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Abstract

Pancreatic ductal adenocarcinoma (PDAC) is an incurable cancer resistant to traditional treatments, although a
limited number of early-stage patients can undergo radical resection. Immunotherapies for the treatment of
haematological malignancies as well as solid tumours have been substantially improved over the past decades, and
impressive results have been obtained in recent preclinical and clinical trials. However, PDAC is likely the exception
because of its unique tumour microenvironment (TME). In this review, we summarize the characteristics of the
PDAC TME and focus on the network of various tumour-infiltrating immune cells, outlining the current advances in
PDAC immunotherapy and addressing the effect of the PDAC TME on immunotherapy. This review further explores
the combinations of different therapies used to enhance antitumour efficacy or reverse immunodeficiencies and
describes optimizable immunotherapeutic strategies for PDAC. The concordant combination of various treatments,
such as targeting cancer cells and the stroma, reversing suppressive immune reactions and enhancing antitumour

microenvironment for enhanced therapy.

reactivity, may be the most promising approach for the treatment of PDAC. Traditional treatments, especially
chemotherapy, may also be optimized for individual patients to remodel the immunosuppressive
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Introduction

PDAC remains one of the deadliest malignancies with a
poor outcome, and very few regimens have been suc-
cessfully used to treat this lethal cancer. The 5-year
overall survival (OS) rate of PDAC patients is abysmal at
less than 5% [1]. PDAC was the fourth leading cause of
cancer-related death in 2012 [2] and is projected to be-
come the third most common cancer in the United
States by 2030. Although PDAC-associated morbidity
does not rank highly in cancer epidemiology [3], the
mortality rate is nearly the highest among of all cancers.
Surgical resection is the sole curable approach for

* Correspondence: fanjiagiao@dmu.edu.cn; shangdongdalian@163.com;
jus35@tamu.edu

"Jia-giao Fan and Meng-Fei Wang contributed equally to this work.
'Third General Surgery Department, The First Affiliated Hospital of Dalian
Medical University, Dalian, China

“Department of Microbial Pathogenesis and Immunology, Texas A&M
University Health Science Center, College Station, TX, USA

B BMC

localized PDAC, but no more than 20% of tumours are
resectable at the time of diagnosis due to the lack of
early symptoms and the aggressive biological nature of
this carcinoma [4]. Most patients relapse after surgery
even after routine adjuvant therapies have been used sys-
tematically [5]. Neoadjuvant treatment increases the re-
sectable rate and benefits OS, but the results are unclear
[6]. Even for patients with localized and resectable tu-
mours, the 5-year OS rate is only approximately 27% [7].
Chemotherapy based on gemcitabine (Gem) is currently
the standard treatment for metastatic PDAC, and the
combination of Gem with oxaliplatin, irinotecan, leucov-
orin and 5-fluorouracil (FOLFIRINOX) can reduce the
mortality rate but has been shown to increase toxicity
and to have a poor survival benefit and high cost burden
[8, 9]. Therefore, the exploration of new therapies for
PDAC is urgently needed. Immunotherapy, including
strategies such as monoclonal antibody (mAb) therapy,
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immune checkpoint inhibitor (ICI) therapy, adoptive cell
therapy/adoptive cell transfer (ACT), vaccines and other
agents that enhance the antitumour response and/or re-
verse the immunosuppressive functions of regulatory im-
mune cells in the TME, has made great progress in cancer
treatment in recent decades. However, no immunothera-
peutic approaches have produced promising results thus far
despite similar strategies making notable progress in other
cancers. For reasons unknown, the TME plays a critical role
in the development, progression, and metastasis of PDAC
as well as to its sensitivity to immunotherapy.

TME of PDAC

The TME of PDAC consists of the cancer cell nest and
stroma. The stroma contains various components, pri-
marily the stromal matrix and various cells. Here, we
concisely summarize the existing knowledge about the
TME of PDAC (Fig. 1) and emphasize the immune cell
network established around cancer cells (Fig. 2).

PDAC epithelial cells

Tumour-associated antigens (TAAs) have been identified
in PDAC but are limited, and the absence of TAAs hinders
naturally occurring antitumour reactivity. Deficiencies in
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antigen processing and epitope presentation are another
critical mechanism of immune evasion. PDAC cells gener-
ally downregulate the expression of major histocompatibil-
ity (MHC) class I molecules [10-12], and MHC class I/1I
molecules may also develop genetic mutations that result in
impaired antigen presentation. Aberrant expression of the
receptor Fas and Fas ligand extensively occurs in most
PDAC patients and results in immune tolerance. Normal
pancreatic ductal cells express the Fas receptor but not the
Fas ligand, while PDAC cells express a non-functional form
of the Fas receptor, which results in resistance to Fas-
mediated apoptosis; furthermore, PDAC cells express the
Fas ligand to induce apoptosis in immune effector cells
[13]. PDAC cells recruit immunosuppressive tumour-
associated macrophages (TAMs) and myeloid-derived sup-
pressor cells (MDSCs) from the peripheral circulation via
the CCL2/CCR2 axis [14]. PDAC cells express high levels
of CCL5 to recruit regulatory T cells (Treg cells) through
CCR5 [15], and this process may partially explain the re-
cruitment of Treg cells to PDAC lesions [16]. Approxi-
mately 12.5% of PDAC patients are reported to positively
express programmed cell death protein ligand-1 (PD-L1)
[17], which induces T cell anergy and apoptosis through
programmed cell death protein-1 (PD-1) expressed on T
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Fig. 1 The graphic abstract of PDAC TME.. From the right upper side to the left low side, we summarize the progression of PDAC from PanIN
and the distribution of different cells in TME. The yellow area represent the area mainly comprising different advanced stage of epithelial tissue
from normal acinar to PanIN and invasive cancer nest, as well as monocyte-like cells; the reddish area present the area comprising mainly matrix
including fibrotic matrix, pancreatic stellate cells, cancer associated fibroblasts, TLS, as well as accumulated effector lymphocytes. The cancer nests
look like islands in the stroma desert; Treg cells surround the PanIN and establish a TSA specific suppressive condition to support PDAC
progression; MDSCs appear at very early stage of the PDAC progression and disperse the whole lesion of tumor; TAMs locate majorly at the
invasive front of the tumor and promote angiogenesis, lymphogenesis and metastasis; DCs are scarce and restricted in PanIN and TLS; CAFs and
PSCs are the major source of tumor stromal matrix, they can also adhere infiltrating T lymphocytes, keep them outside of cancer nest and result
effector T cell anergy; TLS localize in the tumor stroma and consist of proliferating effector cells as well as Treg cells, tumor specific anti-tumor
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Fig. 2 The molecular interaction of different cells in TME. The cancer cells of PDAC exploit several mechanisms including cell surface molecule
and soluble factors to establish immunosuppressive TME through accumulating and activating immune suppressive cells, and inhibiting
antitumor effector cells directly and indirectly; suppressive cells can inhibit the function of effector cells through nutrition depletion, phenotype
alternation, apoptosis and anergy; Treg cells may play a central role in the establishment of immunosuppressive TME of PDAC since they are in
favor of establishing tumor specific immunotolerance and have extensive interaction with other cells

