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Abstract

The human brain generates a rich repertoire of spatio-temporal activity patterns, which sup-

port a wide variety of motor and cognitive functions. These patterns of activity change with

age in a multi-factorial manner. One of these factors is the variations in the brain’s connec-

tomics that occurs along the lifespan. However, the precise relationship between high-order

functional interactions and connnectomics, as well as their variations with age are largely

unknown, in part due to the absence of mechanistic models that can efficiently map brain

connnectomics to functional connectivity in aging. To investigate this issue, we have built a

neurobiologically-realistic whole-brain computational model using both anatomical and func-

tional MRI data from 161 participants ranging from 10 to 80 years old. We show that the dif-

ferences in high-order functional interactions between age groups can be largely explained

by variations in the connectome. Based on this finding, we propose a simple neurodegen-

eration model that is representative of normal physiological aging. As such, when applied to

connectomes of young participant it reproduces the age-variations that occur in the high-

order structure of the functional data. Overall, these results begin to disentangle the
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mechanisms by which structural changes in the connectome lead to functional differences

in the ageing brain. Our model can also serve as a starting point for modeling more complex

forms of pathological ageing or cognitive deficits.

Author summary

Modern neuroimaging techniques allow us to study how the human brain’s anatomical

architecture (a.k.a. structural connectome) changes under different conditions or inter-

ventions. Recently, using functional neuroimaging data, we have shown that complex pat-

terns of interactions between brain areas change along the lifespan, exhibiting increased

redundant interactions in the older population. However, the mechanisms that underlie

these functional differences are still unclear. Here, we extended this work and hypothe-

sized that the variations of functional patterns can be explained by the dynamics of the

brain’s anatomical networks, which are known to degenerate as we age. To test this

hypothesis, we implemented a whole-brain model of neuronal activity, where different

brain regions are anatomically wired using real connectomes from 161 participants with

ages ranging from 10 to 80 years old. Analyzing different functional aspects of brain activ-

ity when varying the empirical connectomes, we show that the increased redundancy

found in the older group can indeed be explained by precise rules affecting anatomical

connectivity, thus emphasizing the critical role that the brain connectome plays for shap-

ing complex functional interactions and the efficiency in the global communication of the

human brain.

Introduction

Advancing the neuroscience of ageing is highly relevant from a socio-economic perspective as

the population of older adults is rising dramatically worldwide, with predictions foreseeing the

percentage of people aged 60 years or older to increase from 900 million in 2015 up to 2.1 bil-

lion by 2050 [1]. An important challenge of contemporary neuroscience is to better under-

stand the systemic effects of ageing on the structure and function of the human brain [2–5].

Ageing is a major risk factor for late-onset brain disorders, accelerates cognitive and motor

decline and worsens the quality of life. A deeper understanding of this process could motivate

novel interventions or protection therapies against age-related deterioration or neurodegener-

ative diseases [6–10].

Several effects of ageing on brain structure have been previously studied. Along the lifespan,

the total brain volume increases from childhood to adolescence by approximately 25% on aver-

age, remains constant for the three following decades, and finally decays back to childhood

size at late ages [11]. Additionally, it has been shown that the amount of atrophy in aged brains

is not homogeneous, but some anatomical regions are more affected than others—well-known

ageing-targeted structures are the hippocampus [12], prefrontal cortex [13] and basal ganglia

[14, 15]. White-matter degenerates faster than gray-matter along the lifespan, indicating that

the overall connectivity is diminished with age [16]. Moreover, a progressive decrease in many

tract-integrity measures has been shown using diffusion imaging, which is more pronounced

in subjects above 60 years of age [5, 6].

Previous studies of functional connectivity along the lifespan during resting state have

shown that regions within the default mode network (DMN) become less functionally
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connected with age [4, 7, 17, 18]. Additionally, the frontoparietal, dorsal attention, and salience

networks also show some degree of age-related decline, including reduced within-network

connectivity [17, 19–21]. In contrast, between-network connectivity increase with age between

the DMN, somatosensory, and the frontoparietal control networks. A stronger connectivity

between the frontoparietal and dorsal attention networks has been reported as well [3, 19, 22,

23]. Furthermore, recent articles on high-order functional interactions in fMRI brain signals

have shown the predominance of redundant interdependencies in older adults, consistently

across all scales [24, 25]. More precisely, in [24], we investigated how high-order statistical

interdependencies were affected by age using fMRI data. Our results showed that older sub-

jects had a higher prevalence of redundant dependencies than younger subjects; moreover,

this effect occurred in all orders of interaction and was shown to be highly heterogeneous

across brain regions, suggesting the existence of a “redundancy core” formed by the prefrontal

and motor cortices.

Taken together, these findings suggest a general loss of functional specificity or circuit seg-

regation across brain circuits [26]. Moreover, an increase in between-network interactions is a

dominant feature of aging brains. Albeit important progress in our understanding of the

effects of ageing on brain function, these effects are less well understood than the effects on

structural connectivity, which shows a progressive age-related disconnection.

Despite these considerable advances in understanding how the anatomical and functional

connectivity change along the lifespan, the relationship between changes in brain structure

and function leading to age-related decline remains largely unknown. To bridge this important

gap, we sought to investigate how age-related changes in brain structure affect high-order

interactions in brain function. We tackle this fundamental question through whole-brain

computational modeling, which is an powerful emerging tool for investigating the neurobio-

logical mechanisms underlying macroscale neural phenomena [27–29].

