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Persistent, low-grade inflammation is now considered a hallmark feature of chronic kidney disease (CKD), being involved in the
development of all-cause mortality of these patients. Although substantial improvements have been made in clinical care, CKD
remains a major public health burden, affecting 10–15% of the population, and its prevalence is constantly growing. Due to its
insidious nature, CKD is rarely diagnosed in early stages, and once developed, its progression is unfortunately irreversible. There
are many factors that contribute to the setting of the inflammatory status in CKD, including increased production of
proinflammatory cytokines, oxidative stress and acidosis, chronic and recurrent infections, altered metabolism of adipose tissue,
and last but not least, gut microbiota dysbiosis, an underestimated source of microinflammation. In this scenario, a huge step
forward was made by the increasing progression of omics approaches, specially designed for identification of biomarkers useful
for early diagnostic and follow-up. Recent omics advances could provide novel insights in deciphering the disease
pathophysiology; thus, identification of circulating biomarker panels using state-of-the-art proteomic technologies could
improve CKD early diagnosis, monitoring, and prognostics. This review aims to summarize the recent knowledge regarding the
relationship between inflammation and CKD, highlighting the current proteomic approaches, as well as the inflammasomes and
gut microbiota dysbiosis involvement in the setting of CKD, culminating with the troubling bidirectional connection between
CKD and renal malignancy, raised on the background of an inflammatory condition.

1. Introduction

Low-grade chronic systemic inflammation is a condition
characterized by persistent, low to moderate levels of circu-
lating inflammationmarkers. It has been long associated with
coronary heart disease [1], metabolic syndrome, diabetes [2],
and aging [3]. However, not only elderly pathologies are
associated with the presence of low systemic inflammation.
As systemic inflammation has also been reported in children
and teenagers with weight problems [4], it is now clear that
the persistence of the underlying condition and molecular

mechanisms that trigger it should be taken into consideration
in tandem with low chronic inflammation.

Whether inflammation is either a trigger or a result of a
chronic underlying condition is an intensely studied topic.
Studies on the impact of chronic inflammation on early
stages of disease development, as well as the impact of early
life nutrition on the adult inflammatory status, greatly
extended the knowledge in the field (reviewed in [5]). Emer-
gence of inflammation in childhood has been associated with
obesity [6], diet [7], enteral infections [8], and even social
stress [9]. Gene polymorphisms of inflammatory markers
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[4, 10] and/or inflammasome components [11] are also deter-
minants of the inflammatory response of patients in the face
of chronic injuries.

The main sources of inflammatory cytokines are circu-
lating monocytes and endothelial cells. Ubiquitous distribu-
tion of the latter could be responsible for the wide-spread
impact of inflammation in almost all organs, including
the bone. The kidney receives 25% of the entire blood vol-
ume, without having the benefit of antioxidant, detoxifying,
and anti-inflammatory defence mechanisms developed by
other intensely vascularized tissues, such as hepatic tissue.
Hence, the kidney stands as a vulnerable target in front of
persistent aggression.

Chronic kidney disease (CKD) is defined as “abnormali-
ties of the kidney structure or function, present for more than
3 months, with implications for health” [12]. There is no
question that inflammation plays a part in CKD progression
and outcome [13], but the link between initiation of the
disease and inflammation is still under debate. Similar to
other chronic diseases, CKD is accompanied by a low-grade
chronic inflammation, to which the kidney is vulnerable in
more than one way, as discussed in the following section.
Notably, distant sources of inflammation, such as a dysregu-
lation of gut microbiota [14] or alteration of intestinal barrier
[15], can negatively impact on progression of CKD and
uremia-associated complications. Relationship between diet,
gut microbiota, and CKD will be further detailed in one of
the sections of this review. A particular issue to be addressed
in the present review is the relationship between CKD,
chronic inflammation, and malignancy. Similar to other
chronic diseases, various types of cancer (colorectal [16],
pancreatic [17], breast [18], aggressive prostate [19], lung
[20], ovarian [21], or brain [22]) are associated with underly-
ing chronic inflammation. Systemic inflammation has also
been associated with renal cancers, especially in terms of
prognosis [23–25], being as well a promoter of cell transfor-
mation and metastasis [26]. This review will look into more
detail whether progression of CDK towards malignancy is a
possibility that a clinician should consider in the context of
systemic inflammation. Finally, the review will conclude with
updates regarding proteomic studies of biomarkers for diag-
nostic, for accurate stratification, or progression from one
stage to another, discussed in the framework of global search
for ideal biomarkers.

2. Vulnerability of Kidneys
Facing Inflammation

The role of inflammation in CKD pathogenesis and progres-
sion has been recognized since the late 1990s, when the first
provocative theory was launched, in which inflammation,
via monocyte release of interleukin-1 (IL-1), the master
cytokine of inflammation, was the starting point concerning
the major complications and the increasing rate of mortality
in patients undergoing chronic dialysis [27]. It has also been
described how polymorphisms in the IL-1 gene cluster
influence levels of IL-1 gene products, which were later
encountered in various inflammatory disease states. Since
then, there has been an exponential growth of interest in

deciphering the role played by the inflammatory cytokines
released in the uremic milieu of CKD, as independent pre-
dictors of morbidity and mortality in CKD patients. While
the release of proinflammatory cytokines could determine
favourable effects, persistent inflammation is recognized to
promote adverse consequences.

There are many factors that contribute to chronic inflam-
matory status in CKD, including increased production of
proinflammatory cytokines, oxidative stress and acidosis,
chronic and recurrent infections, altered metabolism of
adipose tissue, and intestinal dysbiosis.

Inflammatory activation in CKD seems to be also influ-
enced by genetic and epigenetic conditions. Therefore, sev-
eral approaches have been proposed to target inflammation
in CKD, including lifestyle changes, drugs, and dialysis
optimization [28].

The evidence obtained so far sustains that inflammation
and inflammatory reactions of any cause can modify or
interfere with the intrarenal microcirculatory regulation
and perfusion distribution and can induce renal damage,
thus enhancing CKD progression.