cells, resulting in immune system evasion [18]. PDAC
cells can also programme the TME by directly secret-
ing soluble cytokines, such as transforming growth
factor (TGF-B) and interleukin (IL)-10, to inhibit den-
dritic cell (DC) differentiation and maturation in
favour of Treg cell accumulation [19, 20]. PDAC cells
produce indoleamine 2,3-dioxygenase (IDO) to cata-
lyse the degradation of tryptophan, which is necessary
for T cell survival and activation, thereby inducing T
cell apoptosis and anergy [21, 22].

PDAC stroma

A high-density fibrotic stromal reaction, termed “des-
moplasia”, may be one of the most prominent charac-
teristics of the PDAC stroma, as almost 90% of the
tumour mass is composed of the stroma, which facili-
tates immunosuppression and fibrosis progression [23,
24]. The carcinogenic nests appear as islands sur-
rounded by the stromal desert, as depicted in Fig. 1.
The PDAC stroma has been demonstrated to not only
promote tumour progression but to also dampen the
delivery of antitumour regimens [24—-26], even in-
creasing the number of immunosuppressive cells and
inactivating cytotoxic CD8" T cells [27, 28]. Contro-
versial results have been reported recently, including
those of Wang and Knudsen et al, who divided
PDAC into three classes according to the stromal
density and demonstrated that stromal density and

volume had a positive association with patient OS
[29, 30]. Ozdemir et al. interpreted the mechanisms
in a preclinical study in which cancer-associated fi-
broblasts (CAFs) were depleted, which had extensive
effects on the TME, such as reducing collagen and
matrix reorganization, decreasing angiogenesis, enhan-
cing hypoxia, increasing cancer stem cell numbers,
and increasing Treg cell frequency, all of which con-
tributed to a poor outcome [31]. The numbers of
pancreatic stellate cells (PSCs), special CAFs unique
to PDAC, increase abundantly during the progression of
the disease [32]. Activated PSCs can restrain tumour-
infiltrating CD8" T cells in the stroma but not cancer
nests through the production of CXCL12 since activated
CD8" T cells express high levels of CXCR4 [33]. The che-
mokine ligand/receptor has been demonstrated to be a
strong chemoattractant for lymphocytes [34]. PSCs also
induce T cell apoptosis and anergy by expressing galectin-
1 [35]. PSCs may crosstalk with TAMs in PanIN, and
these cell populations activate each other by secreting
various soluble factors. This process may be the major
mechanism of desmoplasia; interestingly, the deposition of
collagen preferentially excludes TAMs [32].

Infiltrating immune cells

The results of research on PDAC-infiltrating immune
cells are often vague and controversial. Here, we
summarize them concisely with a distinctive view.
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Antitumour effector cells and immunodeficiency

Immune cells comprise nearly 50% of the PDAC cellular
component [36], but only a few are antitumour effector
cells. The low number of antitumour effector cells could
possibly be attributed to the cells being disabled by sev-
eral mechanisms (Fig. 2). Some studies have evaluated
the function of tumour-associated neutrophils (TANs)
in PDAC progression, which has been reviewed exten-
sively [37]. In a recent clinical study, neutrophils were
found to have an unexpected positive correlation with
CD8" T cells [38]; the correlation was surprising since
these cells might play a role in excluding infiltrating T
cells from PDAC tissue in mouse models [39, 40]. These
controversial results may be interpreted as a function of
the different neutrophil frequencies in humans and mice.
The characteristics of natural killer (NK) cells within
PDAC tumours have been investigated, but few reports
describe the role of NK cells in normal and PDAC tis-
sues [36, 41]. A study demonstrated that CD3" T cells
were the major immune cell type in PDAC, and the ma-
jority of resectable PDAC samples displayed intermedi-
ate to high levels of CD3" T cell infiltration, which
predominantly occurred in the stroma instead of the
cancer cell nest centre [42]. CD3" conventional T
(Tconv) cells localize in tertiary lymphoid structures
(TLSs) (Fig. 1) and co-localize with DCs, Treg cells, B
cells, and high endothelial venules (HEVs). Localized
proliferation, not merely migration, was shown to be a
major source of activated T cells. Clonal T cell expan-
sion was observed within the TLSs throughout the
tumour lesions, indicating a tumour antigen-specific re-
action within the TLSs [42]. In a subsequent study,
heavy lymphocyte infiltration was observed in TLSs, but
in situ proliferation was not observed [38]. Both of the
above studies demonstrated a positive relationship be-
tween TLSs and OS in PDAC patients, suggesting that
the potential antitumour response in PDAC is sup-
pressed. Most of the tumour-infiltrating lymphocytes
(TILs) displayed an antigen-experienced and memory-
related phenotype [38, 42—44], which further supported
this conclusion. The frequencies of CD4* and CD8"*
lymphocytes were variable among specimens; CD4" T
cells, especially CD4" Tconv cells, were predominant,
but CD8" T cells were not [38, 42], suggesting a defi-
ciency in the cytotoxic activity of CD8" T cells. The ac-
cumulation of CD8" T cells in PDAC is extremely
variable; the frequency of CD8" T cells among CD45"
leucocytes may be as high as 15-30% or less than 7%.
These effector cells are functionally deficient, as they ex-
press various co-inhibitory molecules [38, 42].