Our approach is based on the Dynamic Mean Field (DMF) model, which simulates meso-

scale neural dynamics using coupled stochastic differential equations incorporating realistic

neurophysiological aspects [30–32]. DMF modeling can be used to systematically perturb con-

nectome characteristics while assessing the resulting effects on macroscale brain dynamics and

function, thus opening the way to provide mechanistic modeling interpretations to data

obtained from lesion studies and ageing [33–35]. Furthermore, different DMF inputs and bio-

physical parameters can be systematically altered in ways that are beyond the capabilities of

current experimental research, which makes whole-brain computational modeling a privileged

tool for investigating causal mechanisms that drive the organization and functioning of the

brain [28, 36–38].

Capitalising on this powerful approach, here we employ the multimodal neuroimaging-

built DMF model—including empirical BOLD fMRI dynamics and anatomical connectivity

obtained from diffusion MRI. In particular, we use the DMF model to investigate how aging-

induced changes in the human connectome shape high-order brain interdependencies. Fol-

lowing the methodology presented in Ref. [39], our analysis focuses on two types of qualita-

tively distinct high-order interactions which are critical in our approach: synergy and

redundancy. The latter is an extension of the standard notion of correlation that applies to

three or more variables, in which each variable has a ‘copy’ of some common information

shared with other variables [39]. An example of extreme redundancy is full synchronisation,

where the value of one signal makes it possible to predict the state of any other. In contrast,

synergy refers here to statistical relationships that regulate a group of variables but do not con-

strain any subset of them [40–42]. Synergy allows for a counterintuitive coexistence of local

independence and global cohesion, proposed to be instrumental for high-order brain func-

tions, while redundancy—including instances of high synchronization, such as deep sleep or
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epileptic seizures—would make neural systems less suitable for them [43–46]. Our results

show that DMF reproduces age-related changes in redundancy and synergy, previously

reported in Ref. [24], and that these changes are driven by a process of connectome neurode-

generation. Leveraging this evidence, we developed a non-linear neurodegenerative model

that efficiently mimics connectome ageing and its associated changes in the pattern of high-

order interactions of the human brain.

Results

The DMF model reproduces empirical differences between age groups in

the high-order redundant and synergistic interactions

Our analyses are based on the DMF model, which uses structural and functional connectivity

matrices, respectively SC and FC, to simulate the activity of various brain regions wired with

SC in presence of local excitatory and inhibitory neuronal populations. Our analyses are based

on the DMF model, which simulates the activity of various brain regions containing local

excitatory and inhibitory neuronal populations, and connections between the excitatory popu-

lations that follow an anatomical connectivity matrix (SC). A biophysical haemodynamic

model [47] is then used to transform the DMF model’s firing rate dynamics into BOLD-like

signals. The DMF is calibrated by optimising a free parameter, denoted by G, that allows the

model to best approximate the pairwise FC matrix [28]. This procedure is illustrated in Fig 1,

and details are provided in methods.

Fig 1. Whole-brain dynamic mean field model. The DMF model has several inputs. A: BOLD signals from fMRI data, B: a parcellation, in our case

comprising 20 atlas regions, and C: the individual connectome obtained from DTI. D: Applying the parcellation to the fMRI and DTI datasets, we

obtained 20 time-series signals and a 20 × 20 matrix representing the connectome. E: BOLD-like signals are simulated using the connectome and

different values of the coupling parameter G. For each G, we compare the simulated and empirical data using the Kolmogorov-Smirnov distance (d)

over the distribution of values of the FC matrices. Finally, the selected optimal G is the value that minimizes this distance.

https://doi.org/10.1371/journal.pcbi.1010431.g001
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To study the effect of ageing on brain dynamics, we used functional data from different par-

ticipants divided into four age groups, similar to previous work [24]: I1 (N1 = 28 participants,

age 10–20 years), I2 (N2 = 46, 20–40 years), I3 (N3 = 29, 40–60 years) and I4 (N4 = 58, 60–80

years). One DMF model was built for each age group, using the average SC within each group

(Fig 2A). Each model was then calibrated separately, resulting in a value of G per group (Fig

2B). For each model, we simulated the brain activity using different random seeds, and the

high-order interdependencies were calculated from these simulated data. In particular, we cal-

culated the O-information [39], which can be considered an extension of the neural complex-

ity previously proposed in [48] under the light of Partial Information Decomposition [49]. In

essence, the O-information captures the balance between redundancies and synergies in a set

of interacting variables [50, 51] (for further details see Methods).