It is well recognized the uniqueness of microcirculation
networks in kidneys, being essential to sustain the corticome-
dullary osmotic gradient for fluid absorption and urine con-
centration. Under physiological conditions, the distribution
of intrarenal vasculature is heterogeneous, and the medulla
resides in a hypoxic milieu; therefore, the energy deprivation
is eluded by an avalanche of regulators, such as hormones
and other vasoactive molecules (prostaglandins, endothelins,
kinins, medullipin, nitric oxide, and other molecules), mostly
synthesized in the medulla [29]. Regardless of the highly
regulated microcirculatory balance that keeps the kidneys
efficient, it has to be mentioned that any slight imbalance
in the interaction amongst these molecules could alter
kidney function, thus rendering kidneys vulnerable to the
microenvironment.

Systemic or intrarenal inflammation contributes to
deregulation of the microvascular response to its regulators
and sustains the production of an array of tubular toxins,
including reactive oxygen species (ROS), leading to tubular
injury, nephron dropout, and the onset of CKD. Circulating
proinflammatory cytokines activate intrarenal microvessels,
particularly endothelial cells and leukocytes, resulting in a
local amplification of proinflammatory factors and ROS.
These processes affect cell-surface adhesion molecules and
disrupt the glycocalyx layer. Endothelial barrier function,
activation of coagulation system, and receptor-mediated
vasoreactivity are also compromised. These inflammation-
mediated alterations can induce irreversible tubular injury
and nephron failure [30].

Oxidative stress and inflammation are inseparably
linked, being major characteristics of CKD and drivers of
CKD progression. Systemic inflammation presence and
severity contributes to CKD-associated oxidative stress,
which represents a condition in which generation of ROS
surpasses the capacity of the antioxidant defence system [31].

The inflammatory microenvironment, mediated by cyto-
kines, induces overexpression of reactive oxygen/nitrogen
species, bioactive lipids, and adhesion molecules. Cytokines

2 Journal of Immunology Research



are also responsible for the promotion of aberrant matrix
metabolism, proliferation of resident cells, and procoagulant
activity of endothelium in the kidney. Cytokines control the
inflammatory response and mediate some of their down-
stream effects through positive acute-phase proteins, such
as C-reactive protein, fibrinogen, and albumin. In a recent
study that analyses the association between a set of inflam-
matory biomarkers and progression of CKD in the Chronic
Renal Insufficiency Cohort, the authors reported that ele-
vated circulating levels of fibrinogen and TNF-α and
decreased serum albumin are linked with the rapid loss of
kidney function in patients with CKD, and these markers
are independent predictors of CKD progression [32].

Systemic inflammation in end-stage renal disease is a
well-recognized risk factor for the increased mortality in
these patients and a catalyst for other complications, which
are related to a premature aging phenotype, including mus-
cle wasting, vascular calcification, and other forms of prema-
ture vascular disease, depression, osteoporosis, and frailty.
Uremic inflammation is also involved in the aging process,
such as telomere shortening, mitochondrial dysfunction,
and altered nutrient sensing, which can have a direct effect
on cellular and tissue function [33]. An in vitro study
showed that circulating inflammatory monocytes from
advanced CKD or hemodialysis patients transdifferentiate
into osteoclasts and play a relevant role in mineral bone
disorders. CKD patients, characterized by reduced renal
function, frequently present an increased inflammatory state
and skeletal abnormality [34].

Patients with CKD often display chronic increase in
markers of inflammation, a condition that seems to be inten-
sified by the disease progression and onset of hemodialysis.
Systemic inflammation is related to malnutrition and muscle
protein wasting and is involved in many morbidities includ-
ing cardiovascular disease, the most common cause of
mortality in this population. Investigation in the general
population and other chronic disease cohorts demonstrated
that an increase in habitual activity levels over a prolonged
period may normalize the systemic inflammation. Further-
more, those populations with the highest baseline levels of
systemic inflammation appear to have the greatest improve-
ments from training [35]. Systemic inflammation, alongside
with the loss of kidney function, can damage the resistance
of the body to external and internal stressors, by reducing
functional and structural tissue reserves and by impairing
normal organ crosstalk, thus providing an explanation for
the greatly increased risk of homeostatic breakdown in this
population [35].

Overall, CKD patients show elevations in markers of
chronic inflammation. Since inflammation, malnutrition,
and protein-energy wasting are important contributors to
mortality in CKD patients, any treatments which may
positively influence these conditions should be taken into
consideration [35].

Despite recent advances in the management of chronic
kidney disease (CKD) and end-stage renal disease (ESRD),
morbidity and mortality continue to be remarkably high in
these patients. Persistent, low-grade inflammation has been
recognized as an important component of the CKD scenario,

leading to fibrosis and loss of renal function, and is playing a
crucial role in the pathophysiology and progression of the
disease, with a major impact on its complications [28].

3. Inflammasomes, Inflammation, and CKD

The inflammasomes have recently become the subject of
intensive research, since they seem to play a major role in
the pathogenic mechanisms in renal diseases. The inflamma-
somes are large, multiprotein complexes that could be
induced by lipopolysaccharide (LPS). They were initially
mentioned in 2002 as innate immune signaling pathways
triggering activation of proinflammatory cytokines in resp-
onse to various stimuli [36]. Innate immunity is an evolu-
tionarily conserved system, the first line of host defence that
supports homeostasis by regulating endogenous processes
like inflammation and apoptosis. It relies on pattern recog-
nition receptors (PRRs) that recognize damage-associated
molecular patterns (DAMPs) and pathogen-associated mol-
ecular patterns (PAMPs) released in response to stress, tissue
injury, or apoptosis [37]. Currently, several different classes
of PRR families have been identified, which include trans-
membrane Toll-like receptors (TLRs), C-type lectin recep-
tors (CLRs), retinoic acid-inducible gene (RIGs) receptors,
intracellular Nod-like receptors (NLRs), and more recently
included HIN-200 receptors. Extracellular PAMPs and DA-
MPs are recognized by TLRs and CLRs, while intracellular
PAMPs are recognized by NLRs and RIGs [38, 39].

