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Abstract
Infinium HumanMethylation450 beadarray is a popular technology to explore DNA methylomes in health and dis-
ease, and there is a current explosion in the use of this technique. Despite experience acquired from gene expres-
sion microarrays, analyzing Infinium Methylation arrays appeared more complex than initially thought and several
difficulties have been encountered, as those arrays display specific features that need to be taken into consideration
during data processing. Here, we review several issues that have been highlighted by the scientific community, and
we present an overview of the general data processing scheme and an evaluation of the different normalization
methods available to date to guide the 450K users in their analysis and data interpretation.
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BACKGROUND
DNA methylation is involved in numerous

physiological processes and also disease states, such

as cancer [1]. This has raised wide interest in

developing large-scale DNA methylation profiling

technologies to improve our molecular understand-

ing of diseases. The recently released Infinium

HumanMethylation450 [2, 3] is a preferred technol-

ogy for studying the DNA methylomes of various

cell types in large-scale studies, and there is a current

explosion of data generated with this technology [4].

Sequencing-based methods, although offering much

higher genome coverage, are still not affordable by

all laboratories, notably those with moderate bud-

gets. Another reason for the success of DNA methy-

lation arrays is the ease of reading and understanding

the data generated, notably because microarrays have

been widely used over the past decades, particularly

for gene expression profiling. Yet, accurate process-

ing of Infinium HumanMethylation450 data remains

difficult because of several confounding parameters.

This is the subject of this review.

The InfiniumHumanMethylation450
technology
The Infinium HumanMethylation450 array makes it

possible to assess the methylation status of >450 000

CpGs located throughout the genome [2]. Its par-

ticularity lies in the use of two different types of

chemical assays (Infinium I and Infinium II) [3].

Both are based on a quantitative genotyping of the

C/T polymorphism generated by DNA bisulfite
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study of the DNA methylome of breast cancer samples to identify potential biomarkers for diagnosis, prognosis or response to

treatment.

MatthieuDefrance is a post-doc at the Laboratory of Cancer Epigenetics, Université Libre de Bruxelles. He is a computational scientist
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conversion, but the Infinium I assay resembles a

single-channel microarray, whereas the Infinium II

assay has a dual-color readout. The Infinium I assay

uses two types of probes (one for the methylated

allele and one for the unmethylated allele), and

base extension is the same for both alleles. The

Infinium II assay uses a single probe for both alleles,

and base extension depends on the methylation state

of the hybridized genomic DNA molecule (for a

detailed illustration, see [3], Figure 2).

We have shown that this particularity in the

design of the 450K array has important consequences

on the generated data [3]. We have notably observed

that Infinium II probes show a reduced dynamic

range of measured methylation values as compared

with the Infinium I probes. Thus, an additional step

is required to correct the performance of the

Infinium II assay when preprocessing Infinium

HumanMethylation450 data, and this processing

already comprises several steps, notably filtering out

defective probes, correcting dye bias and normalizing

to eliminate a potential batch effect (Figure 1).

Several pipelines and R packages have been de-

veloped or are under development for processing

Infinium HumanMethylation450 data. It is difficult

for 450K users to choose the best package and nor-

malization method. Here, to guide 450K users in

their analysis and data interpretation, we present an

overview of the general data processing scheme

(Figure 1) and an evaluation of the different normal-

ization methods available to date.

FILTERING OUT THE
PROBLEMATIC PROBES
From our point of view, the first step when perform-

ing microarray data preprocessing is to filter out

every probes that can generate artifactual data.

Other scientists would perform this step at the end

of the data preprocessing (i.e. after the normalization

step) to avoid doing again the normalization step if

someone wants to look at a different probe set than

the one initially selected. Nevertheless, we think that

it is more judicious to start by filtering out the prob-

lematic probes as values obtained from those probes

appear not reliable, and therefore we do not wish to

take these into account for further analyses. Also, we

cannot exclude the possibility that these probes do

not influence normalization.

Several reasons can explain the generation of arti-

factual data. For example, the scanner can encounter

some difficulties to correctly read the signal for some

probes owing to their low intensities or to some

spatial artifacts on the array. This problem translates

as a high detection P-value (i.e. a low quality signal)

for the probes concerned. It is therefore strongly rec-

ommended to filter out probes displaying a high de-

tection P-value (e.g. >0.05) before performing

downstream analyses. This problem is common to

all microarray platforms. In this section, we focus

on three other problems, specific to Infinium

HumanMethylation450 arrays, which should lead

to filtering out particular probes: (i) the cross-reactive

probes mapping to multiple locations on the

genome; (ii) the probes containing common single

nucleotide polymorphisms (SNPs); and (iii) the

probes displaying a very high average intensity.

Cross-reactive probes
Infinium HumanMethylation450 uses bisulfite treat-

ment to convert unmethylated cytosines, but not

methylated one’s, to uracils, generating at CpG

sites after DNA amplification a C/T polymorphism

that is readily detectable with the Infinium technol-

ogy [5]. Another consequence of this bisulfite treat-

ment is the generation—from an initial ‘4-letters

genome’ (A,T,G,C)—of an almost ‘3-letters gen-

ome’ (A, T and G; the only remaining C’s being

methylated C’s, i.e. �3.5% of the total number of

the C’s). This considerably increases the probability

of probe cross-reactivity, i.e. the probability that

some of the 50mer Infinium probes will co-hybridize

at additional locations on the genome, different from

the regions for which the probes were initially

designed.