CD4" and CD8" T cells are subtly synchronized with
each other within PDAC tumours; only patients with
both CD4- and CD8-positive T cells have a significantly
increased OS rate, and the CD4/CD8 double-positive T
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cell status is an independent prognostic factor [45, 46].
Among CD4" Tconv cells, only the Thl subset can fa-
cilitate the antitumour response, and the function of
Th17 cells is controversial. Th2 cells are generally con-
sidered factors promoting tumour progression. Notably,
Th2 cells are the major population of CD4" T cells
within PDAC tumours, and the Th2 CD4" T cell num-
ber is higher than not only the Th1 CD4" T cell number
but also the FoxP3" Treg cell number [47]. CD4" T cells
are inclined to polarize towards the Th2 phenotype, and
this skewing is specific for carcinoembryonic Ag (CEA)
[47]. These findings indicate that PDAC can induce
TAA-specific immune impairment through CD4" T
cells. DCs in PDAC are generally functionally impaired.
In a recent preclinical study, DCs were observed to
abundantly infiltrate the tumour lesion, and DC accu-
mulation increased as the disease progressed from
PanIN to PDAC. However, the expression of the matur-
ation marker MHC class II and the costimulatory mole-
cules CD86 and CD40 was downregulated by Treg cells
in a cell contact-dependent manner (Fig. 3) [48]. All of
these molecules were indispensable for CD8" T cell acti-
vation, and Treg cells could even suppress the in vivo
expansion of tumour-infiltrating DCs [48]. PDAC epi-
thelial cells can also exploit variable strategies to de-
crease the function of DCs, such as downregulating the
expression of HLA-DR and CD40 to produce immature
DCs and secreting DC-suppressing cytokines and che-
mokines [12, 49, 50]. Immature DCs can directly sup-
press the effector T cell response by expressing IDO
[48]. DCs may execute antigen-specific suppressive func-
tions by presenting tissue-specific antigens (TSAs) and
even neoantigens to Treg cells to induce tumour-specific
immunosuppression. Both DCs and Treg cells accumu-
late in TLSs with a high density of endothelial venules
[38, 42], which are generally found in lymph nodes and
responsible for antigen presentation. These facts high-
light the possibility that tumour-specific immune toler-
ance exists in these structures through DC-Treg
interactions.

Protumour regulatory cells and immunosuppression

Nearly all TAMs exhibit an M2 phenotype, identified by
the surface markers CD163 and CD206 and cytokines,
such as IL-10 and TGEF-p, but they also display M1 char-
acteristics [51]. TAM infiltration begins at a very early
disease stage and persists in PDAC [36]. TAMs are gen-
erally located at the invasive front of the tumour (Fig. 1)
[36, 52]. This process occurs in both murine and human
PDAC and is accompanied by perineural invasion [53],
lymphatic angiogenesis, lymph node metastasis [52, 54],
cancer cell epithelial-mesenchymal transition (EMT) and
extravasation [51]. Several factors can recruit monocytes
to PDAC lesions and differentiate these cells into TAMs,
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Fig. 3 The mechanisms of Treg inhibit Tconv through APC. Treg and Tconv contact directly with the same APC and establish tumor specific
suppressive TME. a: Treg capture and degradate CD86 on DC with CTLA4, the process occurs in LN/TLS and PanIN, activating Treg migrate to
established tumor and transform to resting Treg and execute suppression; b: Treg (also Tconv) contact with APC through various pairs of ligand-
receptor including of TCR/MHC, CD28/CD86, CD28/CD80, CTLA4/CD86, CTLA4/CD80, mature DC dominantly express high level of CD86 and
combine with CD28 and CTLA4, MDSC preferentially express CD80 and combine with CTLA4, immature/inducible DC express both CD86 and
CD80. Notably, MDSC express low level of MHC and enhance suppressive function of Treg with weak TCR signal, whereas DC express high level
of MHC and promote Treg activation and proliferation; c: APC could transform each other with the effect of Treg and Tconv concordantly; d: APC
inhibit Tconv through several soluble factors and induce Tconv anergy through weak/downregulating TCR signal; e: APC inhibit CD4+ Tconv
directly and CD8+ Tconv indirectly mainly by downregulating IL-2 and IFN-y et al,, Treg cells could inhibit Tconv by depriving IL-2. Biophysical
stability of CTLA4/CD28-CD80/CD86 polymer: CTLA4-CD80 > CTLA4-CD86 > CD28-CD86 > CD28- CD80

including the hypoxic TME [55], vascular endothelial
growth factor (VEGF)/epidermal growth factor receptor
(EGFR) 2 axis [56], CCL2/CCR2 axis [14] and CSF1/
CSFIR axis [57]. In an extensive study, Kaneda et al.
[58] demonstrated that TAMs exploited numerous
mechanisms to drive PDAC progression, including se-
creting immunosuppressive factors such as arginase-1
(Argl) and TGF-B to inhibit antitumour CD8" T cells
and promoting PDAC desmoplasia and cancer cell me-
tastasis via the chemotactic factor PDGF-BB. Therefore,
the major role of TAMs in PDAC seems to be tightly
regulating invasion and metastasis rather than inhibiting
the immune response.