The activated innate immune system leads to activation
of the prototypical proinflammatory signaling pathway, the
best characterized being NF-κB (nuclear factor-kappa B)
and AP-1 (activator protein-1), mainly based on the stimula-
tion of multiple mediators, including proinflammatory cyto-
kines such as interleukin-1 (IL-1) and tumour necrosis factor
α (TNF-α). A decisive instrument in initiating the posttran-
scriptional processing and release of mature cytokines is rep-
resented by the development of the inflammasome complex.
The human genome encodes 23 NLR proteins, from which
the NLR with caspase recruitment domain (NLRC) are
responsible of organizing an inflammasome complex and
releasing of proinflammatory cytokines IL-1β and IL-18.
There have been seven established NLRs that form an inflam-
masome complex: NLRP1 (NALP1), NLRP3 (NALP3 or
cryopyrin), NLRP6, NLRP12, NLRC4 (with caspase recruit-
ment domain or IPAF), AIM2 (absent in melanoma-2), and
RIG-1 (retinoic acid inducible gene-1); however, the NLRP3
inflammasome is the best characterized in relation with renal
diseases [40].

Activation of NLRP3 inflammasome is promoted by
TLR activation, thereby triggering the NF-κB pathway
and the proinflammatory cytokines being released as pro-
IL-1β and pro-IL-18. In order to be converted into their active
forms and be secreted, the cytokines require subsequent
caspase cleavage, which determine NLRP3 to oligomerize
in the presence of an adaptor molecule—ASC (apoptosis-
associated speck-like protein containing a C-terminal cas-
pase recruitment domain), and finally resulting in secretion
of proinflammatory cytokines.
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Despite the fact that recognition of a single unifying
mechanism for the NLRP3 inflammasome activation remains
elusive, several stimuli have been proposed that trigger
assembly of the NLRP3 inflammasome, involving P2X7
(a ligand-gated ion channel) receptor, activated via ATP,
with K+ efflux and reduction in intracellular K+; ROS produc-
tion, the release of mitochondrial DNA and cardiolipin [41].
The role of ROS as essential secondary messengers signaling
NLRP3 inflammasome activation was suggested in several
studies, and various pathways have been anticipated to medi-
ate ROS production by NLRP3 activators. It was speculated
that K+ efflux could trigger ROS generation or other NLRP3
activators, such as uric acid crystals, alum, asbestos, and
silica. Therefore, the so-called frustrated phagocytosis could
be generated, being connected to ROS production, as well
[42]. Various pathways have been proposed to mediate
ROS production by NLRP3/NALP3 activators; however, the
general picture of how NLRP3/NALP3 activators trigger
ROS is still unclear.

Recent studies highlighted a broad role for inflamma-
some activation in renal diseases. Most of the studies
regarding the role of NLRP3 have been performed on acute
kidney injury (AKI) models, and fewer were done using
models of CKD, due to the deficit of rodent models that
could mimic the human CKD [43]. Among the various
animal models, the unilateral ureteral obstruction (UUO)
represents a suitable model of renal fibrosis, which was estab-
lished as a model of CKD [44]. In a study using a UUO
model, Vilaysane et al. concluded that inflammasome-
dependent cytokines IL-1β and IL-18 were upregulated in
association with caspase-1 activation; compared with wild-
type mice, NLRP3−/− mice expressed less tubular injury,
inflammation, and fibrosis after UUO, which highlighted
the activation of NLRP3 inflammasome [45]. Using the
same UUO model, Pulskens et al. concluded that the
absence of NLRP3 resulted in enhanced vascular leakage
and interstitial edema and revealed no effect on fibrosis
and inflammation. These data showed a noncanonical effect
of NLRP3 inflammasome in protecting kidney integrity fol-
lowing progressive renal injury [46]. It is important to note
that the UUO mice model does not represent an objective
readout, and the significance of inflammasome in relation
to CKD remains under critical debate. Several studies in
mice models and still restricted studies in humans propose
an extensive role for inflammasome activation in CKD.
Surprisingly, individual components of the inflammasome
activation could bring their own contribution to progressive
renal injury [47].

In addition to their role in mediating acute kidney dis-
ease, the IL-1β/IL-18 axis could also be involved in the
development of CKD itself and its related complications—
accelerated vascular calcification, fibrosis, and sepsis. It was
shown that vascular inflammation is related to vascular calci-
fication, and the proinflammatory cytokine IL-18 was the
most extensively studied component of the NLRP3 inflam-
masome in relation to CKD. The pathophysiology behind
the elevated levels of IL-18 in CKD may be related to the
levels of MCP-1 (monocyte chemoattractant protein-1),
since eGFR was independently associated with the serum

levels of MCP-1, thereby partially explaining the increased
risk of cardiovascular complications in CKD [48].

Inflammation-related vascular injury and atherosclerotic
plaques in CKD were also the subject of intense research, in
relation to inflammasome cytokine-mediated NLRP3, while
IL-18 levels were found to be correlated with aortic pulse
wave velocity. The NLRP3 inflammasome is gaining recog-
nition for its key role in the pathogenesis of CKD and its
complications; however, understanding the different path-
ways through which the inflammasome contributes to their
genesis will supply additional insights in providing potential
therapeutic targets [40].

The current understanding of CKD is based on a broad
range of studies, and the inflammasomes exert a major role
as guardians of the body; nevertheless, their role in regulating
the intestinal microbiota and the progression of major dis-
eases has been recently depicted.

4. An Underestimated Source of Smouldering
Inflammation—Gut Microbiota

Microbiota, the microbial community which colonizes the
large intestine, is nowadays considered a symbiotic “supple-
mentary organ,” consisting of trillions of microbes, which
altogether contain several hundredfold more genes than the
human genome. Microbiota, in terms of composition and
metabolic activity, codevelops with the host even from birth
and is subject to a complex interaction depending on host
genome, diet, and lifestyle factors [49]. It was noticed that
gut microbiota have fundamental roles in human health and
disease, and the diversity ofmicrobiota evolves over a person’s
life, shifting throughout childhood and adult life, continuing
with elderly where it is poor in some taxonomic species,
including Gram-negative Bacteroides species, and rich in
Gram-positive Firmicutes species. Advances in sequencing
technology (NGS) and bioinformatics have unravelled the
complexity and diversity of human microbiome. Thus, the
Human Microbiome Project has been launched in 2007 by
the National Institutes of Health (NIH), in an effort to “char-
acterize microbial communities found at several sites on the
human body, including nasal passages, oral cavities, skin, gas-
trointestinal tract, and urogenital tract, and to analyse the role
these microbes play in human health and disease”. The NIH-
funded Human Microbiome Project Consortium has been
able tomap themicrobial signature of normal human individ-
uals, providing a framework for current and future studies,
thus leaving open future upgrades on various disease-
microbiome correlations through recent research and aiming
at a deeper understanding of the disease pathophysiology
[50]. Recent NGS-based studies have highlighted the gut
microbiome impact on different physiologies including dis-
ease, of which the gutmicrobiome expressed aberrant compo-
sition as compared with that of normal individuals [51].