Between 8.6 and 25% of the Infinium

HumanMethylation450 probes have been identified

as non-specific, i.e. cross-reactive, depending on the

criteria used [6, 7]. This is particularly problematic,

as a DNA methylation measurement from a cross-

reactive probe is likely to represent a combination

of the methylation levels of multiple genomic sites

and not the methylation level of the initially

targeted CpG site (for an illustration, see [8],

Figure S2). Consequently, wrong methylation meas-

urements are generated and can lead to detecting

artifactual differentially methylated sites. For ex-

ample, numerous sex-associated differences in

methylation are reported to be technical artifacts cre-

ated by autosomal probes cross-reacting with gen-

omic regions on the sex chromosomes [8]. To

avoid reporting artifactual differentially methylated
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sites, it is therefore recommended to disregard these

non-specific probes and/or to use another approach

such as bisulfite pyrosequencing (BPS) to check the

DNA methylation measurements obtained from

them.

Probes containing common SNPs
As aforementioned, the Infinium Methylation assay

is based on the quantitative genotyping of C/T SNPs

generated at CpG sites by bisulfite treatment of the

DNA. A limitation of this method is that it can also

detect C/T polymorphisms naturally present at the

interrogated CpG sites (i.e. the genotype). DNA

methylation measurements can thus be confounded

by the actual DNA sequence [6, 8] (for an illustra-

tion, see [8], Figure S2). If one considers a fully

methylated CpG site, for instance, in samples of

genotype C/C the DNA methylation measurements

approach 100% (as expected), whereas in samples of

genotype T/T, the measurements will always be

close to 0%. If a sample is heterozygous, the DNA

methylation value measured will be �50%. Thus, in

the case of probes containing SNPs at the targeted

CpG site, Infinium measurements are more likely to

reflect the genotype of the sample rather than a true

DNA methylation value.

Some 4.3% of the Infinium HumanMethy-

lation450 probes are reported to contain a known

polymorphism specifically at the targeted C or G

[6]. In the case of intra-individual studies (such as

longitudinal studies) or ones involving monozygotic

twins, the presence of SNPs at some targeted CpG

sites should not be an important confounder, but it

should cause problems in inter-individual studies

comparing, for instance, a group of healthy subjects

with a group of patients suffering from a particular

disease. The problem depends on the frequency of

heterozygosity. Although 56.8% of these probes dis-

play infrequent SNPs, 43.2% have a polymorphism

that is more frequent in the population (frequency of

heterozygosity above 0.1) and are therefore more

likely to confound the DNA methylation measure-

ments [6]. In addition to SNPs located specifically at

the targeted CpG site, SNPs can also be present

within the remainder of the probe. Although it is

known from other microarray platforms that the

presence of one or more SNPs in a probe can

affect its hybridization, it seems that DNA methyla-

tion measurements are not affected too much by the

presence of such SNPs [6]. In conclusion, it seems

important in inter-individual studies to filter out

probes containing a frequent SNP at the targeted

CpG site and/or to perform SNP genotyping in

parallel of Infinium Methylation experiment. In

intra-individual studies, filtering out these probes is

probably not necessary.

Other problematic probes
It is easy to understand why the cross-reactive probes

and probes containing SNPs at the targeted CpGs

can generate artifactual data, but other probe meas-

urements can also be problematic for more obscure

Figure 1: Overview of the general Infinium HumanMethylation450 data processing scheme with highlights on the
different points to check during the processing to ensure an accurate analysis and interpretation. DMP, differentially
methylated positions; DMR, differentially methylated regions.
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reasons. For example, we have looked at the relation

between signal intensities and DNA methylation

measurements [b-values, defined as the ratio of

the methylated signal over the total signal

(methylatedþ unmethylated)] and have observed

that probes displaying a high average intensity (i.e.

a high average of the methylated and unmethylated

signals) are more prone than probes displaying a

lower average intensity to provide DNA methylation

measurements inconsistent with measurements

obtained with other approaches, such as BPS

(Figure 2). They have a tendency to provide values

close to 0.5, independently of their true methylation

state. Of note, type II Infinium probes seem to be

less prone to this phenomenon (Figure 2).

We wish to warn the Infinium HumanMethyla-

tion450 users about these ‘high-intensity probes’ pro-

viding measurements close to 0.5. They might have to

be filtered out before downstream analysis or at least

their measurements need to be checked with another

approach. In general, we would recommend being

cautious with any probe displaying extreme values

of any parameter, i.e. a high average intensity (as

described earlier in the text) or also a high standard

deviation between bead replicates, for instance.

NORMALIZINGTHEDATA
The second and key step of microarray data prepro-

cessing consists in removing any source of variation

that is not related to biology but rather to technical

limitations, such as dye bias or batch effect. This step is

called data normalization. Although Infinium

HumanMethylation450 is a two-color channel

microarray, the methods developed previously for

gene expression arrays cannot be used as such. The

rationale behind this has already been reviewed else-

where [10]. As briefly described later in the text,

Infinium HumanMethylation450 displays specific

properties. First, the two color channels are used on

the Infinium array to measure the methylation state of

a single sample, whereas in gene expression arrays,

each color channel is associated with a different

sample. Second, normalization methods developed

for gene expression arrays frequently assume that the

experimental condition alters the expression of only a

small number of genes. Based on this assumption, the

sum of the fluorescence across all genes for each

microarray experiment should be the same. This hy-

pothesis is not verified in a methylation context, as the

global methylation level can vary from one sample to

another. Third, the particular design of the 450K array

makes it necessary to perform a normalization be-

tween the Infinium I and Infinium II probes. For all

these reasons, Infinium HumanMethylation450-spe-

cific normalization methods are required. A lot of

methods are already available (see Table 1), and it is

not that easy to know which one, or which combin-

ation, is the most suitable. In this section, we review

the different normalization methods developed for

Infinium HumanMethylation450, distinguishing

within-array and between-array methods, and we

try to guide the 450K users in their choice of a nor-

malization method.