MDSCs are Grl and CD11b double-positive in mice
and CD14-negative and CD11b-positive in humans. A
subset of MDSCs express the granulocyte marker
Ly6G at a high level and the monocyte marker Ly6C
at an intermediate level; the other MDSC pool ex-
presses high levels of Ly6C not Ly6G [59]. Therefore,
MDSCs are categorized into two major subsets: gran-
ulocytic MDSCs (Gr-MDSCs) and monocytic MDSCs
(Mo-MDSCs). MDSCs, especially Gr-MDSCs, are rare
in the normal pancreas, and their accumulation in-
creases progressively as the disease becomes invasive.
MDSCs are widely dispersed throughout the tumour

in invasive PDAC [36, 59]. PDAC cells highly express
granulocyte macrophage colony-stimulating factor
(GM-CSF), which was demonstrated to be a necessary
and sufficient factor for functional and suppressive
MDSC generation [39]. The function of MDSCs in
PDAC was reviewed extensively in a previous publica-
tion [60]. Most investigators focus on the function of
MDSCs in immunosuppression through the secretion
of modulatory factors and direct contact with effector
cells via checkpoint molecules. One important prop-
erty of MDSCs worthy of emphasis is that although
they are antigen presenting, they express low levels of
the MHC II complex [59] and high levels of CD80 to
induce antigen-specific immunosuppression via Treg
cells (Fig. 3) [61]. Treg cells have T cell receptors
(TCRs) with relatively high affinities for TSAs and
constitutively express cytotoxic T lymphocyte-
associated antigen 4 (CTLA-4), which preferentially
binds with CD80 and outcompetes CD86 binding
[62]. Gabrilovich et al. suggested that MDSCs might
be involved in Treg cell differentiation [63]. These re-
sults indicate that TSA-specific and/or even
neoantigen-specific immunosuppressive mechanisms
mediated through the MDSC-Treg axis and antibodies
against CD80 or CTLA-4 may have similar effects.
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Treg cells have extensive interactions with various
cells (Fig. 2), and the tight relationship between Treg
and antigen-presenting-like cells has been repeatedly
highlighted in numerous studies. However, overall con-
clusions are still obscure; Treg cells and antigen-
presenting cells (APCs) cannot be defined restrictedly,
and the molecular biophysical interactions between these
two subsets of cells (particularly MHC/TCR, CTLA-4-
CD28 and CD80-CD86 interactions) are controversial
despite numerous researchers focusing on this field. We
present an overview of the mechanism by which Treg
cells inhibit Tconv cells via concordant contact with
APCs (Fig. 3). Treg cells exert suppressive effects by rec-
ognizing self-TSAs presented by APCs but can inhibit
effector cells in an antigen-independent fashion [64, 65].
Moreover, because the TCRs of Treg cells have higher
affinities for epitopes than the corresponding TCRs of
Tconv cells, Treg cells can recognize antigens at concen-
trations lower than those required for Tconv cell activa-
tion [65], suggesting that Treg cells may be activated by
immature APCs with weak antigen presentation. Treg
cells accumulate within tumours and tumour-draining
lymph nodes at a very early stage in PanIN, and their
numbers increase upon progression to PDAC [20, 48].
Upon the establishment of invasive tumours, Treg cells
are generally localized within the TLSs with follicular
DCs and HEVs (Fig. 1) [38, 42]. The prevalence of Treg
cells is tightly correlated with the prognosis of PDAC
[38, 48, 66—68] and generally has a negative relationship
with patient OS. There are two major types of Treg cells:
naturally occurring Treg cells (nTreg cells) derived from
the thymus and resident in tissues and inducible Treg
cells (iTreg cells) derived from naive CD4" T cells in the
peripheral blood. PDAC cells produce CCL5 and VEGF
to attract Treg cells through CCR5 [15, 16] and
neuropilin-1 [48, 69]. Stromal cells recruit Treg cells by
CXCL10 on PSCs [70] and CCL5 on MDSCs [71]
through CXCR3 and CCR5, respectively (Fig. 2). These
interactions may be the mechanism of iTreg cell accu-
mulation since nTreg cells are generally resident cells.
However, researchers have demonstrated that Treg cells
accumulate in PDAC through proliferation and conver-
sion in situ rather than via the infiltration of peripheral
nTreg cells and naive T cells [67]. Peripheral blood Treg
cell depletion with an anti-CD25 antibody and func-
tional inhibition do not affect the Treg cell frequency
within tumours [72]. Localized proliferation is exploited
by nTreg cells to drive accumulation within PDAC tissue
at an early stage and is mediated by activation of tissue-
resident nTreg cells by resident DCs through the presen-
tation of self-antigens. Localized proliferation might also
be the mechanism of iTreg cell accumulation within
TLSs in which follicular DCs and HEVs are present. The
function of Treg cells in PDAC immune editing also
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remains controversial, although most studies have dem-
onstrated that Treg cells regulate CD4" and CD8" lym-
phocytes through monocyte-type cells. However, the
pathway and target cells are not yet clear. In a pilot
study, Qureshi et al. demonstrated that CTLA-4 mole-
cules could capture and endocytose CD86 expressed on
the cell surface, which resulted in CD86 degradation,
and the subsequent activation of Treg cells prevented
DCs from priming naive T cells (Fig. 3) [73]. This may
be the mechanism by which nTreg cells inhibit tissue-
resident DCs in early PanIN lesions since tissue-resident
DCs rarely express CD86 rather than CD80. On the
other hand, Treg cells may regulate infiltrating CD4"
cells rather than CD8" T cells in PDAC through the
CTLA-4/CD80 pathway by contacting MDSCs because
blockade of CTLA-4 on Treg cells or blockade of CD80
on MDSCs was shown to produce the same results [72].
Based on these observations, MDSCs appear to have a
high probability of being monocyte-type cells targeted by
iTreg cells in invasive PDAC. Treg cells express TCRs
that recognize self-TSAs and may be activated by self-
TSAs in the presence of APCs [74, 75]. This property of
Treg cells may be exploited by cancer cells and imma-
ture APCs to produce immune tolerance. It has been
previously demonstrated that immature APCs can pref-
erentially induce Treg cells [76, 77]. Immature APCs
may have a better potential to facilitate the suppressive
function of Treg cells than mature APCs because of
their higher expression levels of CD80 [62], which gener-
ally forms a dimer and preferentially binds with CTLA-4
molecules, which are constitutively expressed on Treg
cells (Fig. 3). Targeting tissue-specific Treg cells and/or
blocking the interaction between Treg cells and
monocyte-like cells may be an interesting direction of
research for PDAC immunotherapy.

mADb therapy for PDAC

mAb-based therapy has been used as an established
treatment strategy for multiple solid tumours for de-
cades. The functional mechanisms of mAbs in cancer
therapy are limited to not only the direct killing of cells
through  antibody-dependent cellular  cytotoxicity
(ADCC) and similar pathways but also to the regulation
of the immune microenvironment by blocking the corre-
sponding signalling pathway, reversing immunosuppres-
sion and enhancing the activity of antitumour effector
cells. mAbs could even be used for the delivery of vari-
ous therapeutic reagents (Table 1).

