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Despite recent advances, assessing biological measurements for neuropsychiatric disorders is still a challenge, where confounding
variables such as gender and age (as a proxy for neurodevelopment) play an important role. +is study explores brain structural
magnetic resonance imaging (sMRI) from two public data sets (ABIDE-II and ADHD-200) with healthy control (HC, N� 894),
autism spectrum disorder (ASD,N� 251), and attention deficit hyperactivity disorder (ADHD,N� 357) individuals.We used gray
and white matter preprocessed via voxel-based morphometry (VBM) to train a 3D convolutional neural network with a multitask
learning strategy to estimate gender, age, andmental health status from structural brain differences. Gradient-basedmethods were
employed to generate attention maps, providing clinically relevant identification of most representative brain regions for models’
decision-making. +is approach resulted in satisfactory predictions for gender and age. ADHD-200-trained models, evaluated in
10-fold cross-validation procedures on test set, obtained a mean absolute error (MAE) of 1.43 years (±0.22 SD) for age prediction
and an area under the curve (AUC) of 0.85 (±0.04 SD) for gender classification. In out-of-sample validation, the best-performing
ADHD-200 models satisfactorily predicted age (MAE� 1.57 years) and gender (AUC� 0.89) in the ABIDE-II data set. +e
models’ accuracy was in line with the current state-of-the-art machine learning applications in neuroimaging. Key regions for
models’ accuracy were presented as a meaningful graphical output. New implementations, such as the use of VBM along with a 3D
convolutional neural network multitask learning model and a brain imaging graphical output, reinforce the relevance of the
proposed workflow.

1. Introduction

One of the current challenges faced by the mental health
research field is to include biological measurements for the
assessment of psychiatry disorders [1, 2]. Despite recent
advances [3], psychopathology remains mainly assessed
through clinical interviews [4, 5]. Investigations on neu-
roimaging biomarkers, particularly in youth, may help cli-
nicians in the hard task of differentiating typical from
atypical developmental trajectories.

Among several potential biomarkers, structural mag-
netic resonance imaging (sMRI) is a promising method to
enhance identification and precise classification in psychi-
atry [6–8]. Moreover, characterizing atypical brain struc-
tures from sMRI is an important step for understanding the
mechanisms and etiology of these disorders to tailor
treatments [9]. Over the past few decades, dozens of studies
have identified brain structural changes in ASD and ADHD
[9–11]. However, the vast majority of these findings are
inconclusive, possibly due to methodological issues such as
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the use of small sample sizes, from a single study site, with
little demographic variability (e.g., gender, age, or ethnicity)
[9, 11]. +ese limitations have been recognized as a per-
sistent source of bias in psychiatric classifications [12]. To
achieve generalizable findings, one should employ large data
samples, acquired from multiple sites/countries/scanners,
including subjects with different ages, genders, ethnicities,
and severity levels of psychiatry disorder [9, 11–13]. For-
tunately, there are open data sets such as ABIDE-II and
ADHD-200, which fit all these requirements.

Besides, most sMRI studies focused on traditional mass-
univariate analytical methods, which are sensitive to gross
and localized brain differences. +ese approaches, however,
are not optimal for detecting subtle and spatially distributed
neuroanatomical alterations, typically associated with psy-
chiatric disorders [14, 15]. +erefore, machine learning
techniques, such as deep learning networks, have shown
interesting results in advancing group-level neuroimaging
findings into individual-level clinically relevant classifica-
tions [16].

A specific deep learning network, called the convolu-
tional neural network (CNN), revolutionized the computer
vision area [17]. Regular CNNs use 2-dimensional images
for their training process. +is technical aspect, however,
may cause loss of important data from the tridimensional
(3D) structure of sMRI. A recent version of CNN, named
CNN3D, overcomes this limitation by employing 3D images
in its learning process, so it is an optimum candidate for
sMRI applications. Recent studies, which used CNN to
investigate psychopathologies, obtained better performance
than the previously published literature [18–20]; however,
none of these works employed a CNN3D trained with sMRI
of youth to assess brain morphological features during
neurodevelopment.

One downside of using deep learning models, such as
CNN3D, is the low output interpretability, which sometimes
provides little or no insight into the nature of the input data
[14, 15]. To overcome this limitation, one can use a gradient-
based algorithm such as SmoothGrad [21] to produce
sensitivity voxel maps from input images that most con-
tributed to models’ decisions. +en, these attention maps
can be intersected with a brain atlas such as AAL3 [22] to
identify the top-focused brain regions of interest (ROIs) for
the neural network decisions. +is procedure may increase
output interpretability and clinical relevance by showing
brain ROIs with the greatest descriptive power for a given
model prediction task. However, to date, few studies in-
corporated this approach. Moreover, integrating well-
established sMRI processing techniques, such as voxel-based
morphometry (VBM), into CNN3D training models seems
to be appropriate to increase comparability to neuroimaging
literature. VBM segments, aligns, and fits gray matter (GM)
and white matter (WM) in a common spatial template,
facilitating the hard task of comparing distinct clinical
groups or gathering data for meta- or mega-analysis [23–26].

