton communities can easily arise and may be a common fea-

ture because in systems with resource gradients in which trait distributions vary spatially,

mixing does not conserve the shape of trait distributions or their unimodality. This effect of

mixing is illustrated in Fig 6: Consider two water masses containing phytoplankton communi-

ties that have normal trait distributions with respect to one trait. For simplicity we assume that

both communities have the same total concentration and that their trait distributions have the

same variance but differ in their average community trait (Fig 6A and 6B). Mixing of the two

water masses results in a community that is characterized by a bimodal trait distribution (Fig

6C). This illustration suggests that the assumption that mixing restores unimodal trait distri-

butions [35] may not necessarily be justified because mixing has the potential to generate mul-

timodal from unimodal distributions. The requirement of unimodal trait distributions in AM

may thus be particularly problematic in systems in which trait distributions differ in space and

partial mixing is important.

The premise in trait based ecology is that environmental conditions are reflected in the trait

distributions of a community. Hence, in environments with spatial resource gradients trait dis-

tributions should differ in space. In case of phytoplankton, trait distributions with respect to

light and nutrient utilization, e.g. the half saturation constant of light and nutrients, may differ

not only in the vertical but also in the horizontal dimension because shore regions are typically

enriched in nutrients, particularly close to inflows, and/or are more turbid than the open

waters. Because phytoplankton community traits can be expected to vary in space and to be

mixed by horizontal turbulent diffusion as in Fig 6, unimodal trait distributions in phytoplank-

ton communities may be an exception rather than common in natural systems.

The discussion above suggests that non-normal and even bimodal trait distributions of

light and nutrient limited phytoplankton communities may be common in partially mixed sys-

tems. Likewise disruptive selection caused by predators may also result in bimodal trait distri-

butions of phytoplankton depending on the specific trade-off between phytoplankton growth

rates and edibilities [18]. In all these cases, phytoplankton trait distributions inferred from the

results of AM can be misleading in studies of trophic interactions, especially if zooplankton

grazing rates depend on phytoplankton and zooplankton traits and the interaction is described

based on average community traits. However, this conclusion does not imply that AM cannot

support the analysis of community dynamics. In our partially mixed water column competi-

tion and selection in a light und nutrient limited phytoplankton community results in the

development of evolutionary stable co-existences of essentially two trait groups or in the per-

sistence of one trait group depending on environmental conditions and phytoplankton traits.

Assessment of the conditions for co-existence can be based on model predictions of the
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functional divergence FD80 which are similar in AM and RM simulations. FD80 determined for

simulation results from AM can therefore be used to indicate whether the final state implies

persistence of a single trait group or co-existence of two trait groups. Because the computa-

tional time required for simulations with aggregate models are much shorter than for models

resolving numerous species [35], the application of AM can be an efficient way to assess the

combination of environmental conditions and phytoplankton traits under which co-existence

may occur (e.g. Fig 5H and 5I and Figure C panel F in S1 File). Furthermore, if unimodal trait

distributions develop the effect of environmental conditions on the selected traits can be

assessed using AM, as e.g. in Fig 5 illustrating that at large mixing intensities the average com-

munity trait HI decreases with increasing Kz.

A common difficulty in AM models is that trait variance and thus diversity vanishes with

simulation time [36] if the species model underlying the AM leads to selection of a single spe-

cies. This also implies that the diversity in the corresponding RM vanishes. As a solution to the

difficulty of decreasing diversity in plankton models [36] have suggested to increase diversity,

i.e. trait variance, by introducing diffusion in trait space. However, diffusion in trait space does

Fig 6. Illustration of the generation of bi-modal trait distributions by mixing: Two communities that are

characterized by the same master trait have trait distributions of Gaussian form with the same concentration CT
and variance Trvar, but differ in the mean community trait Trav (A, B). Mixing of these two communities results in a

community that has a bi-modal distribution of the master trait (C).

https://doi.org/10.1371/journal.pone.0194076.g006
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not have a proper expression in the processes considered in the individual models forming the

basis for the AM. Furthermore, the increase in variance due to trait diffusion in unimodal trait

distributions cannot be distinguished from an increase in variance due to the development of

bimodal trait distributions. Hence, the development of trait variance in AM models is not a

reliable measure of trait diversity.

Concluding the discussion, our results confirm that in partially mixed systems evolutionary

stable co-existence of light and nutrient limited phytoplankton can occur if phytoplankton dif-

fers only with respect to specific production. Differences in resource consumption are not

required for co-existence to occur. However, if mixing intensities are large differences in spe-

cific production appear insufficient to support co-existence. The two model approaches RM

and AM agree well if trait distributions are unimodal but differ if trait distributions become

bi-modal, as was the case in our simulations leading to evolutionary stable co-existence of two

trait groups. In systems with spatial resource gradients that are partially mixed multimodality

may easily develop. In these cases AM may be misleading with respect to community dynamics

but can support exploration of conditions and parametrizations at which the system undergoes

transitions, e.g. from the persistence of a single to co-existence of more than one trait group.

Supporting information

S1 File. Supporting information containing 6 parts. Appendix A in S1 File provides ade-

tailed description of the aggregated trait-based model, Table A in S1 File lists model variables

and parameters. Figure A in S1 File depicts the trade-off between the half saturation constants

HN and HI. Figure B in S1 File shows different properties of the RM-simulated trait distribu-

tions in the vertical dimension. Figure C in S1 File presents model results considering a smaller

range of HI and HN and a different trade-off function than in the main text and Figure D in S1

File shows results from a two species model.
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