We computed the O-information for all the subsets of brain regions of size 3� n� 20,

where n represents the interaction order. For each order, n-plets with positive and negative

values of the O-information—called for simplicity ‘redundancy’ and ‘synergy,’ respectively—

were calculated. Wilcoxon tests were performed to compare the average values of redundancy

and synergy in the older participants (I4) with the values obtained from the groups of younger

participants following previous work [24]. This is illustrated in Fig 2C. The DMF model repro-

duced the age differences in redundancy and synergy reported in [24]. Moreover, the redun-

dancy differences between I4 and the rest of groups (I1, I2, I3) are statistically significant at all

Fig 2. The DMF model reproduces the statistically significant differences in the high-order interactions of redundancy. A: First, the within age-

group average SC matrix was calculated. B: Next, the optimal G value for each group was obtained. C: We simulated brain activity within each group

using the average SC and the corresponding optimal Gi, computed the O-information as a function of the interaction order, and separated sets of

elements into the dominantly redundant (positive O-information values) and synergistic (negative O-information values). Here, the total redundancy

(R) and synergy (S) was obtained as the average O-information over the redundant and synergistic sets, respectively. The p-values of the Wilcoxon

rank-sum test are also depicted as a function of the interaction order, after comparing the values in I4 versus the ones obtained from the combination of

(I1, I2, and I3). When the value of redundancy (or synergy) survived the false discovery rate (FDR) correction, the diamonds (or circles) were filled.

https://doi.org/10.1371/journal.pcbi.1010431.g002

PLOS COMPUTATIONAL BIOLOGY Redundancy in ageing by connectome alterations in a whole-brain model

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010431 September 2, 2022 5 / 21

https://doi.org/10.1371/journal.pcbi.1010431.g002
https://doi.org/10.1371/journal.pcbi.1010431


interaction orders after FDR multiple comparison correction with Wilcoxon Rank-Sum (RS)

statistic values RS = 29556 (pFDR < 0.001) and RS = 28775 (pFDR < 0.005).

Interestingly, although the DMF model was fitted only using pairwise FC values, the simu-

lated dynamics captures that the redundancy differences between the oldest group and the rest

of the subjects were significant, and this occurred for all interaction orders.

A connectome-based model of brain ageing

Motivated by the fact that the DMF model (connected with the average SC within each age

group) reproduced significant differences in high-order interactions between the groups of

older people and the rest of the participants, we asked whether varying the SC of the young

population was sufficient to reproduce these high-order functional characteristics in the older

participants. We then studied the relationship between the weights of SC from the youngest

group I1 and the corresponding weights from the oldest group I4 through a parabolic fitting

(for further details see Methods). This second-order polynomial fitting revealed a non-linear

dependence of the anatomical weights throughout the brain, in agreement with previous work

[5, 17, 19] (Fig 3A). Next, the fitted polynomial was used to simulate the effects of ageing in

each of the young participants belonging to I1, thus resulting in “synthetic aged” versions of

their connectomes (Fig 3B). Each of these synthetic aged connectomes was used to run a set of

simulations using the DMF with the optimal value G4. Finally, the high-order interactions of

the simulated time-courses were calculated via separating the O-information into redundancy

and synergy terms. Our results, illustrated in Fig 3C, showed that the synthetically simulated

Fig 3. Connectome-based ageing model. A: A polynomial fit of second degree was used to link the weights of the average connectome within I1,

denoted by wð1Þij , and the corresponding ones in I4 (wð4Þij ). B: (left) Twenty-eight empirical young connectomes are transformed by the second-order

polynomial fit, obtaining the synthetic aged connectomes (right). C: We simulated the DMF model of the aged connectomes and the optimal value G4.

The O-information was assessed and separated into the total redundancy (left) and synergy (center). The third panel at the right corresponds to the p-

values of the Wilcoxon rank-sum test after comparing the redundancy and synergy of the synthetic I4 group with the ones in I1. When the value of

redundancy or synergy survived multiple-comparison correction, both the diamonds and circles were filled.

https://doi.org/10.1371/journal.pcbi.1010431.g003
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aged participants also reproduced the functional changes observed empirically, exhibiting sig-

nificant (FDR-corrected) increased redundancy at all orders, with statistic values ranging from

RS = 14462 (pFDR < 0.001) to RS = 14264 (pFDR < 0.001). Moreover, and to ensure that the

good performance was not the result of simply taking G4 into the DMF model of the younger

group, the same analysis was repeated using the linear (rather than quadratic) model of con-

nectome degeneration (S1 Fig). The linear ageing model did not reproduce the redundancy dif-

ferences observed between age groups, as they were not significant in none of the interaction

orders studied. These results confirm that nonlinear heterogeneity in age-related connectome

degeneration is crucial in explaining the observed changes in higher-order functional statistics.

In the next section we delve into the topological structure of these anatomical changes.

Connectome degeneration heterogeneity revealed two major differentiated

communities of age-related links

We have shown that our model of connectome degeneration based on a second degree polyno-

mial reproduces the statistically significant differences in the redundancy between the oldest

group and the rest in all interaction orders studied. Interestingly, non-linearity implies that

not all the links in the connectome age in the same way.