Different studies have contributed to the present
knowledge on brain markers for psychiatric disorders, with
several pieces of work assessing CNN3D [19, 20], multitask
learning architecture [27, 28], and brain sMRI processed by

VBM [9–11]. However, few studies have explored these
methods jointly, particularly in large and heterogeneous data
samples, to investigate biomarkers of neurodevelopment
and psychiatric disorders across youth. +e present study
aims to evaluate a CNN3D model trained from ABIDE-II
and ADHD-200 data sets to predict age (neuro-
development), gender, and psychiatric disorder group (i.e.,
HC vs ASD or ADHD). We hypothesize that a CNN3D
architecture, trained with 3D sMRI previously preprocessed
by VBM, will detect complex patterns of morphological
features in the human brain and allow correct classification
of age, gender, and mental health status. Besides, we hy-
pothesize that 3D saliency maps from trained models,
generated via SmoothGrad [21], will provide identification
of the brain’s anatomical ROIs for each prediction task.
+ese results could be intersected with 3D AAL3 brain atlas
[22] and could be used to generate clinically relevant
schematic representations of top-focused brain regions.

+e current study evaluates the applicability of a
workflow composed of carefully chosen methods and best
practices to assess neurodevelopment from brain sMRI.
First, the methods are described and justified in Section 2.
Next, the achieved experimental results are presented in
Section 3. +en, the results are discussed and compared to
the related literature in Section 4. Finally, the conclusions are
presented in Section 5.

2. Materials and Methods

2.1. Data Description. +e data used in this study were ob-
tained from two public data sets: Autism Brain Imaging Data
Exchange II (ABIDE-II) and Attention Deficit Hyperactivity
Disorder (ADHD-200). Both data sets can be downloaded
from the NeuroImaging Tools & Resources Collaboratory
Image Repository (NITRC-IR: https://www.nitrc.org/ir/). For
this work, we used only one T1-weighted sMRI scan of each
subject from the data sources. +ese images were collected
from several locations in different countries: ABIDE-II in-
cludes 19 sites, and ADHD-200 includes 8 sites. +us, the
images’ acquisition parameters vary due to different scanners’
models and brands, ranging from 1.5T to 3T, each hosting a
head coil from 8 to 32 channels. Detailed information and
scanners’ acquisition parameters can be retrieved from
ABIDE-II (http://fcon_1000.projects.nitrc.org/indi/abide/
abide_II.html) and ADHD-200 (http://fcon_1000.projects.
nitrc.org/indi/adhd200/) documentation. +e data were col-
lected and made public according to the responsibility and
approval of the given local ethics of each project.

2.2. Subjects. Since we focus on neurodevelopmental pro-
cesses in children and adolescents, we discarded subjects
older than 20 years of age. Some individuals had more than
one sMRI scan in the data set (collected from different
scanning sessions). In these cases, only the first sMRI of each
subject was considered. Data without information on gen-
der, age, and psychiatric disorder (i.e., HC, ASD, or ADHD)
were also discarded. Furthermore, each subject belonged
exclusively to ABIDE-II or ADHD-200 data set (no subject
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was in both). After applying these criteria, the sample for the
present analysis and main demographic and phenotypic data
are presented in Table 1 and Figure 1.

Individuals at different levels of the autism spectrum
were grouped in the ASD label and, similarly, individuals
with different subtypes of ADHD (inattention, hyperactivity,
or combined) were grouped.

2.3. MRI Processing. +e sMRI was processed using VBM
[23] via the Statistical Parametric Mapping software (SPM12
v7771, from https://www.fil.ion.ucl.ac.uk/spm/software/).
Briefly, VBM involves spatially normalizing all MRI images
to the same stereotactic space, allowing extraction of dif-
ferent brain tissues from images partitioned with correction
for nonuniform intensity variations [23]. In the past decades,
VBM has been largely adopted in neuroimaging studies,
such as the ones investigating ASD and ADHD [10]. +e
complete conceptual framework, methodology, and back-
ground behind the software are available in the Statistical
Parametric Mapping book [29].

+e data sets were processed using two batches of tasks
(one batch for ABIDE-II and another for ADHD-200).
Although the same procedures were applied to both data
sets, we chose to process them in separate batches to ensure
that each data set was completely independent. All the sMRI
transformation steps were performed through the SPM12
software, following the VBM Tutorial [30].

First, sMRI data were spatially segmented to segregate
GM andWM [24]. In this step, the skull, tissues, and artifacts
outside the brain tissue are removed from the original image.

Second, the DARTEL algorithm [25] was applied to
increase the accuracy of intersubject alignment. +is
transformation works by aligning GM among the images
while simultaneously aligning WM during the generation of
a template to which the data are iteratively aligned [26].
+ird, the resulting files from the previous step were spatially
normalized, Jacobian-scaled, and smoothed with a Gaussian
full width at half maximum (FWHM) set to 8mm to gen-
erate images in the Montreal Neurological Institute (MNI)
coordinate system [31,32]. After these transformations, each
sMRI scan produced two 3D matrices (one for GM and
another for WM), with each voxel carrying the probable
density of brain tissue at that location.

Finally, we loaded the previously transformed GM and
WM via Python, through the SimpleITK library (https://
simpleitk.org/) and applied a common mask assigning the
value −1 to every background voxel (outside the brain). We
chose to set the value −1 (instead of zero) to streamline the
learning process of the models, due to the increase in the
distance between background voxel values and brain voxel
values with low tissue probability (close to zero). +e brain
matrices and their corresponding phenotypic data were saved
in the TensorFlow record format (https://www.tensorflow.org/
tutorials/load_data/tfrecord). +is notation allows for better
performance by storing data in binary linearly serialized files.
As the data sets are still relatively large after the transformations
(about 30GB for both data sets), this step is important to read
data efficiently during the model training phase.