Figure 2: CpGs with high average signal intensity display lower concordance with BPS data. Plot illustrating the
difference between methylation values obtained from Infinium HumanMethylation450 and BPS as a function of the
average signal intensity and the b-value. The absolute difference between the two techniques is proportional to
the circle radius (blue: type I probes; red: type II probes). The plot was generated using 450K and matched BPS
data from 22 tissues described in [9] (352 points). A colour version of this figure is available at BIB online:
http://bib.oxfordjournals.org.
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Within-array normalization
For Infinium HumanMethylation450, within-array

normalization concerns three main points: back-

ground correction, color bias (or dye bias) adjust-

ment and Infinium I/II-type bias correction.

Actually, at least a part of the Infinium I/II-type

bias is a combination of the two first-mentioned

biases. Indeed, because the Infinium II assay uses

the same bead to measure both the methylated and

unmethylated signals, the measurement of one of

these two signals is disturbed by the residual emission

of the other dye, therefore likely resulting in a higher

background for Infinium II probes than for Infinium

I probes, hence contributing in the reduction of the

dynamic range of b-values for Infinium II probes as

compared with Infinium I probes. Moreover, the

color bias is related to the difference in intensity

measurement fidelity between the two dyes. As the

methylated and unmethylated states of each CpG are

evaluated in the same color channel in the Infinium I

assay, the dye bias has little impact on the b-values

obtained from Infinium I probes. Nevertheless, there

is a notable difference between the b-value range for

Infinium I probes using the red or the green channel

that is probably due to the different backgrounds of

the two color channels. On the contrary, for the

Infinium II assay, the methylated and unmethylated

states of each CpG are evaluated in different channels

Table 1: Freely available packages/pipelines for Infinium 450K data preprocessing and analysis

Package Description References

IMA R-Package.
Pipeline function available: allows probe filtering (detection p-values,
SNPs, . . .) and identification of differentially methylated sites.
Proposed normalization methods: type I/II bias correction PBC and
quantile normalization between arrays (pipeline options).

[11]
http://ima.r-forge.r-project.org/
PBC: [3]

Lumi Bioconductor R-package.
No pipeline function.
Proposed normalization methods: background corrections (using or
not negative controls), color bias adjustment and between-array
normalization methods (‘smooth quantile’ or ‘shift and scaled
normalization’).

[12]
http://www.bioconductor.org/

Minfi Bioconductor R-package.
No pipeline function.
Proposed normalization methods: type I/II bias correction SWAN and
dye bias equalization (originally proposed in the Genome Studio
software).

http://www.bioconductor.org/
SWAN: [13]

wateRmelon Bioconductor R-package.
Pipeline function available: pipeline proposed byTouleimat and Tost.
Other proposed normalization methods: wide-range of within-array
normalization methods, including the type I/II bias corrections PBC,
BMIQ and SWAN, and between-array normalization methods, such
as Nasen.

http://mammoet.iop.kcl.ac.uk/i450/INSTALL.html
http://www.bioconductor.org/
Pipeline proposed byTouleimat and Tost: [14]
PBC: [3]; SWAN: [13]; BMIQ: [15] (also available
independently at http://code.google.com/p/bmiq/)
Nasen: [16]

Methylumi Bioconductor R-package.
No pipeline function.
Proposed normalization methods: dye bias equalization and several
background correction methods, including the recently developed
Noob method.

http://www.bioconductor.org/
Noob: [17]

RnBeads R-package.
Pipeline function available: allows probe filtering, quality control,
estimation of batch effect and identification of differentially
methylated sites.
Proposed normalization methods: type I/II bias correction SWAN and
dye bias equalization.

http://rnbeads.bioinf.mpi-inf.mpg.de/
SWAN: [13]

NIMBL Mathlab package dedicated to the identification of DNA methylation
markers.
No pipeline function.
Proposed normalization methods: type I/II bias correction PBC.

[18]
https://sites.google.
com/site/emesbioinformatics/group-software/nimbl
PBC: [3]

Overview of Infinium HumanMethylation450 data processing 933

N
to 
http://ima.r-forge.r-project.org/
http://www.bioconductor.org/
http://www.bioconductor.org/
http://mammoet.iop.kcl.ac.uk/i450/INSTALL.html
http://www.bioconductor.org/
http://code.google.com/p/bmiq/
http://www.bioconductor.org/
http://rnbeads.bioinf.mpi-inf.mpg.de/
https://sites.google.com/site/emesbioinformatics/group-software/nimbl
https://sites.google.com/site/emesbioinformatics/group-software/nimbl


(the methylated signal is measured in the green chan-

nel and the unmethylated signal in the red channel),

making the color bias more problematic in this case:

it notably skews the b-values obtained from Infinium

II probes and also contributes to the reduction of

their dynamic range. Hence, a correction of the

Infinium I/II-type bias should correct in a similar

manner the dye bias and the background than a

dye bias correction combined with a background

correction (even if the background is balanced be-

tween the two types of Infinium probes but not

completely eliminated). Of note, these two

approaches are unlikely to provide exactly the same

effect as the Infinium I/II-type bias brings into play a

third component that is the different probe design of

Infinium I and II. Indeed, Infinium I assumes - for

loci with flanking CpGs - that methylation is region-

ally correlated and therefore underlying CpGs are in

phase with the methylated or unmethylated query

sites, whereas Infinium II uses ‘degenerate’ bases

[2]. During these last months, several Infinium

I/II-type bias correction methods have been de-

veloped. We therefore detail here mainly these

methods, before presenting briefly the color bias

and background correction methods also available

to date.