Although the microbiota is constantly exposed to a
changing environment, its composition and function in an
individual remain stable, despite disturbances. Under normal
conditions, the gut microbiota represents a dynamic and
symbiotic ecosystem, in a continuous relationship with the
host metabolism, providing trophic and protective functions.
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It was revealed that alterations of the commensal flora have
been involved in the pathogenesis of various illnesses, includ-
ing chronic inflammation and CKD.

The CKD specific uremic milieu, due to influx of urea
and other retained toxins, seems to impair the intestinal bar-
rier function and promotes inflammation throughout the
gastrointestinal tract, thus being crucial in shaping the gut
microbiota in terms of structure, composition, and function.
Microbial diversity is significantly damaged in CKD patients,
with a decreased number of beneficial bacteria that generate
short-chain fatty acids (SCFAs), a fundamental nutrient
for the colonic epithelium, and an increase in bacteria that
produce uremic toxins such as indoxyl sulfate, p-cresyl sul-
fate, and trimethylamine-N-oxide (TMAO) [52]. Uremic
toxicity has also been studied by the European Toxin work
group (EUTox), offering novel insights into uremic milieu
by developing a classification of uremic circulating compo-
nents, based on their features that affect their elimination
under dialysis. Thus, among small water-soluble molecules
(e.g., urea and creatinine) and peptides/proteins (e.g., β2-
microglobulin), a group of so-called protein bound ure-
mic retention solutes has been identified, intriguingly
generated by protein fermentation in the large intestine—
namely, p-cresyl sulfate and indoxyl sulfate [53].

These uremic toxins were also evaluated in relation to
kidney function (eGFR), and the results showed that their
overexpression was correlated with an impaired renal func-
tion and an increased potential of all-cause mortality in
CKD end-stage patients [54]. In addition, a direct connection
was prominently revealed between increased levels of
p-cresyl sulfate and poor prognosis on patients at CKD end
stages; associations between indoxyl sulfate and unfavourable
prognosis have been shown, as well, since it was demon-
strated they share common ground, being both originated
from bacterial protein fermentation in the large intestine. It
was revealed that the circulating forms of these molecules
are bound to albumin, competing for the same albumin-
binding sites. Further studies have been conducted and have
launched the theory by which the adsorption of indoxyl
sulfate and p-cresyl sulfate at the intestinal level will lead to
a delay in CKD progression. In light of these findings, it
was optimistically hypothesized that these two molecules
could be considered promising candidate biomarkers for
evaluating the CKD progression [53] (see Figure 1).

It should be emphasized that renal phenotype is much
broader than function impairment of kidneys, and most of
the end-stage CKD patients are under multidrug therapy
and dietary restrictions. Therefore, testing the associations
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Figure 1: The pathway followed by the uremic metabolites (TMAO, p-cresyl sulfate, and indoxyl sulfate) in the setting of the uremic milieu,
characteristic to CKD. The dysbiosis of gut microbiota contributes to the establishment of a proteolytic fermentation pattern, by enhancing
the bacteria types that produce uremic toxins.
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between renal function and microbiome composition could
offer accurate results when assaying on experimental models.
In addition, dietary restrictions in CKD end-stage patients
may be associated with limited intake of potassium, sodium,
phosphate, and animal proteins, as well, also restrictions in
fermentable carbohydrates. As a result, the colonic transit
time is prolonged, and CKD patients undergoing dialysis
are suffering though of constipation. As a consequence of diet
restrictions and prolonged colonic transit, the microbiota
activity moves towards a proteolytic fermentation pattern.
This metabolic shift represents the explanation of significant
prevalence in bacterial types processing urease, uricase, and
indole and p-cresol forming enzymes [55].Microbial diversity
is significantly damaged in CKD patients, with a decreased
number of beneficial bacteria that generate SCFAs and an
increase in bacteria that produce uremic toxins (indoxyl
sulfate, p-cresyl sulfate, and TMAO) [52].

Recent evidence suggests that several circulating metabo-
lites released by microbiota metabolism could be linked to
systemic immunoinflammatory response and kidney impair-
ment. Thus, some metabolites generated by dietary fiber
fermentation in the intestinal tract (including SCFAs) could
play important roles in modulating immunity, blood pres-
sure, and lipid metabolism. Though controversial, the SCFAs
could be regarded as potential therapeutic targets and seem
to represent the link between the kidney malfunction and
inflammatory response [56].

Inside CKD population, the interactions work bidirec-
tionally: on one hand, the uremic milieu has a negative
impact on microbiota, altering the composition and metabo-
lism, and on the other hand, the microbiota dysbiosis releases
potential uremic toxins that are normally excreted by the kid-
neys; thus, both conditions further lead to a toxin avalanche
exposure. The generated state is also caused by the disruption
of the epithelial barrier, leading to an amplified intestinal per-
meability, often referred to as “leaky gut,” a condition that
promotes inflammation and is encountered in CKD [57].

Intestinal inflammation and gut dysbiosis are nowadays
considered as significant contributors in the setting of
chronic inflammation and other CKD complications, thus
explaining the gut-therapeutic novel approaches when
designing CKD interventions [58].