To further investigate the effects of age across brain regions, we evaluated the association

between SC weights and age in all participants in our cohort (N = 161), calculating the Spear-

man’s correlation r between the participant age and each link of the SC matrix. This is illus-

trated in Fig 4A. To study the aging process at the aggregate or module level (beyond the

Fig 4. Heterogeneity of the connectome degeneration. A: The non-parametric Spearman’s rank-correlation r between age and individual weights wij
of the SC matrix was calculated across all different participants (N = 161). The final number of weights that survived to multiple comparisons is

represented in the right panel, with values ranging from -0.25 to -0.50. B: We built a new connectivity matrix using as links the absolute values of r
obtained for each weight (left panel). Next, the Leuven community detection method was applied before correcting for multiple comparison and three

main communities (center) were found. The links that belong to each community and that survived Bonferroni correction are also shown (right). As an

illustration, we show one arbitrary link within each of these communities (colored in green and pink). Here, |r| denotes the absolute values of all

elements of matrix r.

https://doi.org/10.1371/journal.pcbi.1010431.g004
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relationship between weight with age at the single link level), using the absolute correlation

values as links of a new matrix (left panel in Fig 4B), we applied the Louvain’s community

detection method obtaining three distinct link communities (note that community detection

was applied to the matrix of r values before the multiple comparison correction). In addition,

the different links within the three communities that survived the Bonferroni correction have

values of r ranging from -0.25 to -0.5, thus showing a reduction in SC values with age. Regard-

ing the stability of the Louvain’s method to maximize network modularity, we varied the reso-

lution parameter γ (see Methods) and obtained the same three communities for values of γ
ranging between 0.9 and 1.2, which shows the stability of our network partition in the three

communities found.

The first community only had two significant links (right panel in Fig 4B), and for this rea-

son we considered it as a less relevant community. The second community was dominated by

interactions involving brain atlas regions 15 and 18 (S2 Fig), as these two nodes had the highest

values of node strength (here, calculated over the graph of r absolute values). These regions

encompass several subcortical structures, such as the striatum, thalamus, brain stem, amygdala

and the hippocampus (for a complete description of all regions in the atlas, see Refs. [52, 53]).

In contrast, the third community, with higher strength values for regions 6,9 and 20 of the

atlas, was dominated by a common structure present in these three regions, which is the cere-

bellum. Therefore, the two communities exhibited age-induced reduction in within-commu-

nity correlations, but in one, the degeneration was centered around striatum and hippocampal

connectivity, and in the other around the cerebellum.

Discussion

In this article we used a combination of functional and diffusion MRI data together with DMF

whole-brain modeling to investigate the mechanisms underlying age-variations in the struc-

ture of high-order functional interactions. The DMF model successfully reproduced the

increased redundancy-dominated interdependencies of BOLD activity across brain areas in

the older participants, and across all interaction orders, in full agreement with recent observa-

tions Ref. [24]. Furthermore, we provided evidence that these high-order functional changes

are driven by localised non-lineal processes of neurodegeneration in the connectome. Leverag-

ing this finding, we proposed a non-linear connectome-based degeneration model of ageing,

which can be applied to young connectomes to simulate age-induced changes in functional

brain patterns.

Whole-brain models of neuronal activity have significantly increased our understanding of

how functional brain states emerge from their underlying structural substrate, and have pro-

vided new mechanistic insights into how brain function is affected when other factors are

altered such as neuromodulation [28, 54, 55], connectome disruption [38, 56], or external sti-

muli [57, 58]. Adding to these findings, the present results provide a causal link between a

localised connectome-based degeneration model of aging and age-variations of high-order

functional interdependencies. These results establish a first step towards explaining how the

reconfiguration of brain activity along the lifespan intertwines with changes in the underlying

neuroanatomy.

Our results revealed two major communities with differentiated age-induced deteriorated

connectivity, one focused on the striatum and hippocampus, and the other on the cerebellum.

In relation to striatal connectivity, previous studies showed that the fronto-striato-thalamic

circuit was the most dominant for age prediction in healthy participants [59]. Moreover, age-

related deterioration of striatal connectivity has also been associated with reduced perfor-

mance in rest [26] and action selection tasks [60], inhibitory control [61], and executive
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function [62]. In relation to hippocampus, a gold-standard structure affecting memory-

impaired degenerative diseases, is also affected in normal aging [63], with implications in spa-

tial and episodic memories processing [64]. In relation to cerebellar connectivity, both sensori-

motor and cognitive task performance in the older population has been shown to be

associated with cerebellar engagement with the default mode network and striatal pathways

[65]. The connectivity between cerebellum and striatum was also shown to be affected by age

and exhibited relations with motor and cognitive performance [66]. Therefore, our results pro-

vide further support for the important behavioral implications that age-disconnection has on

these circuits.

Limitations and future work

This work makes use of a brain parcellation of only 20 regions from the brain hierarchical atlas

(BHA) [52]. It has to be noted that, compared to other parcellations that focus into the cerebral

cortex, the BHA encompasses the whole brain including brainstem, cerebellum, thalamus, stri-

atum, amygdala, hippocampus, and cerebral cortex. While this parcellation was shown to max-

imize the cross modularity index between the functional and structural data, future work may

also consider other brain parcellations to elucidate the robustness of our results by studying if

age related changes in SC can also explain the differences high-order functional interactions in

whole brain models. Analogously, some variations in the MRI preprocessing pipeline could

also affects our results [67], as previous works have shown that affect pairwise FC studies [68].

In this article, we have fit the DMF model based on pairwise functional connectivity, repro-

ducing the findings observed in Ref. [24] that the brain dynamics of older participants were

significantly more redundant than the rest of the participants at all interaction orders studied.