The first method used to correct the Infinium

I/II type bias was developed by our laboratory

and is called peak-based correction (PBC) [3]. As

the methylation level distribution is bimodal (one

peak corresponding to the unmethylated sites and

the other to the methylated sites), the PBC pro-

poses to rescale the methylation levels of the

Infinium II probes to obtain the same modes for

the distribution of methylation values obtained

from the Infinium II probes as for the distribution

of methylation values obtained from the Infinium I

probes (which is kept unmodified). To illustrate the

effectiveness of this method and of the others pre-

sented below, we applied them to two data sets for

which we obtained BPS data that we used as ref-

erence values. The first data set has been previously

described in [3] and consists of 90 measurements

providing from three replicates of HCT116 WT

cells and three replicates of HCT116 DKO cells

(Double Knock-Out for DNMT1 and DNMT3B

displaying a low global level of methylation as com-

pared with HCT116 WT cells). Roessler and cow-

orkers kindly provided the second data set

comprising 352 measurements from 22 tissue sam-

ples [9]. As already shown [3, 19], the PBC method

results in better agreement between 450K and other

technologies (such as BPS, as in the present case),

and thus proves effective (Figure 3). It is worth

noting that this method is sensitive to variations

in the shape of the methylation density curves

and is therefore less robust when applied to samples

that do not display clear methylated or unmethy-

lated peaks.

Two other proposed methods are derived from

quantile normalization. Yet, because Infinium I and

Infinium II probes do not interrogate the same CpG

population, the two types of probes are not expected

to have the same distribution [3], and classic quantile

normalization methods cannot be applied as such.

Subset quantile approaches have thus been proposed.

Touleimat and Tost have developed a categorical

Subset Quantile Normalization method (SQN)

based on the assumption that CpGs having the

same biological properties should have the same dis-

tribution [14]. For this purpose, they separated the

target CpGs into different classes based on their lo-

cation with respect to CpG islands (CGIs) and then

applied quantile normalization between the Infinium

I and Infinium II probes, independently for each

different class of CpGs. Of note, this method is

applied to all samples simultaneously, thus perform-

ing a between-array normalization at the mean time.

Maksimovic and coworkers have proposed a similar

method, called Subset quantile for Within Array

Normalization (SWAN) [13]. Instead of classifying

the target CpGs on the basis of their location with

respect to CGIs, they classified the probes on the

basis of the number of CpGs they contain, assuming

that probes having the same number of CpGs in their

sequences should reside in a similar region (CGIs or

open sea) and thus have the same profile. When

applied to the two aforementioned data sets, the

SWAN method does not seem to improve the data

quality (Figure 3). If one considers only the within-

array normalization component of the method, the

categorical SQN correction of Touleimat and Tost

reduces the difference between methylation meas-

urements obtained with Infinium HumanMethyla-

tion450 and BPS (Figure 3). Yet, if the complete

method is applied (i.e. if the data are also subjected

to the between-array normalization component of

the technique), the data quality can be strongly

degraded in some cases (see the next part

‘Between-array Normalization’ and Figure 4). The

SWAN and categorical SQN methods thus have

drawbacks.
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A fourth method also based on quantile normal-

ization was published more recently to correct the

Infinium I/II type bias [15]. It is called Beta MIxture

Quantile normalization (BMIQ). This method de-

composes the density profile of Infinium I and

Infinium II probes into two mixtures of three b-dis-

tributions based on the three methylation states:

unmethylated (close to 0), partially methylated

(close to 0.5) and fully methylated (close to 1).

Then it uses a quantile normalization to fit each

b-distribution of the Infinium II profile to the cor-

responding b-distribution of the Infinium I profile.

Unlike SWAN and the categorical SQN method of

Touleimat and Tost, BMIQ (like PBC) is assump-

tion-free and does not depend on arbitrary choices of

biological characteristics to be used to perform SQN.

This method thus seems to us more suitable than the

SWAN and Touleimat methods. Our comparison

with the BPS data for our two test data sets tends

to confirm this view, with global improvement of

the data quality (Figure 3: for both data sets, the

median of the boxplot is lower after BMIQ correc-

tion than for the raw data). A drawback, however, is

that some points appear worse after correction

(Figure 3: for the HCT116 data set, the maximum

of the boxplot whisker is higher after BMIQ correc-

tion than for the raw data).

In addition to these methods for correcting the

Infinium I/II-type bias, other within-array normal-

ization methods have also been developed, such as

methods for correcting dye bias or eliminating the

background. For instance, the popular lumi and

methylumi R packages proposed a color bias adjust-

ment based on smooth quantile or shift-and-scaling

normalization and on the method proposed in

Genome Studio, respectively. These corrections im-

prove marginally the quality of the HCT116 data

and seem to decrease the quality of the Roessler’s

data (Figure 3). Nevertheless, of potential interest,

in the HCT116 data set, these methods (notably

the dye bias equalization of the methylumi package)

decrease the range of differences between the

Figure 3: Comparison of the different within-array normalization methods using BPS data as referential data.
Boxplots show the distribution of the absolute difference between DNA methylation measurements obtained from
Infinium HumanMethylation450 and BPS, when Infinium data are subjected (white) or not (dark gray) to within-
array normalization, for HCT116 and Roessler’s data sets.Blue, orange andred indicate Infinium typeI/II bias correction
methods, color bias adjustment and background correction methods, respectively. Raw: Infinium raw data; IMA-
PBC: PBC from the IMA package; Minfi-SWAN: Subset quantileWithin-Array Normalization from theminfi package;
Tost-SQN(within): categorical SQN fromTouleimat and Tostpipeline (this boxplot is highlighted in lightgray to indicate
that each sample has been normalized individually to apply only the within-array normalization component of this
method); BMIQ: Beta-Mixture Quantile Normalization; Lumi-Smooth: color bias adjustment from the lumi package
(smooth quantile normalization); MethyLumi-NMLS: dye bias equalization (normalizeMethyLumiSet) of the methylumi
package (method originally proposed in the Genome Studio software); Lumi-lumiMethyB: background correction
from the lumi package; MethyLumi-Noob: background correction based on normal exponential convolution model
using out-of-band intensities as controls from the methylumi package; MethyLumi-Normexp: same as MethyLumi-
Noob but controls used are negative probes present on the array (*On the Roessler’s data set, this method was
applied instead of the‘Noob’method becausewe do not have access to the IDAT files of these samples). A colour ver-
sion of this figure is available at BIB online: http://bib.oxfordjournals.org.
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methylation measurements obtained with 450K and

BPS (Figure 3: the maximum of the boxplot whisker

is lower after the color bias corrections than for the

raw data). Concerning the background correction

methods, most of them (such as those implemented

in the lumi package) involve a simple background

subtraction and do not significantly improve

data quality (Figure 3, example shown for the

‘lumiMethyB’ method of the lumi package).