4.1. Dietary Patterns in Preventing CKD Progression. Prevent-
ing the gut dysbiosis and maintaining the gut microbiota
homeostasis are considered the key mechanisms for hamper-
ing the setting of chronic inflammation and CKD progres-
sion. Based on the principle that a balanced healthy
microbiota is primarily saccharolytic and nutrition has sig-
nificant effects on its composition, the innovative therapeutic
avenues comprise special diets that successfully shape micro-
biota composition through a nonpharmacological approach.
The Mediterranean diet, consisting mainly of carbohydrates,
basically unrefined grains, fruits and vegetables, nuts, olive
oil, fish, moderate red wine, dairy products, and red meat,
represents one of the most promising nutritional strategies,
having protective effects on CKD conditions, potentially
restoring microbiota balance and slowing down CKD pro-
gression, as many studies have depicted [59–61]. Additional

benefits in reducing the burden of uremic toxins, generated
both by microbiota and CKD condition, were noticed under
a vegetarian diet; however, increasing attention must be paid
in regard to serum potassium levels [62, 63]. Other promising
diets have been proposed as potential beneficent therapies,
including vegan diet, DASH diet, and the modern dietary
pattern, all exhibiting protective effects on both CKD pro-
gression [64, 65] or on intestinal microbiota homeostasis
[62]. In contrast, the Western diet, excessively rich in pro-
teins and low in fruits and vegetables, grains, and fibers,
exerts a detrimental effect on CKD, by increasing the risk of
rapid eGFR decline [66]. Along with the Western diet, other
essential diets have been assessed in relation to their kidney
function decline, comprising the Southern diet, DGA diet,
and dal diet [67–69].

4.2. Prebiotics, Probiotics, and Synbiotics—Promising
Therapies in Modulating Gut Microbiota in CKD. A promis-
ing therapeutic approach in combating CKD progression
relies on targeting microbiota balance, by administrating pre-
biotics and probiotics and the mixture of both preparations
into synbiotic compounds.

Probiotics are microorganisms that are claimed to
provide beneficial effects and are defined as “live microorgan-
isms that when administrated in adequate amounts confer a
health benefit on the host” [70]. Administration of probiotics,
mainly represented by Bifidobacteria, Lactobacillus, and
Streptococci species, could attenuate the CKD progression.
Recent studies, based on a rat model of CKD, suggest that
probiotic therapy has a substantial potential in ameliorating
the disease course [71]. A significant decrease in urea nitro-
gen circulating levels and a favourable CKD prognostic rate
were reported in a multinational trial on CKD stage 3 and 4
undertaking proprietary formulation of S. thermophilus, L.
acidophilus, and B. longum, over a period of six months.
However, if these effects are due to alteration of the gut tight
junction barrier remains questionable, further studies being
necessary to unravel the precise mechanisms [72].

Prebiotics are typically specialized nondigestible plant
fiber compounds that circulate undigested through the upper
part of the gastrointestinal tract and enhance the activity of
beneficial bacteria in the gut, presenting also a beneficial
effect on CKD prognosis [73]. Prebiotics are commonly
known as a type of fiber referred to as “oligosaccharides,”
and the promising therapeutic candidates are represented
by inulin, fructooligosaccharides, galactooligosaccharides,
soyaoligosaccharides, xyloolygosacchrides, and pyrodextrins
and seem to enhance the metabolic activity of microbial spe-
cies like Bifidobacteria and Lactobacillus [74]. Other relevant
studies focused on the effects exerted by administration of
prebiotics, probiotics, and the dual approach of combining
those two preparations (synbiotics) in CKD, in both patients
and animal models, have been depicted in Table 1.

Synbiotics have been the subject of different research
studies, with the term pertaining to combinations in which
probiotics and prebiotics strengthen each other’s activity,
resulting in a synergistic effect. Recent studies highlighted
that administration of synbiotics has generated favourable
effects, by decreasing the circulating levels of uremic
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toxins, along with a restoration in microbiota balance [75].
A meta-analysis of 12 studies on the effectiveness of pre-,
pro-, and synbiotics on CKD populations has reported sig-
nificantly decreased levels of the two protein-bound uremic
toxins (p-cresyl sulfate and indoxyl sulfate), concluding
that “there is a limited but supportive evidence for the
effectiveness of pre- and probiotics on reducing p-cresyl
sulfate and indoxyl sulfate in the chronic kidney disease
population,” but that “further studies are needed to provide
more definitive findings before routine clinical use can be
recommended” [76].

In conclusion, these novel promising therapeutic
approaches, in which diet represents the essential factor in
alleviating the disease progression, are not quite new if we
go back in ancient Greece, nearly 2500 years ago, when
Hippocrates postulated that “All disease begins in the gut.”

5. CKD and Malignancy—Dangerous
Scenarios in the Framework of Inflammation

The role of inflammation in the development of cancer has
been the subject of intense research over the years, since it
was noted that an inflammatory milieu arises as one of the
hallmark features describing the malignancy condition.
There has been over 150 years since Virchow first hypothe-
sized the relationship between the inflammatory status and
carcinogenesis, based on the assumptions that cancer regu-
larly occurs in the setting of inflammation, and additionally,
that tumour biopsy specimens reveals the presence of inflam-
matory cells, as well. In an attempt to establish the signature
of cancer, a repertoire of six hallmarks has been initially
described, in which inflammation fostered multiple hallmark
functions [86]. Following these established hallmarks, Fouad
and Aanei proposed a more accurate definition of cancer
hallmarks as “acquired evolutionary advantageous character-
istics that complementarily promote transformation of phe-
notypically normal cells into malignant ones, and promote

progression of malignant cells while sacrificing/exploiting
host tissue” [87].

Nowadays, a plethora of research studies has confirmed
that mitogenesis arises within an inflammatory micro-
environment [88], while chronic, low-grade inflammation
accompanies the disease course. The inflammatory milieu
allows tumour cells to elude host immunosurveillance, result-
ing in subsequent angiogenesis, tumour growth, invasion, and
metastasis [23, 89].

It is widely accepted that inflammation and carcinogene-
sis rely on similar mechanisms in terms of development,
including severe cell proliferation and angiogenesis [90]. It
was hypothesized that the longer the inflammation persists,
the higher the possibility of genomic instability and muta-
tions that lead to cancer. The sustained presence of inflam-
matory cells in the tumour milieu can stimulate tumour
growth, hindering apoptosis of atypically transformed cells
[91]. Peeking behind the curtain, two compliant pathways
(intrinsic and extrinsic) seem to engage inflammation in can-
cer development. Key players of the intrinsic pathway reside
in genetic modifications such as oncogene activation and
tumour suppressor gene inactivation.

The principal mechanisms involved in renal carcinoma
pathogenesis seem to be mediated via PI3K-AKT-mTOR,
Ras-RAF-ERK, and VEGF signaling pathways, and the
level of expression of the genes that are components of
these pathways was positively correlated with overall sur-
vival in these patients. Therefore, further research targeting
the genes and their encoded products, within these path-
ways, is needed to provide more insight into the involved
pathways [92, 93].