2.4. Deep 3D Convolutional Neural Network Multitask
Learning Architecture. +e architecture of our model was
designed to receive the previously transformed 3D brains as
input for the neural network training.+e input for training is
a 5D matrix (composed of the number of examples in batch,
voxel X-axis, voxel Y-axis, voxel Z-axis, brain tissues), where
the brain tissue is a two-channel dimension composed of GM
and WM. We considered only GM and WM to ensure that
ourmodels’ predictions resulted from patterns directly related
to differences in neurodevelopment. +erefore, the cerebro-
spinal fluid, the skull, and all the tissues outside the brain were
discarded. +at was also the reason why we did not use the
complete unsegmented images. Moreover, we opted for
feeding data through different channels to the model so that it
had a facilitation signal to differentiate the patterns of GM
(mostly neuronal nuclei) and WM (mostly axon bundles). As
shown in Figure 2, the common model’s body is composed of
a sequence of interleaved layers of 3D convolution, batch
normalization, and 3D max pooling, followed by dense and
dropout layers. After the common model’s body, we derived
three output blocks, each composed of its own dense, batch
normalization, and output layer. +e output blocks are ac-
countable to, respectively, predict gender, age, and psychiatric
disorder (i.e., HC, ASD, or ADHD).

Inspired by the VGG16 network [33], we chose the ReLU
activation function to provide nonlinearity [34] and used
convolutional layers with receptive fields of 3× 3× 3 pixels
and max-pooling layers with 3× 3× 3 pixel window and
stride of 2× 2× 2. To improve the network convergence, we
added batch normalization [35] before convolutional and
dense layers. To face overfitting problems, we included L2
kernel regularizers (with a coefficient equal to 1× 10−3) in all
convolutional and dense layers and added a dropout [36]
with a dropout rate of 0.5 right after the flattening of the last
convolutional layer.

+e loss chosen as the objective function to be mini-
mized is expressed by the weighted sum of the loss of each
output, where we opted for the Mean Squared Error for the
age output and Binary Cross-Entropy for gender and di-
agnosis outputs.+e loss weights (W1,W2, andW3) were not
tuned, remaining in the default values of the TensorFlow
library (i.e., equal to 1). As the classification and regression
tasks have different loss scales, the loss will be higher to the
age estimation than to the classification tasks. +at is, the
training will tend to optimizemore in the direction of the age
estimation than in that of the classification tasks.
objectiveloss � W1 ∗mean squared error yage, 􏽢y age􏼐 􏼑,

+ W2 ∗ binary crossentropy ygender, 􏽢ygender􏼐 􏼑,

+ W3 ∗ binary crossentropy ydiagnosis, 􏽢ydiagnosis􏼐 􏼑.

(1)
Our motivation for choosing a multitask learning archi-

tecture is the advantages produced by the learned features in
the shared layers that are favored from the mechanisms of data
amplification, attribute selection, eavesdropping, and repre-
sentation bias [37]. In brief, this approach allows faster con-
vergence and better generalization due to the extra information
provided by the training signals of the related tasks [37].
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2.5. Model Tuning and Training. Despite our preferences for
using an automated method for the tuning process (e.g., grid
search or Bayesian optimization), which was already
employed in other works [14, 15], the hundreds of hyper-
parameters combinations and the long time consumed by
each training session made this strategy unfeasible. Instead,

the tuning was carried out based on previous knowledge and
mainly insights from the publications of the VGG16 network
[33], batch normalization [35], and dropout [36].

To make better use of processing time and memory
resources, we set the TensorFlow mixed-precision config-
uration to employ both 16-bit and 32-bit floating-point types

Table 1: Subjects’ demographic and phenotypic information.

Data set N Male (%) Female (%) Age, y± SD Age range, y HC (%) ASD (%) ADHD (%)
ABIDE-II 580 73.8 26.2 12.12± 3.16 6.0–20.0 56.7 43.3% —
ADHD-200 922 63.1 36.9 11.72± 2.99 7.1–19.9 61.3 — 38.7%
+e number of subjects (N) is shown in numbers, while age is in years± standard deviation and in range of minimum–maximum years of age.

ABIDE-II

ADHD-200

6 8 10 12 14 16 18 20
Age, y

Female
Male

Figure 1: Subjects demographic distribution of ABIDE-II and ADHD-200 data sets. Vertical dotted lines show the quartiles. Ages are
presented in years.
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Flatten
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Figure 2: 3D convolutional neural network multitask learning model. +e processing steps through the layers allow the extraction of
increasingly complex brain features. While batch normalization allows faster network convergence, dropout plays an important role in
increasing generalization. Due to the mechanisms of multitask learning architecture, such as data amplification and attribute selection, the
shared features allow faster convergence and better generalization.
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during the training phase (https://www.tensorflow.org/
guide/mixed_precision). We also padded and trimmed the
brain input matrix, which originally had the size of
121× 145×121 to 128×128×128. +is step only affected
background voxels (outside the brain) whose values were all
equal to −1. +is procedure followed the TensorFlow per-
formance guide, which states that feature matrices multiples
of 8 or 128 should be used for best memory usage
(https://cloud.google.com/tpu/docs/performance-guide).