In this chapter, we focus on mAb therapy directed
against cancer and stromal cells. Mesothelin (MSLN) is
extensively expressed in several solid tumours and in al-
most 100% of PDAC cells [87]. MSLN plays a critical
role in the development of pancreatic cancer, especially
at an early stage, and in peritoneal metastasis by binding
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with its single ligand MUC16; however, the intracellular
mechanism remains unclear [88]. Furthermore, overex-
pression of MSLN is associated with poor outcomes for
PDAC patients [89]. Several preclinical and clinical trials
of MSLN-targeted mAb-based therapy have been sum-
marized by several reviews [90-92]. In brief, the func-
tional mechanisms of anti-MSLN mAb include not only
ADCC but also alteration of intracellular signalling in
cancer cells through endocytosis. This phenomenon has
been exploited to deliver cytotoxins to kill cancer cells
[93]. Anti-MSLN antibodies can also block the binding
of MSLN with MUC16 and inhibit the expansion and
metastasis of cancer cells [88]. MORADb-009 is a human-
ized antibody known as amatuximab. Baldo demon-
strated that amatuximab exerts therapeutic efficacy by
inducing ADCC and inhibiting the binding of MSLN
with MUC16 [94]. Hassan, Fujisaka and their colleagues
successively reported two phase I clinical studies includ-
ing PDAC and other solid tumours expressing MSLN.
They demonstrated the safety of amatuximab but ob-
served no apparent objective responses despite stable
disease occurring in some patients [95, 96].

MUCT is restricted to apical surface expression on nor-
mal epithelial cells [97] and is overexpressed in approxi-
mately 90% of PDAC cells [98] on the basolateral
membrane [97]. Biochem and colleagues demonstrated
that an antibody similar to the anti-MUC1 antibody
GP1.4 could trigger the internalization of EGFR on PDAC
cells. This process could inhibit ERK signalling and result
in the inhibition of cancer cell proliferation and migration
[78], but the mechanism was unclear. Wu et al. [79] re-
cently reported that MUC1-C, an isoform of MUCI, was
highly expressed in 60.6% of human PDAC tissue samples
compared to normal tissue samples. They used the same
anti-MUCI antibody on human pancreatic cell lines and a
xenograft mouse model and demonstrated that the anti-
hMUCI1 antibody could pass through the membrane, in-
activate MUC1 signalling and then suppress tumour
growth in vivo. Since GP1.4 can be internalized by cancer
cells, whether it can be exploited as a carrier of a cytotoxin
would be an interesting investigation.

VEGF can promote vascularization in cancer lesions,
and although PDAC does not have high vessel dens-
ity, the cancer cells aberrantly express VEGF. This
conclusion is supported by an early preclinical study
that used the murine-derived anti-VEGF antibody
A.4.6.1 to supress tumour growth [80]. Another anti-
VEGF antibody, bevacizumab, has been the subject of
multicentre-based investigations in combination with
chemotherapy, but the results have not yet been pub-
lished. Treatment combining the anti-EGFR antibody
erlotinib with Gem was recently carefully assessed,
and mild efficacy and tolerable adverse effects were
concluded (Table 1) [99, 100].
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AnxA6 is expressed in almost all PDACs by CAFs and
localizes at the invasive front of the tumours, where it
forms a complex structure with LDL receptor-related
protein 1 and thrombospondin and participates in cross-
talk between cancer cells and the stroma. The structure
has shown strong correlations with cancer cell survival
and perineural invasion [101]. O’Sullivan et al. isolated a
novel antibody against AnxA6, 9E1, and demonstrated
in an ex vivo experiment that the antibody could reduce
the invasive capacity of pancreatic cancer cells by redu-
cing MMP-9 expression and modulating ERK and MEK
signalling [81].

Delta-like ligand 4 (DLL4) may be another possible
mAD target for PDAC treatment since the DLL4 signal-
ling pathway is important for PDAC cancer stem cell
(CSC) survival. Demcizumab is a humanized anti-DLL4
antibody that has the potential to reverse chemotherapy
resistance, and a study showed that demcizumab com-
bined with paclitaxel and Gem was safe but not effica-
cious [82]. Two clinical trials on the use of demcizumab
for PDAC treatment were completed recently, but the
results have not yet been published (Table 1).

Antibodies or antibody fragments can also be conju-
gated with radioisotopes to deliver localized radiotherapy;,
known as radioimmunotherapy, and is emerging as an im-
portant selection for PDAC patients [83]. Recently,
CD147 [84] and B7-H3 [85] were explored as targets of
radioimmunotherapy for cancer cells and CSCs, respect-
ively, with a 20y labelled antibody (059—-053) and a 212py,.
labelled antibody (376.96) and investigated in preclinical
experiments; both achieved promising results and demon-
strated potential therapeutic efficacy for PDAC (Table 1).

Mutation of the Kras gene may be a promising target
for mAbs in PDAC since more than 90% of PDAC cases
bear a mutation at position G12 [102]. In a pilot study,
Meng et al. demonstrated that tumour-infiltrating B cell
(TIB)-derived IgGs could recognize most G12 mutations
occurring in PDAC and noted that TIBs might be a
source of antitumour antibodies targeting neoantigens
[86]. This study established a novel way to produce
neoantigen-targeting antibodies for personalized mAb
immunotherapy.