The extrinsic pathway driven by inflammatory condi-
tions generally arises and increases the risk of cancer at
certain anatomical sites. Intrinsic and extrinsic factors may
cooperate towards a malignant phenotype [94].

Key orchestrators of both intrinsic and extrinsic path-
ways consist of transcription factors (including NF-κB) that

Table 1: Effects of administrating pro-, pre-, or synbiotics in CKD.

Novel therapeutic targets Effects on CKD Reference

Probiotics—Lactobacillus acidophilus
Nitrosodimethylamine levels decreased, and serum dimethylamine levels dropped

(on humans).
[77]

Probiotics—Bacillus pasteurii or
Lactobacillus sporogenes

Enhanced survival in nephrectomized rats while slowing the progress of renal
injury (rat model).

[78]

Probiotics—Sprosarcina pasteurii
Reduced blood urea-nitrogen levels and significantly prolonged the lifespan of

uremic animals (rat model).
[79]

Probiotics—oral sorbent charcoal AST-120 Delay in the progression of CKD but also in cardiovascular diseases (rat model). [80]

Probiotics—Bifidobacterium longum
Reduced serum levels of indoxyl sulfate by correcting the intestinal microflora

(on humans).
[81]

Probiotics—Bifidobacterium longum
Decreased serum levels of homocysteine, indoxyl sulfate, and triglyceride

(on humans).
[82]

Prebiotics—oligofructose-enriched inulin Significantly reduced p-cresyl sulfate generation rates (on humans). [83]

Prebiotics—resistant starch Reduced plasma levels of indoxyl sulfate and p-cresol sulfate (on humans). [84]

Synbiotics Decreased serum p-cresol sulfate and the stool microbiome modified (on humans). [75]

Synbiotics
Normalization of bowel habits and a decrease of serum p-cresol levels

(on humans).
[85]
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serve as a pivotal mediator of inflammatory responses
(avalanche of cytokines, chemokines), being also an active
player in cancer initiation, development, metastasis, and
resistance to treatment [95, 96].

The inflammatory infiltrate is one of the examples under-
lying the inflammatory microenvironment generated by the
avalanche of inflammatory mediators expressed along with
the activation of this pathway.

Remarkably, NF-κB is constitutively active in both
tumoural cells and tumour microenvironment and uncom-
monly activated via genetic alterations [97]. However, it
was revealed that, in all malignancies, NF-κB acts in a cell
type-specific fashion: stimulating survival genes within
tumour cells and inflammation-promoting genes in compo-
nents of the tumour milieu [98]. Hence, the active NF-κB
molecule in cancer is acting like a double-edged sword: on
one hand, mediating the immune responses by eliminating
tumour cells and, on the other hand, being constitutively
active in renal cancer, arising from a chronic low-grade
inflammatory milieu or rarely being activated by oncogenic
aberrations [99].

The CXCL12–CXCR4 signaling pathway is emerging as a
novel potential therapeutic target for renal cancer, CXCR4
being overexpressed in renal malignant cells, contributing
to tumour dissemination and metastasis. Blocking this path-
way results in a decreased rate of metastasis and could also be
effective when CXCR4 is administered in conjunction with
other anticancer treatments [100].

It is well known that renal cell carcinoma (RCC) develops
as one of the most immunogenic cancers, thus being able to
induce an immune response naturally. Therefore, several
immunotherapeutic strategies have been experienced by
modulating the immune system with cytokines, vaccines,
and T-cell modulating agents, having optimistic long-term
results. It was revealed that administration of interleukin-2
(IL-2) in high doses could represent the first-line treatment
approach for selected patients and was correlated with
resilient complete remissions in treated patients [101].

The association between CKD in its end stage in patients
demanding kidney transplantation and development of
kidney malignancy has become well recognized. Unfortu-
nately, there is mounting evidence that malignancy, overall
or targeting kidneys, nests in even earlier stages of CKD
[102]. Due to the insidious nature of CKD progression, it
becomes even more difficult to diagnose these patients in
their early stages, bringing yet additional burden. Remark-
ably, there is emerging evidence that consider CKD and renal
carcinoma as interrelated, with 26%–44% of renal cell car-
cinoma cases bearing concomitant moderate or higher
CKD at the time of diagnosis. In addition, patients suffering
from renal cancer are more predisposed to CKD than the
general population. Potentially involved mechanisms could
include uremic immune inhibition or circulating toxin
exposure in the background of a deficient renal function.
Consequently, kidney tumour management has to consider
the renal functional status in the decision of resecting the
tumour or adopting a surveillance attitude. It was shown
that RCC with low-grade tumours, arising in patients suf-
fering from end-stage CKD, seems to manifest favourable

outcome features compared to those diagnosed from the
general population [103].

Although CKD is correlated with a high rate of progres-
sion towards end-stage renal disease and increased mortality,
it was hypothesized that the etiology of renal decline could
alter the CKD progression and overall survival. Therefore,
data suggest that surgically induced CKD, including partial
or total nephrectomy as a therapeutical option for renal
tumour, present a lower rate in eGFR decline compared to
CKD due to other medical causes [104].

A progressive relationship between pretreatment CKD
and locally advanced RCC has been reported, possibly
related to increased damage of functional renal parenchyma
with tumour size or stage advancement [105]. Also, in an
Australian population-based cohort analysis, Ahn et al. eval-
uated the predictors of new-onset CKD or moderate-severe
CKD in patients surgically treated for T1 RCC and found
out that the strongest associations were increasing age,
decreased renal function (eGFR), and the tumour size, as
well [106].

Regardless of the renal tumour size or stage migration,
the survival rates are not encouraging over the last 15 years;
however, a survival rate of 90% or more, depending on the
tumour histology, is expected for the small tumours, when
partial or total nephrectomy was performed [107].

In conclusion, a bidirectional relationship has been estab-
lished for kidney disease and cancer, being intertwined in
various ways. On one hand, malignancy has been recognized
as a major complication in CKD end-stage patients,
increasing the morbidity and mortality; on the other hand,
anticancer therapies enhance the development of CKD
[108]. Unfortunately, regardless of significant advances in
therapy, RCC is nowadays among the 10 most prevalent
malignancies, and the incidence is growing. Additionally,
RCC has a poor prognosis, considering that up to 30%
of patients present metastasis at the time of diagnosis
and about 20% will further develop metastasis, even if they
are undergoing therapy [109].