To optimize the objective loss, we opted for a gradient-
based method with adaptive learning rates named Adam
[38]. +e initial Adam’s learning rate was set to 1× 10−3, and
the exponential decay rates for the first and second estimate
moments were, respectively, set to 0.9 and 0.999. +e loss
weights from the objective function were not tuned and may
be further explored in an upcoming study.

For the training sessions, the batch size was set to 32
examples, which is the maximum size that fitted in memory.
As our model deals with distinct target variables with dif-
ferent data distributions at the same time (i.e., age, gender,
and mental health status), we opted to do not balance the
classes at the batch level. +us, the examples were just
randomly shuffled before the batch splits. +e number of
epochs was set to 1000, and a custom early stopping tech-
nique was implemented to stop the training process every
time there was no improvement of at least one of the output
losses in the validation set for 75 consecutive epochs. Fol-
lowing this strategy, most (75%) training sessions ended
after running from 150 to 300 epochs. Additionally, we
employed a technique calledmodel checkpoint.+erefore, at
the end of each epoch, the model was evaluated against the
validation set, and the best-performing model parameters
for each task were saved. +is strategy provides three model
versions at the end of each training session: one performing
better to predict gender, another performing better to
predict age, and the last performing better to predict psy-
chiatric disorder.

At a first glance, one may argue that it is counterintuitive
to save different model versions from the same multitask
learning based model. However, we found in our prelimi-
nary tests that this schema reduced the models’ training until
convergence by three times, when compared to the time
spent to train three different single-task models. Addi-
tionally, this approach helped (1) to prevent overfitting, by
saving the model weights at the optimum training point, and
(2) to generate model versions trained to best extract the
relevant features for its main task. We used the lowest loss of
each output (i.e.,Mean Squared Error for age prediction and
Binary Cross-Entropy for gender and psychiatric disorder
predictions) as the metrics to automatically save the best
checkpoints.

2.6. Test Procedure. Each data set (ABIDE-II and ADHD-
200) was stratified (i.e., balanced) by mental health status
(i.e., HC, ASD, and ADHD), randomly shuffled, and split in
a 10-fold cross-validation custom scheme. Accordingly, data
is initially split into 10 partitions and, in every training
round, 1 partition is chosen for the test set. +en, from the 9

remaining partitions, the first 8 are assigned to the training
set and the last 1 is assigned to the validation set (see
Figure S1 in the Supplementary Materials). +is cross-val-
idation scheme resulted in 10 training rounds for each data
set. For each round, the corresponding training set was used
to train the network. +e remaining validation set was
employed to automatically save the best-performing models
through the previously described model checkpoint tech-
nique. +e test sets were kept untouched until the models
were fully trained so that the performance of the final models
could be assessed on an unbiased and unexplored data set.
+is custom validation scheme takes advantage of the ro-
bustness of a nested (double) cross-validation while pre-
serving the lower time consumption of a nonnested cross-
validation scheme.

For each training round of the 10-fold cross-validation,
we obtained three final trained models: (1) optimized for
gender, (2) optimized for age, and (3) optimized for psy-
chiatric disorder classification. +ese models were evaluated
as follows:

(a) All models trained with ABIDE-II data were eval-
uated on their corresponding test set

(b) All models trained with ADHD-200 data were
evaluated on their corresponding test set

(c) +e best-performing model trained with ABIDE-II
data to predict age was evaluated across the full
ADHD-200 data set

(d) +e best-performing model trained with ABIDE-II
data to predict gender was evaluated across the full
ADHD-200 data set

(e) +e best-performing model trained with ADHD-200
to predict age was evaluated across the full ABIDE-II
data set

(f ) +e best-performing model trained with ADHD-200
to predict gender was evaluated across the full
ABIDE-II data set

+e chosen metrics to evaluate the models’ perfor-
mance in the regression task of predicting age were MAE
(mean absolute error), Pearson’s correlation, P value of the
Pearson’s correlation, and R2-score (also known as pre-
diction R2, cross-validation R2 or q2, which best assesses
numerical accuracy for regression tasks [39]). For the tasks
of predicting gender and psychiatric disorder, we used
precision (specificity measure), recall (sensibility measure),
F1-score (harmonic mean between precision and recall),
and AUC-ROC (area under the receiver operating charac-
teristic curve). +e F1-score was chosen (instead of the
simple accuracy) due to its capability to evaluate unbal-
anced data better.

+e use of unbalanced data for the gender and mental
health status classifications can bias the models towards
classifying minority cases as majorities [40]. To address
this issue, we employed a ROC operating point selection
that maximizes the harmonic mean between sensitivity
and specificity [40]. +at is, for each trained model, we use
the validation data to find the cutoff value that best
maximizes the balance between sensitivity and specificity.
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+e chosen cutoff value is then used to collect the metrics
from the test data.

2.7. Model Interpretability. In general, artificial neural
networks have been known for their low interpretability
level, sometimes being labeled as a “black box” providing
little or no insight into the nature of data [14, 15]. +e
explanation of image-based artificial neural networks re-
mains a challenge in the healthcare domain. To address this
issue, we employed an algorithm called SmoothGrad [21]. It
produces a sensitivity map of the voxels that most contribute
to the neural network decisions by measuring the impact
that small perturbations applied to input images produce in
the output gradients. Although SmoothGrad uses the same
basic methodology as other algorithms, it has the advantage
of producing sharpen results due to the strategy of applying
different perturbations to the same input image. Moreover, it
averages the resulting maps, producing a better smoothing
effect [21]. +e present study employed the SmoothGrad
algorithm through the open-source library implementation
called tf-keras-vis (available at https://pypi.org/project/tf-
keras-vis).