Furthermore, the use of quadratic connectome degeneration dynamics in addition to the pair-

wise-fitted FC model was sufficient to reproduce these high-order group differences, as pair-

wise-fitting with linear aging dynamics did not reproduce these results. However, other

findings were also reported in Ref. [24], such as the existence of a redundant core specific to

the older subject group that cannot be reproduced by fitting only pairwise functional connec-

tivity (results not shown). Several causes could explain this; for instance, we have an average

connectome per age group, which provides a global parameter G per group used in all our sim-

ulations. It is possible that fitting a different model for each participant could introduce more

heterogeneity, which could perhaps help improve the precise match between the actual data

results and our modeling approach. A radically different alternative could have been to build

models by fitting the structure of higher-order functional interactions beyond pairs, which is

of great interest to explore in future work, likely providing a better fit to the data and perhaps

also allowing the model to makes novel predictions, thus opening up new and exciting

possibilities.

Finally, our analyses assessing high-order functional interactions are based on some specific

metrics such as mean values of O-information at each interaction order. Future studies may

consider different algebraic or topological properties of the full O-information hypergraph

[69–74], which may provide complementary insights. It is also worth noting that the reported

values of the O-information are not indicative of ‘pure’ synergy or redundancy, but corre-

spond to the balance between them. The O-information was chosen because it is a convenient

measure to assess high-order effects up to relatively high orders. However, the O-information

is a whole-minus-sum type of measure, and hence its analysis does not fully discriminate e.g.

net increases in redundancy from decreases in synergy. Future studies could perform more

detailed analyses by employing partial information decomposition (PID) measures [75–82].
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Final remarks

In summary, our results extend previous findings on high-order interdependencies of the age-

ing brain using a novel framework that incorporated whole brain modeling and connectome

datasets along the lifespan. Whole-brain models have enhanced our understanding of the

brain across different conditions, and therefore provide a highly promising avenue of research

in the field of ageing neuroscience. In this context, our work constitutes the first step towards

mechanistic explanations on how functional high-order interdependencies in the human

brain are affected by the age-connnectome degeneration. Future work should validate our

modeling approach in the presence of other forms of brain degeneration, such as the interplay

between aging and pathologies like Alzheimer or Parkinson diseases.

Materials and methods

Ethics statement

The study was approved by the local Medical Ethics Committee of KU Leuven (study number:

S60428) in accordance with the Declaration of Helsinki and its amendments (World-Medical-

Association 1964, 2008). All subjects were informed before study participation and signed the

informed consent. For minors, written informed consent was provided by their legal

representative.

Participants

A cohort of N = 161 healthy volunteers with an age ranging from 10 to 80 years (mean age

44.35 years, SD 22.14 years) were recruited in the vicinity of Leuven and Hasselt (Belgium)

from the general population by advertisements on websites, announcements at meetings and

provision of flyers at visits of organizations, and public gatherings (PI: Stephan Swinnen).

None of the participants had a history of ophthalmological, neurological, psychiatric, or

cardio-vascular diseases potentially influencing imaging measures. The participants were

divided into four distinct age groups: I1 consists of N1 = 28 participants with ages ranging

from 10–20 years, I2 of N2 = 46 from 20–40 years, I3 of N3 = 29 from 40–60 years and I4 of N4

= 58 from 60–80 years.

Image acquisition and preprocessing

Image acquisition was performed on a MRI Siemens 3T MAGNETOM Trio MRI scanner with

a 12-channel matrix head coil. The anatomical images were acquired with a 3D magnetization

prepared rapid acquisition gradient echo (MPRAGE) and the following parameters: repetition

time (TR) = 2,300 ms,echo time (TE) = 2.98 ms, voxel size = 1 × 1 × 1.1 mm3, slice thick-

ness = 1.1 mm, field of view (FOV) = 256 × 240 mm2, 160 contiguous sagittal slices covering

the entire brain and brainstem. The anatomical images were then used for preprocessing of

the functional data, here acquired with a gradient echo-planar imaging sequence over a 10 min

session using the following parameters: 200 whole-brain volumes with TR/TE = 3000/30 ms,

flip angle = 90, inter-slice gap = 0.28 mm, voxel size = 2.5 × 3 × 2.5 mm3, 80 × 80 matrix, slice

thickness = 2.8 mm, 50 oblique axial slices, interleaved in descending order. Functional imag-

ing preprocessing was performed following a similar procedure to that in Ref. [25]. The pre-

processing pipeline included slice-time correction, head motion artifacts removal, intensity

normalization, regressing out of the average cerebrospinal fluid and average white matter sig-

nal, bandpass filtering between 0.01 and 0.08 Hz, spatial normalization to a template of voxel

size of 3 × 3 × 3 mm3, spatial smoothing, and scrubbing. This resulted in a total of 2514 time

series of fMRI BOLD signal for each participant, corresponding to the functional partition
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used in Ref. [52]. Moreover, because for the calculation of high-order interactions at order n
we have to deal with n-plets of region combinations (for details see the following subsections),

we reduced complexity grouping the original 2514 regions into 20 final brain atlas regions,

simply by averaging the time series of all regions within a given atlas region. For this stage, we

made use of the Brain Hierarchical Atlas [52], that has been previously used [83–86]. The par-

tition of 20 regions is the one that maximized the cross-modularity, a metric that accounts for

the triple optimization of the functional modularity, the structural modularity and the similar-

ity between structural and functional regions (for details see Ref. [52]). To obtain the structural

connectivity matrices, we acquired diffusion weighted single shot spin-echo echo-planar imag-

ing (DTI SE-EPI) images with the following parameters: TR = 8,000 ms, TE = 91 ms, voxel

size = 2.2 × 2.2 × 2.2 mm3, slice thickness = 2.2 mm, FOV = 212 × 212 mm2, for each image,