Strategies reversing immunosuppressive
mechanisms

ICI therapy

Only approximately 4% of all PDAC cells, including can-
cer cells (5.5% +1.1), CD163" TAMs (9.3% +3.6) and
CAFs, express PD-L1 [38]. Although the majority of
PDAC cases show intermediate to high numbers of infil-
trating T cells, CD4" T cells, rather than CD8" T cells,
are the main component [38, 42]. The objective response
of malignancy to ICI therapy is positively associated with
the mutational burden, which is relatively low in PDAC
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[103, 104]. All of these factors indicate a dismal response
to ICI therapy by PDAC compared to other solid tu-
mours [104—107]. Investigators are trying to improve the
effect of ICI therapy through different approaches. GM-
CSF-secreting tumour cells (GVAX) can significantly up-
regulate PD-L1 expression and improve the effect of
anti-CTLA-4 and anti-PD-1/PD-L1 antibodies [17, 108].
Oncolytic virotherapy [109], chemotherapy and radio-
therapy [110, 111], a CSF1 blockade [57], an anti-IL-6
antibody [112], a CXCL12/CXCR4 axis inhibitor and
stromal cell depletion [113] have also been tested to en-
hance the efficacy of ICI therapy on PDAC. Among
these efforts, the combination of ICI therapy and
chimeric antigen receptor (CAR) T cell infusion may
hold the most promise [114, 115], as this strategy can
simultaneously increase the number of tumour-targeting
effector cells and prevent infused cell anergy.

Strategies targeting immunosuppressive cells

Treg cells

Chemotherapy reverses immunological tolerance for a
prolonged period [116], and the mechanism was demon-
strated by selectively depleting Treg cells [117]. Cyclo-
phosphamide (Cy) is the most commonly used agent to
deplete Treg cells to enhance cytotoxic and helper T cell
responses [118]. Treg cells lack the ATP-binding cas-
sette (ABC) transporter, which can extrude Cy out of
cells, causing Treg cells to be more susceptible to Cy
than other T cells [119]. Gem is another chemothera-
peutic drug selectively capable of depleting Treg cells.
Shevchenko et al. observed that in a mouse model, the
depletion of local Treg cells with a low dose of Gem sig-
nificantly improved the modest survival rate without af-
fecting tumour growth or metastasis [67]. While Beatty
et al. demonstrated that the depletion of Treg cells in
the peripheral blood did not affect the Treg cell fre-
quency in the tumour lesion and had no effect on
tumour progression, a CD40 agonist used in combin-
ation with Gem decreased the Treg cell numbers and
the accumulation of CD4" and/or CD8" cells in xeno-
graft and/or orthotopic tumours [110], indicating that
Gem, which can deplete tumour-infiltrating Treg cells,
may restore the antitumour effects of CD40 agonists and
ICIs. These results suggested that tumour-infiltrating
Treg cells rather than circulating Treg cells accounted
for the overall Treg function; targeting local proliferat-
ing/accumulating Treg cells but not peripheral Treg cells
might be more advantageous and have fewer adverse ef-
fects on the immune system. Treg cell depletion can also
enhance the effect of a PDAC vaccine. Lei Zheng and
colleagues treated PDAC patients with a low dose of Cy
in combination with GVAX and observed Cy-dependent
Treg cell depletion and lymphoid aggregate formation in
the PDAC TME. In addition, decreased Treg cell
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numbers in the lymphoid aggregates not only enhanced
existing effector T cell activation but also facilitated
more effector T cell trafficking into PDAC tumours
[120]. Even premalignant PanIN lesions could benefit
from Treg cell depletion; Treg cell depletion combined
with the LM-Kras vaccine (attenuated Listeria monocyto-
genes strain expressing KrasG12D) could recruit CD4"
and CD8" effector T cells to the premalignant lesion and
inhibit PanIN progression. This strategy could also en-
hance the recruitment of Gr-1" cells but repolarize them
into an antitumour phenotype to enable cytokine pro-
duction and the induction of an inflammatory response
[121]. This study further verified the tight correlation
between Treg cells and MDSCs.

MDSCs and TAMs

The subtle distinction between Gr-MDSCs and Mo-
MDSCs should be noted. In a preclinical study to test
the potential of targeting MDSCs, Stromnes et al. dem-
onstrated an extensive effect of depleting Gr-MDSCs on
the prognosis of PDAC patients and determined the ra-
tional mechanism. They selectively depleted Gr-MDSCs
with the anti-Ly6G mAb 1A8. Compared with untreated
mice, treated mice showed a 4- to 5-fold increase in
Mo-MDSC numbers in the spleen and PDAC lesions,
and the gross number of tumour-infiltrating CD45" cells
increased approximately 2-fold in 1A8-treated mice [59].
Further study indicated that the numbers of proliferating
and activated CD8" T cells with high granzyme B levels
increased absolutely, and these cells were found in not
only the stroma but also in the proximity of tumour
cells. Decreased stromal matrix deposition and integrity,
increased caspase-3-positive tumour cell numbers and
blood vessels were observed in 1A8-treated tumours
[59]. There was no observed reduction in tumour size
due to an influx of tumour-reactive effector cells, a
phenomenon known as tumour pseudoprogression
[122]. The compensatory increase in Mo-MDSCs syn-
chronized with the depletion of Gr-MDSCs was remark-
able, and a similar result was reported in another study
in which the decrease in TAMs/Mo-MDSCs was accom-
panied by an increase in Gr-MDSCs. The checks and
balances between Gr-MDSCs and Mo-MDSCs may indi-
cate some therapeutic value; although these cells share
some similar phenotypic molecules and show similar
suppressive functions, these two myeloid cell subsets
might have very distinct final fates and should be han-
dled separately. TAMs are a pool of cells with heteroge-
neous functions and phenotypes, and their versatile
plasticity allows their transformation into each other ac-
cording to the local conditions. Both the CSF1/CSF1R
and CCL2/CCR2 axes are critical for the accumulation
and differentiation of TAMs from their progenitors in
the blood. A CSF1/CSFIR blockade can not only
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decrease the number of TAMs in PDAC lesions but also
reprogram TAMs to enhance their antigen-presenting
ability, resulting in enhanced antitumour T cell re-
sponses [57]. In a contemporary preclinical study [123],
Mitchem et al. investigated an axis-targeting treatment
combined with chemotherapy and demonstrated that
CCR2 and/or CSFIR inhibitors displayed only modest
effects. Gem alone could increase the number of TAMs
in PDAC lesions, and CCR2 and/or CSFIR inhibitors
could reverse this increase and dramatically reduce
tumour masses. In addition, the researchers observed
significant CD4" and CD8" T cell infiltration and de-
creased Treg cell infiltration after treatment. Remark-
ably, they found that a CCR2 and/or CSF1R blockade
could decrease the numbers of both TAM and Mo-
MDSC, which was potentially the result of a phenotypic
overlap between these two monocyte subsets. However,
a modest increase in Gr-MDSC numbers was observed,
which was potentially due to a compensatory relation-
ship between the two types of MDSCs. Specifically,
blocking either CCR2 or CSF1R could disrupt this inter-
action and reverse chemotherapy resistance [123]. TAMs
generally localize at the invasive front of PDAC lesions
and are involved in angiogenesis and EMT, which are
important for cancer cell invasion and metastasis. Inves-
tigations of methods to reverse or inhibit this function
of TAMs would be interesting.