As quoted in the original paper [21], the sensitivity map
algorithms often produce signed values. +erefore, there is
considerable ambiguity in how to convert these signed
values to visualization colors, as the direction of the gradient
is context-dependent. To solve this ambiguity, we opted for
using the absolute values of the gradients, which has the
potential of producing clearer pictures [41] and was also
proposed by SmoothGrad authors [21]. During the attention
maps generation, the noise level was set to 20%, and the
number of samples (sample size) for each input image was
set to 5. Although the SmoothGrad paper shows increasing
definition in the produced maps as the sample size is
incremented, the processing time for this task is directly
proportional to the sample size. +erefore, higher sample
size values proved to be unfeasible given our limited
hardware resources. Furthermore, we verified in a prelim-
inary test that setting sample size to 10 produced the same
top ROIs as setting the chosen configuration of 5. As our
models have three outputs, we had to set to zero all outputs
that were not the ones chosen for measurement (e.g., while
generating the age sensitivity map, we set the gender and
psychiatric disorder outputs to zero).

Attention maps were generated for the final models of
each of the 10 cross-validation folds from their corre-
sponding test set. +ese maps were first averaged from their
test set examples and then were normalized and averaged
across all the 10 training rounds, resulting in an attention
map for each task (i.e., predicting age, gender, or psychiatric
disorder) and for each data set (ABIDE-II and ADHD-200).
+is strategy allowed for capturing common structural brain
regions that are most descriptive for the models’ decision-
making in each task.

As the final generated maps have the same 3D shape of
the input images (localized in the MNI space), we could
identify the most predictive brain ROIs taking the inter-
section between the attention maps and the AAL3 3D brain

atlas [22]. Finally, the maps were rendered in the MRIcron
viewer (https://www.nitrc.org/projects/mricron) to provide
more interpretable brain visualizations.

2.8. Experiments Setup. +e sMRI processing steps were
done through the software SPM12 v7771, Python v3.6.9, and
TensorFlow v2.1.0, running on a local Linux desktop (CPU
3.2GHz Octa Core, 32GB ram). After the sMRI processing,
the TFRecord files were uploaded to a Google Cloud storage
bucket.

Our machine learning experiments were conducted
using a Google Colab instance (https://colab.research.
google.com/): CPU 2.3GHz Dual Core, 12GB ram, at-
tached to a Cloud TPU v2 (180 teraflops/s speed and 64GB
ram), connected to the aforementioned storage bucket,
Trough Python v3.6.9, and TensorFlow v2.3.

3. Results

+e training and testing phases occurred successfully with
adequate processing time for all models. Output metrics
collected showed that CNN3Dmodels were able to learn and
predict age and gender with a high confidence level in both
ABIDE-II (MAE� 1.63± 0.28, AUC� 0.82± 0.06) and
ADHD-200 (MAE� 1.43± 0.22, AUC� 0.85± 0.04) data
sets. For both age and gender predictions, models trained on
ADHD-200 data had slightly higher performance than those
trained on ABIDE-II, including when we evaluated the best-
performing cross-validation models from one data set across
the other distinct full data set (MAE� 1.57, AUC� 0.89 vs
MAE� 1.64, AUC� 0.79).

For the age prediction, the ADHD-200 models evaluated
in a 10-fold cross-validation scheme on the test set obtained
an MAE (mean absolute error) of 1.43 years, reaching a
mean Pearson correlation of 0.84 between the correct targets
and the models’ predictions and a mean R2-score (also
known as prediction R2, cross-validation R2 or q2) of 0.62.
+e best-performing model of the aforementioned cross-
validation, which was trained with ADHD-200 data,
achieved an MAE of 1.21 years on its corresponding test set,
and when evaluated across the full ABIDE-II data set, it
reached an MAE of 1.57 years and a Pearson correlation of
0.75 between targets and predictions (see Figure 3).

For gender prediction, the ADHD-200 models evaluated
in a 10-fold cross-validation scheme on the test set obtained
a mean AUC-ROC of 0.85, with precision� 0.84, recall-
� 0.81, and F1-score� 0.83. +e best-performing model of
the above-mentioned cross-validation, which was trained
with ADHD-200 data, achieved an AUC-ROC of 0.91 on its
corresponding test set, and when evaluated across the full
ABIDE-II data set, it achieved an AUC-ROC of 0.89, with
precision� 0.90, recall� 0.87, and F1-score� 0.89 (see
Figure S2 in the Supplementary Materials).

For psychiatric disorder classifications, the models had
poor learning, performing close to the random guessing. +e
ADHD-200 models evaluated in 10-fold cross-validation on
the test set obtained a slightly better performance predicting
ADHD (AUC-ROC� 0.61), while the models trained on
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ABIDE-II to predict ASD obtained a mean AUC-ROC� 0.54.
All the evaluated metrics are presented in Table 2.