Nevertheless, new background correction methods

have recently been developed by Triche and cow-

orkers and implemented in the methylumi package

(such as ‘Noob’ and ‘Normexp’) [17]. They are

based on convolution models and use, most of the

time, the out-of-band intensities, i.e. the Infinium I

probes in the color channel opposite their designed

base extension, to measure the background.

Globally, these methods outperform the previously

developed background correction methods and in

some cases seem to improve data quality almost as

well as the best Infinium I/II-type bias corrections

(Figure 3, examples shown for the ‘Noob’ method

on the HCT116 data set and for the ‘Normexp’

method on Roessler’s data set). Nevertheless, as

with the BMIQ correction, some points appear

worse after the background correction (Figure 3:

for the HCT116 data set, the maximum of the box-

plot whisker is higher after the ‘Noob’ correction

than for the raw data). It is worth noting that the

methods proposed by Triche and coworkers tend to

increase the dynamic range of the b-values and to

have the greatest reduction in bias at the extremes of

the b-value distribution (i.e. close to 0 and 1), resem-

bling, in this sense, our PBC method. But in this

case, rescaling of the b-value range occurs as a natural

consequence of background correction and affects

both the Infinium I and Infinium II probes [17].

In conclusion as regards within-array normaliza-

tion, the key point that we wished to highlight here

(in agreement with the conclusions of [20]) is that

the Infinium I/II type bias seems to be the one it is

most crucial to correct, as all techniques that ad-

equately address this bias improve 450K data more

significantly than the others. We would therefore

recommend using PBC, which seems to be the

only method giving a true global benefit without

generating any worse data. Yet, if samples display

no clear methylated or unmethylated peaks, BMIQ

or Triche and coworkers’ background correction

methods based on convolution models can be good

alternative methods. Also, for purposes of clarity, we

tested here all the methods separately, but we do not

want to exclude the possibility of using some of them

in combination. For instance, applying the dye bias

equalization of the methylumi package in combination

with the background correction ‘Noob’ could im-

prove the benefit obtained when these methods are

used separately [17].

Between-array normalization
In addition to technical biases linked to the array

design itself, other sources of non-biological vari-

ations related to external parameters, such as unequal

quantities of starting material, differences in labeling

or detection efficiencies can lead to misleading re-

sults. Between-array normalization methods have

been developed to reduce these array-to-array vari-

ations by adjusting measurements at a global level.

Of note, non-biological technical variations tend ac-

tually to be less pronounced for Infinium data than

for gene expression data because DNA methylation

measurement used for sample comparisons (b-value)

is a ratio of intensities, whereas gene expression

measurement corresponds directly to the signal

intensity.

To our knowledge, all between-array normaliza-

tion methods proposed to date in the different pack-

ages for 450K data processing are derived from

normalization methods initially developed for gene

expression arrays. The ima package offers quantile

normalization on the b-values as an alternative to

no normalization [11]. With the lumi package, a

smooth quantile normalization can be applied to the

intensities or the intensities can be rescaled with a

shift and scaling normalization. Other methods take into

account the design of the Infinium HumanMethyla-

tion450 array and process separately the signals from

type I and type II probes. For example, in the

wateRmelon package, the ‘nasen’ method consists in

four quantile normalizations between samples, as the

data are separated according to probe type (Infinium

I or Infinium II) and color channel [16]. The cat-

egorical SQN method of Touleimat and Tost takes

also the array design into account [14]. Interestingly

with Roessler’s data set, which is more or less homo-

geneous in terms of global methylation level of the

samples, all these normalization methods bring no or

very little benefit (except for the Touleimat and Tost

method, but the benefit is attributable to the within-

array normalization component of the method), and

with the HCT116 data set, which displays very

strong differences in terms of global methylation
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level between samples, they strongly decrease the

data quality (Figure 4). The explanation is that all

these methods—except the shift and scaling normaliza-
tion of the lumi package (which appears as the least

bad method)—are quantile-derived methods assum-

ing the same global distribution between samples.

This hypothesis is more or less verified for Roessler’s

data set but is not verified at all for the HCT116 data

set (the HCT116 DKO samples displaying a low

global methylation level as compared to HCT116

WT cells). Thus, in our opinion, there is to date

no between-array normalization method suited to

450K data that can bring enough benefit to coun-

terbalance the strong impairment of data quality they

can cause on some data sets.

We think these observations are very informative

for the 450K users. Generally, to evaluate the effect-

iveness of a normalization method, researchers look

at the agreement between technical replicates.

Although this is an important point, it is also crucial

to verify that the normalization does not shift the

measurements from their true biological values, by

double-checking the results obtained using another

technology. This is what we did here and why our

conclusion could partially contradict the one of

others, like Sun and coworkers [21]. Indeed, Sun

and coworkers showed that the variation between

technical replicates decreases after performing one

of the between-array normalization they evaluated.

When looking at our HCT116 data set, we also

found that the between-array normalization methods

slightly decrease the variation between technical

replicates (except the quantile normalization im-

plemented in the IMA package, Figure 5).

Nevertheless, as described earlier in the text, we

also showed that the majority of the normalization

methods we have tested shifted the measurements

from their true biological values, using BPS data as

referential data. It therefore led us to conclude that

these normalization methods are not suitable for

450K data.