60 contiguous sagittal slices were acquired covering the entire brain and brainstem. A total

number of 64 volumes were acquired corresponding to different gradient directions with

b = 1000 s/mm2. One extra 3D diffusion image was acquired for b = 0 s/mm2, needed for the

diffusion imaging preprocessing. Although full details are given in Ref. [59], the pipeline con-

sisted in eddy current correction, motion correction, tensor estimation per voxel, fiber assign-

ment, and functional partition projection to the individual diffusion space. This resulted in SC

matrices of dimension 2514 × 2514, one per participant, and each matrix entry corresponding

with the number of white matter streamlines connecting that given region pair. Finally, we

reduced complexity of these matrices by grouping the 2514 × 2514 matrix into 20 × 20 using

the BHA, and averaging the BOLD signals of all regions within a given atlas region. The BOLD

signals and connectomes used in this study are available at https://github.com/brincolab/

High-Order-interactions/tree/master/dataset.

Whole-brain dynamic mean field model

To simulate neuronal activity of each region, we used Dynamic Mean Field modeling (DMF)

[28, 31]. Each brain region is modelled by interacting neural inhibitory (I) and excitatory (E)

populations. DMF assumes that the the inhibitory currents I(I) are mediated by GABA-A

receptors, and the excitatory ones I(E) by NMDA receptors. The connectivity between two dif-

ferent nodes n and p is given by the Cnp. In this work, we took Cnp equal to the element of the

structural matrix SCnp. Summarizing, neuronal activity followed:

IðEÞn ¼WEI0 þ wþJNMDASðEÞn þ GJNMDA

XN

p¼1

CnpS
ðEÞ
p � JFICn SðIÞn ;

IðIÞn ¼WII0 þ JNMDASðEÞn � SðIÞn ;

rðEÞn ¼ F IðEÞn

� �
¼

gEðIðEÞn � IðEÞthr Þ

1 � expf� dE gEðI
ðEÞ
n � IðEÞthr Þg

;

rðIÞn ¼ F IðIÞn
� �

¼
gIðIðIÞn � IðIÞthrÞ

1 � expf� dI gIðI
ðIÞ
n � IðIÞthrÞg

;

dSðEÞn ðtÞ
dt

¼ �
SðEÞn

tNMDA
þ 1 � SðEÞn

� �
grðEÞn þ svnðtÞ

dSðIÞn ðtÞ
dt

¼ �
SðIÞn
tGABA

þ rðIÞn þ svnðtÞ

ð1Þ

where the synaptic gating variable of excitatory pools is denoted by SðEÞn and the one for
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inhibitory populations as SðIÞn . The excitatory and inhibitory firing rates are denoted by rðEÞn and

rðIÞn respectively. The feedback inhibitory control weight, JFICn was adjusted for each node n in a

way such that the firing rate of the excitatory pools rðEÞn remains fixed at about 3 Hz, using the

linear fitting strategy proposed by Herzog and colleagues [38]. The precise values of the

parameters used here are given in Table 1.

The complete DMF implementation was performed in Matlab, and is freely available at

https://gitlab.com/concog/fastdmf.

Haemodynamic model. The excitatory firing rates rðEÞn were transformed into BOLD-like

signals, following a well-known hemodynamic model [87]. It is assumed that an increment in

the firing rate rðEÞn triggers a vasodilatory response sn, that produces a blood inflow fn, and

changes the blood volume vn and the deoxyhemoglobin content qn. In particular, we modeled

these interactions as:

dsn
dt
¼ 0:5rðEÞn þ 3 � ksn � gðfn � 1Þ

dfn
dt
¼ sn

t
dvn
dt
¼ fn � va� 1

n

t
dqn

dt
¼

fnð1 � rÞ
f � 1
n

r
�

qnva
� 1

n

vn

ð2Þ

where ρ is the resting oxygen extraction fraction, τ is a time constant and α represents the

resistance of the veins. The BOLD-like signal of node n, denoted Bn(t), is a non-linear function

of qn(t) (deoxyhemoglobin content) and vn(t) (blood volume), that can be written as:

Bn ¼ V0½k1ð1 � qnÞ þ k2ð1 � qn=vnÞ þ k3ð1 � vnÞ� ð3Þ

Table 1. Dynamic Mean Field (DMF) model parameters.