To access the statistical impact of the total brain volume
on estimations, we calculated the AUC-ROC and Person’s
correlation (r), respectively, to gender and age concerning
the sum of brain voxels from each subject. +us, the ABIDE-
II data (N� 588) yielded AUC-ROC� 0.76 and r� 0.03,
while the ADHD-200 data (N� 922) resulted in AUC-
ROC� 0.79 and r< 0.001. +ese results show that total brain
volume is not related to age, while it may have influenced
gender estimations. However, the focus of our work is the
study of neurodevelopment, which is assessed mainly
through age estimations.

+e top 10 most representative ROIs from ADHD-200
models to classify gender are cingulate posterior gyrus (left
and right), anteroventral thalamus (left and right), lateral
posterior thalamus (right), mediodorsal lateral thalamus
(right), mediodorsal medial thalamus (left and right), ventral
anterior thalamus (right), and ventral lateral thalamus
(right). In the ABIDE-II sample, the top 10 most repre-
sentative ROIs comprised calcarine fissure (right), cingulate
posterior gyrus (right), cerebellum lobe III (left), lingual
gyrus (right), rolandic operculum (left), substantia nigra
pars reticulata (left), pulvinar lateral thalamus (right), pul-
vinar medial thalamus (right), and vermis (lobes III and IV-
V). +e cingulate posterior gyrus (right) emerged as a top
ROI on both ADHD-200 and ABIDE-II models for gender
prediction.

Among age prediction models, the substantia nigra pars
reticulata (left) arose in the top ROIs of both ADHD-200 and
ABIDE-II models. ADHD-200 models retrieved the fol-
lowing regions as the top 10 ROIs: cingulate posterior gyrus
(right), precentral gyrus (right), rolandic operculum (right),
globus pallidus (left), substantia nigra pars reticulata (left),
intralaminar thalamus (left), lateral geniculate thalamus
(left), medial geniculate thalamus (left), pulvinar lateral

thalamus (left), and vermis (lobes IV-V). ABIDE-II models
top 10 focused ROIs comprised the following regions: the
amygdala (right), middle cingulate (right), olfactory cortex
(right), paracentral lobule (right), ventral tegmental area
(right), vermis (lobes III and X), substantia nigra pars
compacta (right), and substantia nigra pars reticulata (left
and right). Interestingly, the vermis lobe III arose as a fo-
cused top 10 prediction ROI for gender and age in ABIDE-II
models, and the vermis lobes IV-V emerged for both gender
and age predictions in both samples. A compilation of the
top-focused ROIs is depicted in Figure S3 in the Supple-
mentary Materials.

As previously explained, model interpretability of artificial
neural networks is sometimes challenging, which limits its
applicability in clinical scenarios. +erefore, these models are
deemed to be “black box,” with little practical impact. However,
we implemented a visualization approach to add to themodels’
interpretability. In Figure 4, we present an implementation of
this procedure by adding the averaged gradients’ attention
maps as an overlayed layer of an MRIcron’s brain template. It
shows a practical example of visual outputs from artificial
neural networks, where the top 10 predictive ROIs from
gradients attention maps were accurately plotted in a clinically
relevant representation of the brain.

4. Discussion

In this study, we transformed brain sMRI of youth via VBM,
from large and heterogeneous data sets, and used the re-
sultant GM and WM as input for training 3D’s convolu-
tional neural network with multitask learning models to
predict age, gender, and psychiatric disorder. +en, the
resultant trained models were used to map the top repre-
sentative ROIs for the tasks of predicting age and gender. To
achieve consistency and avoid biased results, we used a set of
methods in line with the literature’s best practices.
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Figure 3: Scatter plots between predicted and target ages. (a) Ages prediction on the test set from the best-performing model of ADHD-200
10-fold cross-validation. (b) +e same best-performing model, which was trained with ADHD-200 data, evaluated across the full ABIDE-II
data set. Note. r: Pearson’s correlation between predicted and target ages, MAE: the mean absolute error of the predictions, and n: the
evaluated sample size.
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+e ADHD-200-trained models had a slightly better
performance than the models trained with ABIDE-II data,
possibly because the first data set has higher homogeneity in
data than the second [12]. +e cross-data set evaluation
proved the models’ generalization capability to predict age
and gender with high confidence even in unknown data sets
with distinct confounding variables such as type of psy-
chiatric disorder, scanner acquisition parameters, and
subjects’ distribution of age and gender.

To the best of our knowledge, the performance of our
approach is in line with the state-of-the-art in brain aging
detection, achieving an MAE� 1.43 years in 10-fold cross-
validation on the test set. A study ofWang and coworkers [42]
reached an MAE� 1.38 years in a subset from ADHD-200
with a similar age range to ours; however, their results were
only based on healthy individuals, and their approach
employed handcrafted feature extraction and selection based
mainly on cortical thickness and curvatures. Another study,
by Franke and colleagues [43], achieved an impressive

MAE� 1.1 years in one of their test partitions and an
MAE� 1.22 years from the averaged performance from all six
test partitions. Unlike our work, Frank and coworkers
employed a data set [44] acquired using a unified set of
scanner parameters, from healthy subjects only, after rigorous
filtering for dozens of confounding factors that could influ-
ence the healthy brain maturation during childhood and
adolescence (i.e., individuals with preterm birth, alcohol or
drug abuse during the gestational period, low IQ, and dozens
of other confounding factors were excluded). Greater data
uniformity, combined with smaller sample sizes, than that
employed by us possibly provided good conditions so that
both studies could achieve high accuracy [42,43], although it
may have occurred at the cost of generalizability [12]. Dif-
ferent from our approach, these studies [42,43] employed a
machine learning algorithm called relevance vector machine
(RVM) [45], which is a Bayesian alternative to support vector
machine. +erefore, RVM has the advantage of requiring less
computational power than CNN3D.