Despite the increasing body of evidence regarding
the troubling connection between CKD and renal can-
cer, there is a lack of strong clinical trials in the efforts
to decipher the underlying disease mechanisms and to
offer novel insights towards early diagnostic and the best
therapeutic approaches.

6. Novel Promising Biomarkers Useful in
CKD Management

The advent of proteomic technologies allowed novel
approaches for biomarker discovery in CKD, with the end
goal being early diagnosis and prognosis of CKD progression.
Candidate biomarkers include molecules that were linked to
different pathways, among which tubulointerstitial injury,
tubulointerstitial fibrosis, and inflammation [110–115].

In a large multicentral international study of hemodial-
ysis patients, evaluation of CRP levels, in addition to stan-
dard inflammatory biomarkers (eGFR, albumin, WBC, and
ferritin), seemed to improve the mortality prediction. The
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CRP level was positively and monotonically associated with
mortality [116].

Another study evaluating the association between kidney
function, albuminuria, and biomarkers of inflammation, in
a large cohort of CKD patients, showed that plasma levels
of IL-1β, IL-1RA, IL-6, TNF-α, hs-CRP, and fibrinogen
were higher among participants with lower levels of estimated
GFR (glomerular filtration rate). Moreover, the inflammation
score was higher among the patients with lower estimated
GFR and higher UACR (urine albumin to creatinine ratio).
These results demonstrated that biomarkers of inflammation
were inversely associated with measures of kidney function
and positively with albuminuria [117]. The erythrocyte sedi-
mentation rate, a nonspecific determinant of inflammation,
has been shown to be predictive of end-stage renal disease
in adolescents [118]. The level of proinflammatory cytokine
IL-2 was elevated in hemodialysis patients with uremic pruri-
tus (a common tormenting symptom among these patients)
when compared to hemodialysis patient controls without
pruritus [119]. The results obtained from several studies sug-
gest that TWEAK (Tumour necrosis factor-like weak inducer
of apoptosis) plays an important role in kidney injury
associated with inflammation and promotes acute and
chronic kidney diseases [120]. There are several studies test-
ing different nanoconjugates that could prevent TWEAK-
induced cell death and inflammatory signaling in different
cell types, including renal tubular cells [121]. The results
obtained from a study investigating hemodialysis patients
showed that the group of patients with a specific pattern of
high proinflammatory cytokines (IL-1, IL-6, and TNF-α)
had increased mortality when compared to patients with a
pattern of high T-cell regulatory or anti-inflammatory
parameters (IL-2, IL-4, IL-5, IL-12, CH50, and T-cell
number) [122]. Leptin is an adipose tissue-derived hormone
shown to be associated to several inflammatory factors
related to CKD. In vivo studies demonstrated that infusion
of recombinant leptin into normal rats for 3 weeks results
in the development of glomerulosclerosis. Moreover, higher
plasma leptin levels are associated with CKD, and the
authors of these studies sustain that leptin may explain part
of the reported association between obesity and kidney
disease [123].

Kidney injury molecule-1 (KIM-1), a type 1 transmem-
brane protein, has been shown to be upregulated in dediffer-
entiated proximal tubule epithelial cells upon ischemic or
toxic injury but is undetectable in healthy kidneys or urine
[124–127]. Urinary KIM-1 has been shown to predict renal
injury before changes in eGFR were detectable [128, 129].

Neutrophil gelatinase-associated lipocalin (NGAL) is a
protein expressed by tubular epithelial cells and neutrophils,
and its expression levels were shown to predict disease sever-
ity [130, 131]. However, NGAL did not significantly improve
risk prediction of progression outcomes compared to known
CKD progression risk factors [132].

Epidermal growth factor (EGF) plays a role in tubular cell
repair after tubulointerstitial injury. Urinary EGF expression
was found to be correlated with GFR [133], and it improves
CKD progression prediction when added to a conventional
model including eGFR and albuminuria [134].

A candidate marker of renal fibrosis is matrix
metalloproteinase-9 (MMP-9), which was found to be ele-
vated in the urine and plasma of CKD patients compared
to controls [135, 136]. Additionally, circulating MMP-9
levels improved CKD progression predictability when added
to a model of conventional risk factors and eGFR [137].

Chronic low-grade inflammation is proposed to play an
important role in the initiation and progression of CKD,
and several candidate biomarkers have been suggested to
predict GFR, as well as contribute directly to CKD progres-
sion [114, 115]. Soluble urokinase-type plasminogen activa-
tor receptor (suPAR) is involved in the pathogenesis of
kidney disease. A low suPAR concentration was shown
to be associated with the remission of CKD and the reduc-
tion of proteinuria (23138488). Furthermore, higher plasma
suPAR was connected with CKD progression, as indicated by
a stronger decline in eGFR [115]. Other inflammatory
markers associated with CKD include tumour necrosis factor
alpha receptor-1 and -2 (TNFR1 and TNFR2) and monocyte
chemoattractant protein-1 (MCP-1). TNFR1 was found to be
a strong prediction of CKD progression to ESRD [114], while
circulating TNFR1 and TNFR2 were found to predict stage 3
CKD in type 1 diabetes patients. Urinary MCP-1 levels were
elevated for CKD patients compared to controls [138] and
were found to correlate with the rate of GFR decline [139].

Another study analysing the levels of MCP-1, MCSF, and
neopterin in the serum and urine of children with CKD
showed that MCP-1 levels are increased in early stages of this
disease, suggesting that the inflammatory process precedes
the tubular dysfunction [140].

In view of the increasing number of novel potential
candidate biomarkers, advanced high-throughput research
platforms are needed in order to refine the CKD diagnosis,
monitoring, and follow-up.