Strategies enhancing the antitumour response
Costimulatory molecule agonists

In a pilot study, Beatty et al. demonstrated an unex-
pected function of a CD40 agonist, as treated F4/80"
macrophages in the peripheral blood were activated and
infiltrated tumour lesions. However, although the ex-
pected T lymphocyte infiltration was not observed, the
PDAC stroma was destroyed, and cancer cells were
killed by the infiltrating macrophages [124]. The re-
searchers further demonstrated that this agonist of
CD40 upregulated the expression of MHC class II and
CD86, suggesting an enhanced antigen-presenting ability
of the macrophages. Nevertheless, T cells did not infil-
trate tumours and remained in the peripancreatic lymph
nodes adjacent to the tumours, suggesting that an add-
itional mechanism excluded these antitumour effector
cells. In a subsequent study [125], the same team found
that the agonist of CD40 induced heavy T cell infiltra-
tion into tumours upon combination with Gem and re-
sulted in CD4" and/or CD8" T cell-dependent tumour
regression. They explained the controversial results by
concluding that circulating macrophages may have dual
roles in regulating immunoreactivity in PDAC but did
not interpret the role of Gem in the treatment. Gem
combined with the CD40 agonist could induce tumour
regression even after circulating macrophages were
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depleted [125]. This result suggested that the chemo-
therapeutic agent in the experiment targeted some un-
known immunosuppressive cells that could exclude
effector T cells. Rationally, these cells were probably
Treg cells since Gem has been demonstrated to be a po-
tent Treg cell-depleting agent in PDAC [67]. In a multi-
centre phase I clinical study by Beatty and his
collaborators, an agonistic anti-CD40 antibody was ap-
plied in combination with Gem for PDAC treatment;
while only a mild effect was observed, the safety of the
combination was established [126]. In addition, the
CD40 agonist and Gem combination could also reverse
resistance to ICI therapy via promoting the accumula-
tion of robust antitumour CD8" T cells in PDAC tu-
mours [110]. These results potentially demonstrate that
the combination of reprogramming macrophages to en-
hance their antigen-presenting ability with Treg cell de-
pletion and ICI administration is a promising approach.
The stromal destruction observed with both Gr-MDSC
depletion (increase in tumour-infiltrating Mo-MDSC
numbers) [59] and TAM reprogramming [124] indicates
that Mo-MDSCs and TAMs share an overlapping role.

ACT

ACT is a very active field of investigation in PDAC im-
munotherapy and is performed using lymphocytes with
or without gene editing and TILs (Table 2). Substantial
progress has been made over the last three years regard-
ing PDAC.

ACT with genetically engineered cells

CAR-engineered T cell (CAR-T) ACT for PDAC was
very recently thoroughly reviewed [127-131]. Various
artificial gene-design strategies targeting the cancer
stroma and overcoming immunosuppressive factors have
been explored to improve the effect of CAR-T ACT on
PDAC. Rataj et al. genetically engineered ovalbumin
(OVA)-specific CD4* and CD8" T cells with a PD-1-
CD28 fusion protein. They observed significant synergy
between the two cell populations correlating with the
number of CD4" T cells, indicating that the PD-1/PD-L1
suppressive signal was reversed and that the helper func-
tion of CD4" T cells and antitumour effect of CD8" T
cells were enhanced [132]. Mohammed et al. performed
a similar experiment [133] wherein they engineered the
T cell population with two genes simultaneously, a first-
generation PSCA-specific CAR and an inverted cytokine
receptor (ICR) with an IL-4 extracellular domain and an
IL-7 intracellular domain to yield CAR/ICR T cells.
CAR/ICR T cells could reverse the IL-4-derived inhibi-
tory signal to the T cell proliferation signal and showed
enhanced antitumour activity. Genetically engineered
TCR T cell (TCR-T) infusion is another ACT strategy.
Stromnes et al. conducted ground-breaking research in
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this field, wherein a series of pilot and extensive experi-
ments generated valuable data [134]. They screened a
TCR for an endogenous unmutated MSLN epitope,
which worked in an MHC class I-independent manner.
TCR-Ts accumulated preferentially in orthotopic PDAC
lesions and induced cancer cell death as well as stromal
remodelling. Serial TCR-T infusion was performed, and
improved survival was observed without increased tox-
icity [134].