Table 2: Performance metrics of the test procedure.

Regression models n MAE, y r P value R2-scr
Age: ABIDE-II 10-fold CV on test set 58 1.63± 0.28 0.76± 0.07 <0.001 0.54± 0.1
Age: ABIDE-II model on ADHD-200 full data 922 1.64 0.72 <0.001 0.50
Age: ADHD-200 10-fold CV on test set 92 1.43± 0.22 0.84± 0.04 <0.001 0.62± 0.08
Age: ADHD-200 model on ABIDE-II full data 580 1.57 0.75 <0.001 0.56
Classification models n Precision Recall F1-scr AUC-ROC
Gender: ABIDE-II, 10-fold CV on test set 58 0.87± 0.06 0.80± 0.08 0.83± 0.04 0.82± 0.06
Gender: ABIDE-II model on ADHD-200 full data 922 0.76 0.80 0.78 0.79
Gender: ADHD-200, 10-fold CV on test set 92 0.84± 0.03 0.81± 0.06 0.83± 0.03 0.85± 0.04
Gender: ADHD-200 model on ABIDE-II full data 580 0.90 0.87 0.89 0.89
ASD: ABIDE-II, 10-fold CV on test set 58 0.46± 0.04 0.70± 0.18 0.55± 0.06 0.54± 0.06
ADHD: ADHD-200, 10-fold CV on test set 92 0.48± 0.07 0.55± 0.20 0.50± 0.11 0.61± 0.07
+e performance indicators from 10-fold cross-validation are presented in their averaged values± standard deviation.+e chosenmodel for the cross-data set
evaluation is the best-performing model of 10-fold cross-validation. For the column titles, r is the Pearson’s correlation between predicted and target ages, n is
the sample size, and R2-scr is the prediction R2 (also known as cross-validation R2 or q2). Values in bold are metrics of the best-performing trained models.
ASD: autism spectrum disorder; ADHD: attention deficit hyperactivity disorder.
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Figure 4: Top ROIs from gradients’ attention maps perspective. (a) Top regions to predict the age by averaged attention of 10-fold ADHD-
200 models. (b) Top regions to predict the gender by averaged attention of 10-fold ABIDE-II models. L: left, A: anterior, P: posterior, S:
superior.
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Another study employed a CNN3D to predict age from
brain sMRI in raw format versus sMRI processed by VBM.
Cole and colleagues [46] achieved slightly better perfor-
mance when they used VBM (MAE� 4.16 years) in com-
parison to raw sMRI (MAE� 4.66 years). However, they
have only evaluated healthy subjects, with ages ranging from
18 to 90 years of age. +erefore, these differences do not
allow a direct comparison of the model performance to our
work. Additionally, unlike our study, Cole and coworkers
[46] did not assess brain biomarkers (ROIs) from their
model’s predictions.

Although our approach presented a high capability to
learn how to estimate age and gender, it did not perform well
in classifying psychiatric disorders, achieving modest AUC-
ROC and F1-score metrics when differentiating between
HC, ASD, and ADHD. +erefore, the results show that our
models were close to the random guessing for these tasks.
Possibly, the underlying structural alterations from these
conditions are subtle enough so that they are not efficiently
detectable by CNN3D trained with sMRI from large and
heterogeneous data sets. In psychiatric disorders, large and
heterogeneous data samples tend to deliver high confidence
and generalization power. However, at the same time, they
tend to lead to low accuracies, which is an important lim-
itation that possibly has also affected our main results [12].
Another source for investigation, in future work, is to
evaluate the effect of tuning the weights from the objective
loss function to prioritize the mental health status classifi-
cation. +e dynamic task prioritization for multitask
learning [47] seems to be an interesting approach for this
goal. +is method proposes the dynamic adjustment of loss
weights across the training process to prioritize the most
difficult tasks.

+e brain ROIs we identified (see Results) as being most
representative for gender and age detection come in line
with several distinct studies that reported these regions as
being related to differentiation of gender, aging, or both
[48–54].

For gender, Witte and coworkers [48] used Statistical
Parametric Mapping to calculate GM volume differences
between men and women, and among other statistically
significant findings, they discovered that men had more GM
than women in vermis, cerebellum, and right calcarine,
while women had more GM than men in the lingual gyrus.
Another study, by Menzler and colleagues [49], employed
diffusion tensor MRI to discover microstructural differences
between genders in the WM of the thalamus; Menzler and
coworkers [49] also found differences in the cingulum
confirming previous works, suggested that their findings
were due to differences in myelination or glial cell mor-
phometry, and stated that previous functional MRI studies
found gender differences in thalamic activation during the
processing of emotional stimuli or unpleasant linguistic
information. Recent findings suggest that not only gender
but also pubertal status may influence brain development
[55]. +us, the role of these features can be a source of
further exploration in future work.