7. Advances in Proteomic Approaches in
Searching for an Ideal Biomarker

Although substantial improvements have been made in
clinical care, CKD remains a major public health burden,
affecting 10–15% of the population, and its prevalence is
constantly growing [141]. Regardless of its etiology, CKD is
defined as a “silent epidemic” disease and persistent, with
low-grade inflammation reflecting a common feature in these
patients. Due to its insidious nature, CKD is rarely diagnosed
in early stages, as clinical symptoms occur only when kidney
function has been irreversibly damaged (decreased eGFR).
Unfortunately, current clinical approaches have become use-
ful only in diagnosis of advanced CKD stages. Simply stated,
once developed, CKD persists throughout the rest of the
patient’s life, and the single most feasible solution is likely
linked to an early intervention, before irreversible nephron
damage occurs [142]. In addition, nephrology lags behind
other medical disciplines in terms of number, size, and qual-
ity of clinical trials undertaken, thus emerging provocative
global action plans in order to improve the management of
CKD and design novel therapeutic approaches to alleviate
or even halt the progression of the disease [141].
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In this scenario, a huge step forward was made by the
increasing progression of omics approaches, designed for
identification of biomarkers useful for early diagnostic and
follow-up, thus exploring their potential for clinical imple-
mentation [143, 144]. In the era of omics, proteomics has
risen, providing novel insights into disease mechanisms and
therefore holds the promise of improving the life quality of
CKD patients.

Advancements in the field of proteomics were possible by
adopting a vast array of state-of-the-art technologies. Ini-
tially, two-dimensional (2D) gel electrophoresis was used,
rapidly being improved by the development of two-
dimensional differential gel electrophoresis (2D-DIGE),
completed afterwards by employing liquid chromatography
(LC) coupled with mass spectrometry (MS), enabling though
untargeted protein identification. During recent years,
capillary-electrophoresis (CE)-MS has been developed,
combining both CE and MS advantages, providing high
separation efficiency and molecular mass information within
one single assay. Implementing the matrix-assisted laser
desorption/ionization (MALDI) platform, by using laser
energy absorbing matrix, is capable of generating ions from
large molecules with minimal fragmentation, thereby moving
the boundaries above. Proteomics aims to characterize the
huge information flow mediated by proteins within the cell,
by analysing the signaling pathways, interactions, and
networks, thus enabling identification of disease specific
biomarkers in order to illustrate a detailed proteomic sig-
nature for a better understanding of the molecular interac-
tions underlying the pathogenesis of the disease. Assessing
various biomarkers on multiplex proteomic platforms
(Luminex xMAP array, microarrays, etc.) could unravel
novel insights in deciphering the disease-specific molecular
mechanisms, offering panels of biomarkers for improving
the diagnosis and therapy towards a personalized approach
[143, 145–147]. In the context of CKD and renal diseases,
various proteomic studies have been designed, and the results
were promising. Recent findings performed on MALDI sug-
gested that molecular signatures could be generated, being
capable of distinguishing between kidney disease and normal
controls [148]. Siwy et al. analysed several potential urinary
peptides to differentiate between distinct types of CKD,
generated by capillary electrophoresis coupled to mass
spectrometry [149]. Such findings are corroborated with
other study results and confirm the utility of some of these
urinary peptides as specific biomarkers [150]. Good et al.
have developed a CKD classifier (CKD273), comprising 273
urinary peptides, specially designed for a better stratification
in these patients [151]. CKD273 represents a multidimen-
sional urinary biomarker which helps predict the renal func-
tion impairment [152]. Other studies aimed at predicting the
risk of CKD progression, by determining patterns of protein
expressions using mass spectrometry approaches (SELDI-
TOF) [153]. CKD273 has recently received a letter of support
from the US Food and Drug Administration (FDA), being
now implemented in the CKD management [154]. Further-
more, CKD databases have been created; thus, KUPNetViz
represents an interactive and flexible biological network tool
for multiomics datasets, in the field of kidney diseases,

providing biological network snapshots of the complex inte-
grated data of the KUPKB (Kidney and Urinary Pathway
Knowledge Base), thus creating the premises of generating
novel in silico theories [155]. Furthermore, a CKD database
(CKDdb) has been developed due to the vast amount of data
generated by using high-throughput omics technologies.
CKDdb represents an integrated and clustered information
resource; featuring data from CKD published studies will
result in deeper understanding of the molecular mechanism
modulating CKD progression [156].

The translation of omics findings to clinical settings is
challenging, since an ideal biomarker has not been discov-
ered yet, thus being recommended to adopt a two-stage
approach: firstly, the identification step, followed by the val-
idation, applicable only in the framework of a well-defined
clinical question and a specific phenotype [157].

8. Conclusions

Despite being a “silent epidemic” disease, CKD is now
recognized as one of themajor public health burden, affecting
10–15% of the population, and its prevalence is constantly
growing. Mounting evidence suggests implication of inflam-
mation in CKD pathophysiology, thereby shifting the percep-
tion of inflammation as no longer a new risk factor but rather
a traditional one linked to morbidity and mortality in these
patients. The pathophysiology of inflammation may not be
the same in CKD patients; nevertheless, a persistent, low-
grade inflammation has been established as a hallmark
feature of CKD.

Among various factors that contribute to the setting of an
inflammatory milieu in the context of CKD, the inflamma-
some has recently become the focus of extensive research,
gaining recognition for its key role in the pathogenesis of
CKD and its complications. As such, the inflammasome repre-
sents an attractive potential therapeutic target in renal diseases.
Another underestimated source of smouldering inflamma-
tion related to CKD was assigned to gut microbiota dysbiosis,
a condition intensively studied, since it was postulated that
may represent the starting point of many diseases, including
malignancy. Modulating the microbiota balance has become
a subject of intense research; therefore, different dietary
patterns have been proposed, along with administration of
pre-, pro-, and synbiotics, with quite remarkable results.

In this scenario, a huge step forward was made by
the increasing progression of omics approaches, specially
designed for identification of biomarkers useful for early
diagnostic and follow-up. Advances in proteomics, in search-
ing for the ideal biomarker, have become increasingly popular
over the last decades, offering novel insights in deciphering
the CKD mechanisms, thus moving the boundaries for-
ward. The identification of novel biomarkers using high-
throughput technologies will provide the molecular signature
of the disease, with impact on early diagnosis, monitoring,
and prognosis.

Understanding the role of inflammation in the setting of
CKD will foster the development of therapeutic strategies in
order to treat and even prevent the underlying inflammation,
thus improving CKD outcomes.
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