Symbol Parameter name Value

I0 External current 0.382 nA

WE Excitatory scaling factor for I0 1

WI Inhibitory scaling factor for I0 0.7

w+ Local excitatory recurrence 1.4

JNMDA Excitatory synaptic coupling 0.15 nA

IðEÞthr Threshold for FðIðEÞn Þ 0.403 nA

IðIÞthr Threshold for FðIðIÞn Þ 0.288 nA

gE Gain factor of FðIðEÞn Þ 310 nC−1

gI Gain factor of FðIðIÞn Þ 615 nC−1

dE Shape of FðIðEÞn Þ around IðEÞthr
0.16 s

dI Shape of FðIðIÞn Þ around IðIÞthr 0.087 s

γ Excitatory kinetic parameter 0.641

σ Amplitude of uncorrelated Gaussian noise vn 0.01 nA

τNMDA Time constant of NMDA 100 ms

τGABA Time constant of GABA 10 ms

https://doi.org/10.1371/journal.pcbi.1010431.t001

PLOS COMPUTATIONAL BIOLOGY Redundancy in ageing by connectome alterations in a whole-brain model

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010431 September 2, 2022 12 / 21

https://gitlab.com/concog/fastdmf
https://doi.org/10.1371/journal.pcbi.1010431.t001
https://doi.org/10.1371/journal.pcbi.1010431


where V0 represent the fraction of venous blood (deoxygenated) in the resting-state, and k1 =

2.77, k2 = 0.2, k3 = 0.5 are kinetic constants, chosen from [87].

The numerical integration of the system in Eq (2) was performed using Euler method,

using an integration step of 1 ms. The signals were finally band-pass filtered between 0.01 and

0.1 Hz with a 3rd-order Bessel filter. To match the duration of the BOLD signals obtained from

the participants of this study, we simulate 160 time-points of BOLD signals corresponding to 8

minutes for each brain region. These BOLD-like signals were the ones used for the calculation

of the FC matrices and the O-information, the latter used for the calculation of high-order syn-

ergistic and redundant interactions.

Model fitting across age groups

We ran the DMF model using the average connectome SCi per age group, and chose the corre-

sponding global coupling parameter Gi by minimizing the Kolmogorov–Smirnov distance

between the two distributions of FC, one obtained from simulations and the other correspond-

ing to the empirical FC (the one obtained from the real functional data). In both cases, we built

FC matrices by calculating the mutual information between pairs of time series using Gaussian

Copulas. For choosing the minimizing G, we varied it from 1 to 3 with steps of size 0.1. For

each G value, we run 112 simulations using different random seeds. We obtained a convex

curve where the x-axis represents the G values and the y-axis is the Kolmogorov–Smirnov dis-

tance. The value of G corresponding to the minimum Kolmogorov-Smirnov distance between

the real and simulated data represents the optimal model.

Connectome-based ageing model

We analysed the dependencies between the average SC from group I4 vs the group I1. The best

fitting was achieved by a second-degree polynomial f, which was used as the connectome-

based model for aging. For each participant of the youngest group, we modeled a synthetic

aged version of his connectome. To obtain this synthetic connectome, we applied f for each ele-

ment of the matrix SC of each participant within the group I1. Finally, we used these synthetic

anatomical connectivity matrices and the parameter G4 = 2.8 as inputs for the DMF. For each

synthetic SC, we run a number of four different simulations and obtained for each one a total

number of 112 whole-brain simulations, corresponding to different initial conditions in the

simulations.

Just for the results presented in S1 Fig, the aging of the connectome was done following an

aging linear process. Similarly, and just for the results in S3 Fig, the connectomes of groups I2

and I3 were also quadratically aged.

Communities of age-related links

We first assessed the association for each individual connection and age. To do so, we calcu-

lated the non-parametric Spearman’s rank-correlation between each entry of the SC matrix

and age, using the different participants as observations (N = 161). To find different communi-

ties of age-related brain links, we used the Louvain community detection algorithm available

in the Brain Connectivity Toolbox [88] applied to the matrix of absolute values of the Spear-

man’s r values. The optimal partition of the network corresponds to a subdivision of groups of

nodes (or communities) that do not overlap and that maximize the modularity of the network,

a metric that increases or decreases respectively when intra-community connectivity is high or

intercommunity connectivity is low. To check the stability of the communities found by the

Louvain method, we vary the resolution parameter γ (a hyperparameter that controls the

trade-off between the actual number of edges in a community and the expected number of
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edges in the same community), and compute the partition integrity coefficient by evaluating

the Spearman rank correlation between the two solutions for γ = 1 and the corresponding one

for each of the different simulated values of γ. The network nodes were the 20 brain regions of

the Brain Hierarchical Atlas [52], and the links were the absolute value of the Spearman’s cor-

relation coefficients. After applying the community detection algorithm, we pruned the non-

significant links using a Bonferroni correction.

High-order functional interactions

Following Rosas et al. [89], we summarize here the main information-theoretic measures

employed in this article. To begin, we defined the total correlation [90] TC and the dual total
correlation [91] DTC as:

TCðXnÞ �
Xn

i¼1

HðXiÞ � HðXnÞ ; ð4Þ

DTCðXnÞ � HðXnÞ �
Xn

i¼1

HðXi j X
n
� iÞ ; ð5Þ

where H(�) represents the Shannon entropy, and Xn
� i represents the vector of n − 1 variables

composed by all vector components except Xi i.e., (X1, . . ., Xi−1, Xi+1, . . ., Xn). Both TC and

DTC are non-negative generalizations of mutual information, meaning they are zero if and

only if all variables X1, . . ., Xn are statistically independent of one another.