TiLs and neoantigens

CD3" T cells were shown to comprise up to 90% of all
tumour-infiltrating cells [41] and for almost all
CD45RO" memory cells [38, 42—44]. Recently, Hall and
Meng reported the successful extraction of TILs from
PDAC specimens and the expansion of these cells
in vitro [135, 136]. However, they used different proto-
cols to isolate and expand the TILs from tumour frag-
ments. Hall et al. used medium containing a high dose
of IL-2 and obtained TILs composed primarily of CD4"
T cells, while Meng et al. cultured fragments with
medium containing the cytokines IL-2, IL-15, and IL-21
and expanded TILs composed primarily of CD8" T cells.
Both research teams demonstrated autologous tumour
cell killing activity in an HLA-dependent manner. In a
pilot study [42], Poschke et al. observed clonal tumour-
reactive T cell expansion in PDAC, and they isolated
and expanded TILs with a success rate similar to that
achieved in melanoma. The authors reported that
ex vivo culture appeared to reverse the exhausted
phenotype of the freshly isolated TILs, but the propor-
tion of tumour-reactive T cells was very low in the final
pools, and these cells displayed no effect against an au-
tologous PDAC xenograft. The researchers further inter-
preted the phenomenon of TCR repertoire alteration
during ex vivo expansion. The regulatory cells within
TIL populations should be carefully considered because
they may exist in the fragment culture for a long time
and bias the nonspecific expansion of TILs. Since TCR
repertoire alteration might be the major hurdle for TIL
treatment in PDAC, the identification of tumour-specific
TCRs and/or TIL clones may be an alternative approach.
In a very recent study, Meng et al. reported the produc-
tion of three TIL cell lines and two autologous tumour
cell lines; they screened, sequenced and synthesized
mutation-derived neopeptides and observed neoantigen-
specific tumour killing in an HLA-dependent fashion.
They demonstrated the presence of neoantigen-specific
TIL clones in both CD8" and CD4" T cell pools, which
functioned in HLA class I- and HLA class II-dependent
manners, respectively. Importantly, they reported that
peripheral blood mononuclear cells (PBMCs) as well as
TILs could be used to screen neoantigens. These results
pave the way for highly specific and personalized ACT
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[137] since targeting personalized mutations has been
demonstrated to be a durable approach for the treat-
ment of metastatic solid tumours with a relatively low
mutation burden [138].

Vaccines

The vaccines used for PDAC therapy are diverse and
employ very different mechanisms (Table 3). Briefly,
there are three major vaccine platforms for PDAC: DC-
based vaccines, tumour cell-based vaccines and
bacterium-based vaccines. DCs are the most common
platform, and DC-based vaccines have been tested in nu-
merous clinical trials and thoroughly reviewed [139,
140]. Another PDAC vaccine platform is the whole-
tumour cell vaccine platform using autologous and/or
allogeneic cancer cells with or without genetic editing.
GVAX is a whole-cell vaccine system used extensively
for treating various cancers, including PDAC. GVAX
vaccines for PDAC are derived from two pancreatic can-
cer cell lines engineered with the GM-CSF gene; these
vaccines can be injected intradermally and secrete high
levels of GM-CSF to attract APCs and promote their
maturation. The vaccines have been demonstrated to be
safe but to have modest effects [141, 142]. It should be
noted that GM-CSF alone is not sufficient for APC mat-
uration, and the simultaneous presence of IL-4 is indis-
pensable. Algenpantucel-L is another whole-cell vaccine
consisting of two pancreatic cancer cell lines genetically
engineered to express a-galactosyl (a-gal) epitopes on
membrane glycoproteins and glycolipids [143]; these epi-
topes are not expressed in human cells [144] and induce
complement- and antibody-dependent cytotoxicity since
there are large amounts of anti-a-gal antibodies in hu-
man serum [145]. Algenpantucel-L combined with
chemotherapy moderately improved the 1-year OS rate
of patients with resectable PDAC without severe adverse
effects [143]. Tanemura and Doki et al. subsequently
produced whole-cell vaccines expressing a-gal epitopes
based on cancer cell lines and tumour lysates separately
and demonstrated therapeutic potency in preclinical
studies; notably, both vaccines could target both cancer
cells and CSCs [146, 147]. Recently, a bacterium-based
vaccine, CRS-207, was developed that comprises a re-
combinant live-attenuated Listeria monocytogenes strain
engineered to secrete MSLN into the cytoplasm of in-
fected APCs. This strategy could not only enhance the
ability of APCs but also target an antigen universally
expressed by PDAC. It has been demonstrated to be
safe, and the combination of GVAX and CRS-207 has
shown a survival benefit [148, 149]. The fact that the
epitopes used to enhance effector cell antitumour re-
activity can also be presented to Treg cells and result in
tumour-specific immune tolerance is an important
phenomenon that should be emphasized and can be
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used to interpret the mild effect of whole-cell and DC
vaccines [150, 151]. How to overcome suppressive cells,
especially tumour antigen-specific Treg cells, is a critical
issue that needs to be resolved [152].

Conclusion

In this review, we summarized the characteristics of the
PDAC TME, including the cancer epithelial cell proper-
ties, the role of stromal cells and matrix in the immuno-
suppressive TME, the complex network among tumour-
infiltrating immune cells and how these cells orchestrate
the shape and programme of the PDAC TME. We have
also covered the current and future aspects of immuno-
therapy for PDAC from various perspectives in this re-
view. mAb-based immunotherapy still has the potential to
enhance the treatment of PDAC. However, the absence of
TAAs restricts its progression, and the strategy for im-
proving the suboptimal selection of mAb-based therapy
involves combinations with other approaches or explor-
ation of TSAs, especially neoantigen-targeting mAbs, from
TIBs [86], as the latter is emerging as a promising field.
Vaccines may have dual roles in the treatment of PDAC.
On the one hand, they can theoretically induce or enhance
the naturally occurring antitumour response and improve
the functions of transferred antitumour effector cells.
However, they may have the adverse effect of inducing
tumour-specific immune tolerance through Treg cells,
which at least in part underlies the modest effect observed
with vaccine treatment. For GVAX vaccines, GM-CSF
alone might not be sufficient to induce APC maturation.
Recent advances in isolating neoantigen-targeting anti-
bodies from TIBs have given rise to a promising approach
for both vaccine and mAb therapies as well as for selecting
scFvs for CAR-T therapy. ACT with genetically engi-
neered cells has achieved promising results in some solid
tumours in preclinical studies but not in any clinical trials.
ACT-based therapy must be immensely improved to ex-
ploit PDAC-targeting cells because PDAC has relatively
few TAAs. Furthermore, the high stromal density and ab-
sence of angiogenesis dampen the infiltration of infused
cells, and the suppressive TME also inactivates infiltrating
cells. Promisingly, substantial progress has been made re-
garding PDAC TILs in recent years [135-137]. These re-
sults exploited potential tools to obtain multiple tumour-
specific colonies and even a single TIL colony specific for
endogenous tumour cells. The strategy of identifying and
sequencing neoantigen-specific TCRs to engineer lympho-
cytes for ACT is expected, as Rosenberg and his team
have made significant progress in this field [153-155].
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