It is noteworthy that we fully agree with Sun and

coworkers on the fact that between-array normaliza-

tion methods (even if one would exist for 450K data)

can partially but not completely remove another

type of non-biological variations that we called

‘batch’ and ‘slide’ effects. Batch effects correspond

to non-biological variations existing between batches

of samples that, for instance, have not been processed

the same day, on the same scanner, or by the same

experimenter. The position of the array on the slide

and the slide itself inside a same batch of samples can

also generate non-biological variations. This is what

we referred as slide effects. Such batch and slide ef-

fects can generate artifacts on measurements at the

global level that could be partially removed thanks to

Figure 4: Comparison of the different between-array normalization methods using BPS data as referential data.
Boxplots show the distribution of the absolute difference between DNA methylation measurements obtained
from Infinium HumanMethylation450 and BPS, when Infinium data are subjected (white) or not (dark gray) to be-
tween-array normalization, for HCT116 and Roessler’s data sets. Raw: Infinium raw data; Lumi-Smooth: Smooth
quantile normalization on intensities from the lumi package; Lumi-SSN: Shift and Scaling Normalization on the inten-
sities from the lumi package; IMA-QN: Quantile normalization on b-values from the IMA package; Tost-SQN: cat-
egorical SQN from Touleimat and Tost pipeline (this boxplot is highlighted in light gray to indicate that the
normalization method comprises a within-array normalization component in addition to the between-array compo-
nent); wateRmelon-Nasen: Nasen method from the wateRmelon package.
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a good between-array normalization method.

Nevertheless, batch effects can generate artifacts

that only affect a subset of probes. These artifacts

cannot be eliminated by globally normalizing the

data. Therefore, an additional normalization (or cor-

rection) step should be applied to reduce as much as

possible batch and slide effects. Although not evalu-

ated in this study, some methods have been de-

veloped to this aim, such as ‘ComBat’ [22] that

proved effective on Infinium 27K and 450K data

[21, 23]. It is also important to keep in mind that

the best way to avoid problems linked to batch and

slide effects is to have a good design of the experi-

ment, meaning a good distribution of the samples

(cases and controls, for example) on the slides and

processing of all the samples on the same day by the

same experimenter using the same scanner. Of note,

some useful tools, such as the bioconductor package

OSAT (Optimal Sample Assignment Tool), have

been developed to facilitate the allocation of samples

to different batches [24].

In conclusion, although we are aware of the im-

portance of between-array normalization for accur-

ate sample comparisons, we do not recommend

applying any between-array normalization method

to Infinium HumanMethylation450 data for the

time being because technical variations are weaker

for Infinium arrays than for gene expression arrays

and, mainly because, from our point of view, there is

to date no between-array normalization method

suitable for 450K data. We would welcome, of

course, the development of a suitable method bring-

ing a real benefit. Methods, such as ‘ComBat’, de-

veloped for batch effect removal can be applied, even

if possible confounding due to batch and slide effects

can be at least partially avoided thanks to a good

study design.

PERFORMINGTHEDIFFERENTIAL
METHYLATIONANALYSIS
After correct preprocessing of the data (i.e. filtering

out problematic probes and normalizing the data),

differential methylation analysis can be performed.

Generally, the first approach consists in a single-

probe analysis. Statistical tests (such as the t-test or

Mann–Whitney test) are used, and when the

P-values obtained are below a given threshold (e.g.

<0.05), the sites are considered as differentially

methylated and referred as differentially methylated

positions (DMPs). In this way, several researchers

have identified numerous DMPs although the

Figure 5: Comparison of the different between-array normalization methods using the variation between tech-
nical replicates as criterion. Boxplots show the distribution of the median of the absolute differences between
DNA methylation measurements obtained with Infinium HumanMethylation450 from three replicates of HCT116
WT cells (left panel) or three replicates of HCT116 DKO cells (right panel), when data are subjected (white) or not
subjected (dark gray) to between-array normalization. Raw: Infinium raw data; Lumi-Smooth: Smooth quantile nor-
malization on intensities from the lumi package; Lumi-SSN: Shift and Scaling Normalization on the intensities from
the lumi package; IMA-QN: Quantile normalization on b-values from the IMA package; Tost-SQN: categorical SQN
fromTouleimat and Tost pipeline (this boxplot is highlighted in light gray to indicate that the normalization method
comprises a within-array normalization component in addition to the between-array component); wateRmelon-
Nasen: Nasen method from the wateRmelon package. For clarity reasons, the boxplots are drawn using whiskers
that extend to the most extreme data point, which is no more than 1.5 times the interquartile range from the box.
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absolute difference in methylation of the CpG sites

between two groups of samples was small (i.e. below

5% of methylation difference). We wish to warn

450K users that technical replicates can frequently

display methylation differences up to 10%, as illu-

strated in Figure 6 using two HCT116 WT replicates

of our HCT116 data set. Therefore, very slight

observed differences in methylation are more likely

due to random technical variations than to true bio-

logical differences (Figure 6). Some very slight dif-

ferences in methylation may be true differences,

notably when reflecting a difference in cell-type

composition of the tissues analyzed [25, 26], but

the technical variability of Infinium HumanMethy-

lation450 makes it unsuitable for confident detection

of such differences. Even if the studied data set is

large, the technical variability should not be neg-

lected, as the size of the data set will reduce the

impact of the technical variability but will not com-

pletely eliminate it. Thus, to ensure the selection of

CpGs whose methylation difference is not artifactual,

we think it is necessary to use, in addition to a stat-

istical criterion, an absolute methylation difference

threshold (�b) that should be determined for each

experiment independently, as the technical variabil-

ity can vary from one experiment to another.

The b-value is the default value retrieved by the

Genome Studio software and is simply defined as the

ratio of the methylated signal over the total signal

(methylatedþ unmethylated). Yet another type of

value, the M-value, is often used to express the

degree of methylation obtained with Infinium. It is

defined as the log ratio of the methylated signal over

the unmethylated signal. Owing to its construction,

the b-value is bounded between 0 and 1 (or 0 and

100%) allowing easy biological interpretation.