For age-related ROIs, Tomasi and Volkow [53] used
functional MRI to evaluate the functional connectivity

density (FCD) of networks concerning brain aging of
healthy subjects and found that a long-range FCD in the
default-mode network (DMN), which includes the posterior
cingulate, decreased with age, while FCD in other two
subcortical networks including thalamus and amygdala
increased with age; more recently, an improved neuroana-
tomical model of DMN [56] not only included amygdala and
thalamus in DMN but found that the thalamus has a cen-
trality role in DMN. Another study used functional MRI [54]
to find that in children the ventral tegmental area had lower
connectivity to the amygdala and higher ventral tegmental
area connectivity to the thalamus, globus pallidus, and
vermis than in adults; this study [54] also revealed that in
children the substantia nigra had higher connectivity to the
amygdala, globus pallidus, and thalamus than in adults, and
similarly the connectivity of language areas (including
rolandic operculum) and middle cingulate was weaker with
the ventral tegmental area than with substantia nigra for
adults.

Taking it collectively, the morphological changes de-
tected by our models and confirmed in other studies [48–54]
are possibly related to the highly coordinated and sequenced
events characterized by both progressive (myelination) and
regressive (synaptic pruning) processes, which alter WM
and GM volumes with different patterns for each gender,
and are most dynamic from childhood to early adulthood
[57].

+ese findings reinforce our hypothesis that CNN3D is
able to detect complex brain morphological features, pre-
viously detectable by high-resolution diffusion tensor MRI
and by functional MRI. Following Pinaya [15], while the
standard mass-univariate techniques consider each brain
structure as an independent unit, multivariate methods
(such as the one we used) may be additionally based on
interregional correlations leading individual regions to
present high discriminative power due to two possible
reasons: (a) a difference in volume/thickness between groups
in that region; (b) a difference in the correlation between that
region and other areas between groups. +erefore, dis-
criminative brain networks are best interpreted as a spatially
distributed pattern rather than as individual regions.

As our multitask learning architecture is optimized to
perform all tasks at the same time (i.e., predicting gender,
age, and psychiatric disorder), the learning process in the
common model’s body may favor the extraction of the brain
features that are relevant to more than one task. On the other
hand, each specific output block is exclusively optimized,
selecting only the appropriate set of features that best help to
accomplish its unique individual task.

Due to the complexity arising from the nonlinearity of
artificial neural networks, our methods do not allow map-
ping the differences inside ROIs that are relevant to the
models’ decisions, that is, which patterns of increase/de-
crease in cortical volume of focused ROIs are accountable for
a given model decision. Another limitation of the current
study is that it does not explain the obtained performance
results, that is, which methods are accountable for which
performance improvements. +erefore, this topic is still
open and can be further explored in future work.

Computational Intelligence and Neuroscience 9



Our approach was not sufficient to adequately classify
ASD and ADHD. In contrast, the performance and gen-
eralization power achieved in predicting age (i.e., neuro-
development) can pave the way for future work through the
indirect estimation of psychiatric disorders. By training our
model to predict the age of healthy individuals only (to be
done), psychiatric conditions can be estimated by calculating
the difference between the brain’s predicted age and the
individual’s chronological age [46]. Increased brain pre-
dicted age has been detected in individuals progressing to
Alzheimer’s, in schizophrenia, in epilepsy, and Down’s
syndrome [58–61]. At the same time, decreased brain pre-
dicted age has been used to highlight the protective influ-
ences exerted by meditation, by increase in education levels,
and by physical exercises [62, 63].

5. Conclusions

In conclusion, this study proved the ability of CNN3D
models trained with GM and WM, processed via VBM, to
accurately estimate age (i.e., neurodevelopment) and gender.
+erefore, the achieved results endorse the hypothesis that
our approach is able to detect complex brain patterns. Al-
though the models were not able to efficiently differentiate
between HC, ASD, and ADHD, the high performance and
generalization power achieved in age estimation can pave the
way for future work, through the indirect estimation of
psychiatric disorders. +e strategy of generating 3D brain
saliency maps via SmoothGrad [21] and intersecting the
results with the 3D AAL3 brain atlas [22] was successfully
achieved. +erefore, it provided clinically relevant identifi-
cation of most representative biomarkers (ROIs) during
models’ decisions and proved to be a viable alternative to
deal with the well-known low interpretability problem of
deep learning models. Finally, the results achieved by the
presented approach reinforce the hypothesis that it can be
successfully adapted to tackle a varying set of problems
involving brain morphological alterations.

Data Availability

+e data used in this study were obtained from two public
data sets: Autism Brain Imaging Data Exchange II (ABIDE-
II) and Attention Deficit Hyperactivity Disorder (ADHD-
200). Both data sets can be downloaded from the Neuro-
Imaging Tools & Resources Collaboratory Image Repository
(NITRC-IR: https://www.nitrc.org/ir/). +e data were col-
lected and made publicly available according to the re-
sponsibility and approval of the given local ethics by each
project. Detailed information for these data sets and their
acquisition parameters can be retrieved from ABIDE-II
(http://fcon_1000.projects.nitrc.org/indi/abide/abide_II.
html) and ADHD-200 (http://fcon_1000.projects.nitrc.org/
indi/adhd200/).
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Figure S1 schematically demonstrates the adopted custom
validation scheme, which takes advantage of the robustness
of a nested cross-validation while preserving lower time
consumption. Figure S2 displays the confusion matrices
from the best-performing ADHD-200 model classifying
gender on its test set and across the full ABIDE-II data set.
Figure S3 presents the most representative brain regions to
estimate age and gender from ADHD-200- and ABIDE-II-
trained models. (Supplementary Materials)
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