For a set of n random variables Xn = (X1, . . ., Xn), the O-information [89] (denoted byO)

was calculated as follows:

OðXnÞ ¼ TCðXnÞ � DTCðXnÞ ; ð6Þ

The O-information is a real-valued measure that captures the balance between redundan-

cies and synergies in arbitrary sets of variables, thus extending the properties of the interaction

information of three variables [92] to larger sets (see related discussion in Ref. [49]). In partic-

ular, the sign of the O-information serves to discriminate between redundant and synergistic

groups of random variables: O> 0 corresponds to redundancy-dominated interdependencies,

while O< 0 characterizes synergy-dominated variables.

From the time series of n different brain regions, we built vectors Xn and computed all

these quantities using Gaussian Copulas [93]. This approach exploits the fact that the Mutual

Information does not depend on the marginal distributions, and therefore, the different quan-

tities can be conveniently transformed to Gaussian random variables from which efficient

parametric estimates of high-order interactions exist. All these quantities are always computed

using natural logarithms.

Interaction order, redundancy and synergy

We calculated the O-information for all the different n-plets of brain regions, with 3� n� 20.

Per participant, we computed the average O-information in which the region m participates

when interacting with other n regions as

O
m
n ðkÞ ¼

1

Zn

X

i1

� � �
X

in� 1

OðkÞðXm;Xi1
; . . . ;Xin� 1

Þ : ð7Þ

PLOS COMPUTATIONAL BIOLOGY Redundancy in ageing by connectome alterations in a whole-brain model

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010431 September 2, 2022 14 / 21

https://doi.org/10.1371/journal.pcbi.1010431


Above, k is the participant’s index, m the interacting region index, n the interaction order,

and

Zn �
M � 1

n � 1

� �

is the total number of subsets of size n − 1 in a brain partition of M regions (in this work we

used M = 20). The summations in Eq (7) included all the n-plets that included Xm. Finally, the

grand average O-information of order n is calculated averaging over all M regions.

OnðkÞ ¼
1

M

XM

m¼1

O
m
n ðkÞ ; ð8Þ

We then split the O-information on positive and negative values using

O
þ
¼ max fO; 0g ; O

�
¼ � min fO; 0g ; ð9Þ

so thatO = O+ −O−. Using these quantities, we calculated the following metrics for redun-

dancy and synergy, for each subject k, interacting region m, and interaction order n:

Rm
n ðkÞ ¼

1

N þ

n;m

X

i1

� � �
X

in� 1

O
þ

ðkÞðXm;Xi1
; . . . ;Xin� 1

Þ ; ð10Þ

Smn ðkÞ ¼
1

N �

n;m

X

i1

� � �
X

in� 1

O
�

ðkÞðXm;Xi1
; . . . ;Xin� 1

Þ ; ð11Þ

where N þ

n;m and N �

n;m represent the number of n-plets with positive and negative O-informa-

tion values, respectively.

Finally, the average of these quantities over all subjects and regions can be also calculated as

RnðkÞ ¼
1

M

XM

m¼1

Rm
n ðkÞ ; ð12Þ

SnðkÞ ¼
1

M

XM

m¼1

Smn ðkÞ : ð13Þ

The code to compute all these metrics is available at https://github.com/brincolab/High-

Order-interactions.

Statistical analyses

We used a non-parametric statistical Wilcoxon rank-sum (RS) test to compare the redundancy

and synergy between simulated data of the group I4 versus simulated data of the youngest

groups I1, I2, and I3 as shown in Fig 2, and on the other hand, the youngest group I1 versus

the synthetic I4 group, as shown in Fig 3. We corrected the significance values for hypothesis

testing for multiple comparisons by controlling the false discovery rate (FDR) following a stan-

dard Benjamini-Hochberg procedure [94].

Supporting information

S1 Fig. The linear aging model does not provide significant differences in redundancy

between age groups. Similar to Fig 3C in the main text, but for a synthetic I4 age group using

a linear model (Ĩ4L) for ageing instead of a quadratic one. Redundancy (left) and synergy
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(middle) are plotted as a function of interaction order and then, for each interaction order,

Wilcoxon rank-sum test p-values are obtained after comparing their values between the

groups Ĩ4L and I1. If the p-values survived the FDR multiple comparison correction, both the

diamonds and the circles were filled in. In this case, none of the values passed the test.

(TIF)

S2 Fig. Node strength values across different nodes communities (C) affected by age.

Nodes here are atlas regions. A: Rate degeneration matrix calculated using the absolute values

of r, and where all links in the matrix survived to Bonferroni correction (a similar matrix was

shown in the right panel of Fig 4B of the main manuscript). B: Strength values for all atlas

regions (nodes) calculated on the rate degeneration matrix show in panel A. Node strength

was calculated by summing over all positive values in each row or column in the matrix. A,B:

Colors blue (C1), orange (C2) and black (C3) indicate different communities.

(TIF)

S3 Fig. Comparisons of redundancy and synergy when aging groups I2 and I3. Similar to

Fig 3C, here we compare redundancy and synergy by synthetic aging of the I2 and I3 groups

using the quadratic aging model, giving respectively the aged groups Ĩ42 (panel A) and Ĩ43

(panel B). When comparing redundancy and synergy of these two groups with group I1, both

situations provided significant redundancy differences after FDR multiple comparisons (filled

diamonds) across all interaction orders.

(TIF)
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Writing – review & editing: Marilyn Gatica, Fernando E. Rosas, Pedro A. M. Mediano, Ste-

phan P. Swinnen, Rodrigo Cofré, Jesus M. Cortes.
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