Although using b-values provides a simple option,

its main drawback resides in its bad statistical proper-

ties: the b-value has been shown to be highly het-

eroscedastic [27], implying that the variance across

samples at the extremities of the methylation range

(close to 0 and 1) is highly reduced. The M-value has

better statistical properties with a lower heteroscedas-

ticity, meaning that the variance across the methyla-

tion range is approximately constant. Therefore, we

would recommend using the M-value rather than

the b-value to perform statistical tests sensitive to

heteroscedasticity, such as t-test. Other tests, such

as the Mann–Whitney test (that is a rank test), are

not affected by the monotonic transformation be-

tween b- and M-values and can therefore be applied

equivalently on the b- or the M-values. When using

an absolute methylation difference criterion, the

b-value seems more suitable, as it allows easier bio-

logical interpretation.

In addition to the single CpG analysis, a second

approach can be used to perform differential methy-

lation analysis to bring further confidence in the re-

sults. It consists in looking at regional methylation

measurements rather than at single site measure-

ments, and therefore in identifying differentially

methylated regions rather than DMPs [28, 29].

The principle of this method resides in the fact that

probes being close together (e.g. inside the promoter

of the same gene or in a window of a given size)

should have the same behavior, i.e. hypomethylated

(or hypermethylated) in the cases as compared with

control samples. One limitation of this type of ap-

proach for analyzing 450K data is that about one-

quarter of the array probes is isolated (i.e. located at

>1 kb away from any other probe), rending analysis

more difficult to apply than with sequencing data.

Nevertheless, this approach can be used for the three

other quarters of the array probes, particularly in

promoter regions and CGIs that are generally well

covered by the Infinium probes.

On top of the aforementioned issues, we still wish

to add a last key one that is the necessity to verify the

reliability of the forecasts. It is important to use at

least a negative control, for instance, by mixing up

Figure 6: Small differences of methylation can be
observed by chance due to technical variations. Density
plot of the �b (difference of methylation) between two
technical replicates of HCT116WT cells (in gray) and be-
tween one HCT116 WT sample and one HCT116 DKO
sample (in purple).The dashed region (<�0.09) indicates
the area were random differences are lower than biolo-
gical differences. A colour version of this figure is avail-
able at BIB online: http://bib.oxfordjournals.org.
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the samples and by performing additional differential

methylation analyses using the mixed-up groups of

samples. This allows to assess whether the differences

observed between the groups of interest are poten-

tially true or if such differences can be obtained by

any random sampling. Furthermore, the empirical

false-discovery rate for a specific cutoff (e.g.

P-value chosen) can be estimated more precisely by

performing permutation tests, as it has already been

proposed in gene expression microarray analysis [30].

CONCLUSION
The development of Infinium HumanMethyla-

tion450 arrays is allowing researchers to perform

high-throughput DNA methylation profiling.

Increased number of data has already been published

and many more are to come. However, Infinium

HumanMethylation450 analysis and interpretation

appear not as easy as initially thought and this,

given the various reasons that we have reviewed

and discussed here.

First, it becomes evident that probe annotation has

to be improved, as numerous probes seem to gener-

ate values that can be confounded by several param-

eters and need therefore to be filtered out. Some

probes were notably identified as cross-reactive, i.e.

they co-hybridize at different genomic locations.

Others contain known SNPs and therefore evaluate

more likely the genotype than the methylation level

of the targeted CpG site. Also to be considered is the

observation that probes displaying a high average in-

tensity appear less reliable than those displaying

lower average intensity.

Second, an adequate sample normalization has to

be performed to ensure complete and correct pre-

processing of the data. Concerning within-array nor-

malization, numerous methods have been proposed,

and it is not that easy to decipher which one is the

best one. From our point of view, applying an

Infinium type I/II bias correction is essential, as this

bias seems to be the most critical one. We would

recommend using PBC, BMIQ or the background

correction methods developed by Triche and collab-

orators. Concerning between-array normalization,

however, none of the methods available to date

seem suitable to 450K data. Methods for batch

effect removal, such as ‘ComBat’, can be used,

even if the best way to avoid strong batch effects

still resides in a proper experimental design.

Third, concerning differential methylation ana-

lyses, different approaches can be used. The single-

probe approach is mainly based on statistics.

Nevertheless, it is important to keep in mind that

Infinium HumanMethylation450 is not suitable for

detection of small differences of methylation because

of its technical variability in measurements, and

therefore, using an absolute methylation difference

threshold is strongly recommended. Although this

single-probe approach is the most commonly used,

regional differential methylation analyses should not

be neglected, as they can bring confidence in the

results. Also, performing permutations can help to

demonstrate the specificity of the results.

In conclusion, Infinium HumanMethylation450 is

a nice tool to perform large-scale DNA methylation

profiling, and it can be anticipated that its use will

likely explode in the near future. Nevertheless, ana-

lyzing 450K data is more complex than initially

thought, and data processing and interpretation

need to be given particular consideration and care.

We have summarized here different issues, which we

feel as essential to take into consideration for accurate

processing of 450K data. Further improvements in

450K data analyses, including benchmarking data sets

and standardized preprocessing protocol, would be

an important step towards the proper use of this

innovative technology.

Key Points

� InfiniumHumanMethylation450 is a popular technology to study
the DNAmethylome in health and disease.

� Certain types of probes, such as cross-reactive probes and
probes containing common SNPs, can generate artifactual data
and need therefore to be filtered out.

� Themain criticalbias thatneeds to be correctedby within-array
normalization is the Infinium type I/II bias.

� No between-array normalization method suitable for 450K
arrays is available to date.

� The technical variability of the Infinium measurements should
not be neglected and the use of an absolute methylation differ-
ence threshold (�b), in addition to statistical criteria, is strongly
recommended.
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‘Université Libre de Bruxelles’ (ULB), the ‘Fonds de

la Recherche Scientifique’ (FNRS) and the

‘Interuniversity Attraction Poles’ (IAP P7/03).

References
1. Jones PA. Functions of DNA methylation: islands, start sites,

gene bodies and beyond. Nat RevGenet 2012;13:484–92.

2. Bibikova M, Barnes B, Tsan C, et al. High density DNA
methylation array with single CpG site resolution. Genomics
2011;98:288–95.

3. Dedeurwaerder S, Defrance M, Calonne E, et al. Evaluation
of the Infinium Methylation 450K technology. Epigenomics
2011;3:771–84.

4. Rakyan VK, Down TA, Balding DJ, et al. Epigenome-wide
association studies for common human diseases. Nat Rev
Genet 2011;12:529–41.

5. Bibikova M, Le J, Barnes B, et al. Genome-wide DNA
methylation profiling using Infinium(R) assay. Epigenomics
2009;1:177–200.

6. Price ME, Cotton AM, Lam LL, etal. Additional annotation
enhances potential for biologically-relevant analysis of the
Illumina Infinium HumanMethylation450 BeadChip array.
Epigenetics Chromatin 2013;6:4.

7. Zhang X, Mu W, Zhang W. On the analysis of the illumina
450k array data: probes ambiguously mapped to the human
genome. Front Genet 2012;3:73.

8. Chen YA, Lemire M, Choufani S, et al. Discovery of cross-
reactive probes and polymorphic CpGs in the Illumina
Infinium HumanMethylation450 microarray. Epigenetics
2013;8:203–9.

9. Roessler J, Ammerpohl O, Gutwein J, et al. Quantitative
cross-validation and content analysis of the 450k DNA
methylation array from Illumina, Inc. BMC Res Notes
2012;5:210.

10. Siegmund KD. Statistical approaches for the analysis of
DNA methylation microarray data. Hum Genet 2011;129:
585–95.

11. Wang D, Yan L, Hu Q, et al. IMA: an R package for
high-throughput analysis of Illumina’s 450K Infinium
methylation data. Bioinformatics 2012;28:729–30.

12. Du P, Kibbe WA, Lin SM. lumi: a pipeline for processing
Illumina microarray. Bioinformatics 2008;24:15478.

13. Maksimovic J, Gordon L, Oshlack A. SWAN: Subset-
quantile within array normalization for illumina infinium
HumanMethylation450 BeadChips. Genome Biol 2012;13:
R44.

14. Touleimat N, Tost J. Complete pipeline for Infinium((R))
Human Methylation 450K BeadChip data processing using
subset quantile normalization for accurate DNA methyla-
tion estimation. Epigenomics 2012;4:325–41.

15. Teschendorff AE, Marabita F, Lechner M, et al. A beta-
mixture quantile normalization method for correcting
probe design bias in Illumina Infinium 450 k DNA methy-
lation data. Bioinformatics 2012;29:189–96.

16. Pidsley R, Wong CC, Volta M, et al. A data-driven
approach to preprocessing Illumina 450K methylation
array data. BMCGenomics 2013;14:293.

17. Triche TJ, Jr, Weisenberger DJ, Van Den Berg D, et al.
Low-level processing of Illumina Infinium DNA
Methylation BeadArrays. Nucleic Acids Res 2013;41:e90.

18. Wessely F, Emes RD. Identification of DNA methylation
biomarkers from Infinium arrays. Front Genet 2012;3:161.

19. Pan H, Chen L, Dogra S, etal. Measuring the methylome in
clinical samples: improved processing of the Infinium
Human Methylation450 BeadChip Array. Epigenetics 2012;
7:1173–87.

20. Marabita F, Almgren M, Lindholm ME, et al. An evaluation
of analysis pipelines for DNA methylation profiling using
the Illumina HumanMethylation450 BeadChip platform.
Epigenetics 2013;8:333–46.

21. Sun Z, Chai HS, Wu Y, et al. Batch effect correction for
genome-wide methylation data with Illumina Infinium
platform. BMCMedGenomics 2011;4:84.

22. Johnson WE, Li C, Rabinovic A. Adjusting batch effects in
microarray expression data using empirical Bayes methods.
Biostatistics 2007;8:118–27.

23. Leek JT, Scharpf RB, Bravo HC, et al. Tackling the wide-
spread and critical impact of batch effects in high-through-
put data. Nat RevGenet 2010;11:733–9.

24. Yan L, Ma C, Wang D, et al. OSAT: a tool for sample-to-
batch allocations in genomics experiments. BMCGenomics
2012;13:689.

25. Dedeurwaerder S, Desmedt C, Calonne E, et al.
DNA methylation profiling reveals a predominant
immune component in breast cancers. EMBO Mol Med
2011;3:726–41.

26. Houseman EA, Accomando WP, Koestler DC, et al. DNA
methylation arrays as surrogate measures of cell mixture dis-
tribution. BMCBioinformatics 2012;13:86.

27. Du P, Zhang X, Huang CC, et al. Comparison of
Beta-value and M-value methods for quantifying methyla-
tion levels by microarray analysis. BMCBioinformatics 2010;
11:587.

28. Hansen KD, Timp W, Bravo HC, et al. Increased methyla-
tion variation in epigenetic domains across cancer types. Nat
Genet 2011;43:768–75.

29. Hansen KD, Langmead B, Irizarry RA. BSmooth: from
whole genome bisulfite sequencing reads to differentially
methylated regions. Genome Biol 2012;13:R83.

30. Tusher VG, Tibshirani R, Chu G. Significance analysis
of microarrays applied to the ionizing radiation response.
Proc Natl Acad Sci USA 2001;98:5116–21.

Overview of Infinium HumanMethylation450 data processing 941


