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Abstract: We have previously reported that inhibition of the Janus kinase 1 (JAK1) signaling amelio-
rates IL-17A-mediated blood-retinal barrier (BRB) dysfunction. Higher levels of IL-17A have been
observed in the blood and intraocular fluids in patients with diabetic retinopathy (DR), in particular
those with diabetic macular oedema. This study aimed to understand whether JAK1 inhibition could
prevent BRB dysfunction in db/db mice, a model of type 2 diabetes (T2D). An in vitro study showed
that high glucose treatment disrupted the junctional distribution of claudin-5 in bEnd3 cells and ZO-1
in ARPE19 cells and that tofacitinib citrate treatment prevented high glucose-mediated tight junction
disruption. Albumin leakage, accompanied by increased levels of the phosphorylated form of JAK1
(pJAK1), was observed in three-month-old db/db mice. Treatment of two-and-a-half-month-old
db/db mice with tofacitinib citrate for two weeks significantly reduced retinal albumin leakage and
reduced pJAK1 expression. pJAK1 expression was also detected in human DR retina. Our results
suggest that JAK1 inhibition can ameliorate BRB dysfunction in T2D, and JAK1 inhibitors such as
tofacitinib citrate may be re-purposed for the management of diabetic macular oedema.
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1. Introduction

Globally, 463 million people are affected by diabetes, and the number is predicted
to rise to 700 million by 2045 [1]. Owing to its chronic nature, diabetes leads to many
complications, including nephropathy, neuropathy, and retinopathy. Diabetic retinopathy
(DR) is a complex complication that affects the retinal vasculature and neurons and can
result in blindness. Diabetic macular oedema (DMO), in particular, is often associated with
severe visual loss and occurs both in people with type 1 and 2 diabetes mellitus (T1DM,
T2DM). As the global prevalence of T2DM is increasing rapidly, the number of people
experiencing vision loss from DMO is rising [2,3]. Prevalence of DMO and DR increases
with diabetes duration, and this is confounded by undiagnosed diabetes, which can lead
to disease progression prior to clinical management of diabetes [4]. Blood retinal barrier
(BRB) dysfunction and retinal microvascular degeneration are hallmarks of DR. The related
retinal vascular leakage underpins the pathology of DMO. Current standards of care for
DMO include the intraocular administration of anti-VEGF inhibitors, which have limited
efficacy and require invasive repeat injections, or laser-photocoagulation, which can slow
disease progression but cannot restore vision. Intravitreal injection of steroids or steroid
implant (e.g., Ozurdex) have also been used to treat DMO, particularly for patients who
do not respond to anti-VEGF therapy [5], although steroid-induced complications such as
cataract and glaucoma limit the suitability of steroid-based treatments. More effective and
safer therapies are urgently needed.
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Inflammation has been implicated in the pathogenesis of diabetic complications in
the retina, including DR and DMO. In diabetes, metabolic insults and dysregulated innate
immune cell activation lead to a low-grade chronic inflammation, which drives BRB
dysfunction [6]. The vitreous fluid levels of pro-inflammatory cytokines such as IL-6,
MCP-1/CCL2, and ICAM-1 are related to DMO severity [7–9]. The JAK/STAT signalling
pathway is a master regulator of cytokine signalling, and therefore, using an inhibitor of
any of the JAK/STAT family members may not only be important in the context of direct
inhibition of a JAK/STAT family member, but also in the regulation of downstream signals.
In addition to previously reported roles for the JAK/STAT pathway in signalling from
cytokines such as IL-6 [10] and VEGF [11], we recently reported IL-17A-JAK1-dependent
BRB dysfunction [12]. Many cytokines/growth factors known to be involved in DR and
DMO (e.g., VEGF, IL-6, IL-17A, etc.) are controlled by the JAK/STAT pathway [13,14].
For this reason, we hypothesised that targeting the JAK/STAT signaling pathway might
be more effective than targeting one cytokine alone, such as with the use of anti-VEGF
antibodies, particularly in the context of diabetes mediated BRB breakdown.

In this study, we investigated the effect of the JAK1 inhibitor tofacitinib citrate in
DR-related BRB leakage in a mouse model of T2DM, the BKS.Cg-Dock7m+/+LeprdbJ mice
(referred as db/db in this paper). The db/db mice recapitulate several key hallmarks of
diabetic retinopathy, including glial activation, neuroretinal thinning, ERG abnormalities
and changes in visual function, GLAST downregulation [15,16], increased leukostasis
and acellular capillaries [17], and vascular leakage [18]. We found that pJAK1 expression
was increased in the retina of db/db mice, and that treatment with the JAK1/2 inhibitor
tofacitinib citrate significantly reduced BRB leakage in these mice.

2. Results
2.1. Tofacitinib Citrate Protected iBRB and oBRB Tight Junctions under High-Glucose Conditions

We used bEnd.3 endothelial and ARPE19 monolayer cultures as the inner BRB (iBRB)
and outer BRB (oBRB) models to study the effect of tofacitinib citrate on high-glucose
induced BRB damage. The iBRB structure was demonstrated using claudin-5 staining;
whereas the ZO-1 was used to illustrate oBRB in ARPE19 cells (Figure 1). Under normal
culture conditions, bEnd.3 cells have elongated morphology and claudin 5 junctions around
the cell borders, whereas under 25 mM glucose (High Glucose, HG) treatment (three days),
cell morphology became more rounded (asterisk, Figure 1A), and claudin 5 junction
integrity was reduced (arrows, Figure 1A). Corresponding levels of D-mannitol (HM), used
as an osmotic control, exhibited similar junctions to untreated cells. Cells treated with
tofacitinib citrate and HG did not display the same damaged phenotype as cells treated
with HG alone, while cells treated with vehicle and HG displayed a phenotype similar to
HG-treated cells (Figure 1A).

Under normal culture conditions, ARPE-19 cells have cobblestone-morphology and
ZO-1 junctions around the cell borders (Figure 1B), whereas under HG treatment (three days),
this cobblestone morphology appeared disrupted (open arrow, Figure 1B). Co-treatment
with tofacitinib citrate ameliorated this effect of HG on tight junctions. Vehicle control
did not protect tight junctions from HG-mediated damage (open arrow, Figure 1B). The
osmotic control (HM) had no effect on RPE tight junctions (Figure 1B).
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Figure 1. The effect of tofacitinib citrate on high glucose-induced tight junction dysmorphia. UT = 
untreated control. To mimic hyperglycaemia, cells were treated with physiologically high levels (25 
mM) of D-glucose (HG) or D-mannitol (HM). Co-treatment with tofacitinib citrate (Tofa) (4.955 µM) 
or vehicle control (Veh) were used to investigate the effect of JAK1 inhibition on HG-induced junc-
tional protein morphology. Immunostaining for cell nuclei (DAPI in blue) and junctional proteins 
(red) claudin 5 in bEnd.3 endothelial cells (A) and ZO-1 in ARPE-19 RPE cells (B). Arrows in (A) 
indicating disruption of claudin 5; asterisk in (A) indicating a rounded endothelium. Open arrows 
in (B) indicating ZO-1 disruption in ARPE19 cells. Representative images of n = 3 independent ex-
periments. 

Under normal culture conditions, ARPE-19 cells have cobblestone-morphology and 
ZO-1 junctions around the cell borders (Figure 1B), whereas under HG treatment (three 
days), this cobblestone morphology appeared disrupted (open arrow, Figure 1B). Co-
treatment with tofacitinib citrate ameliorated this effect of HG on tight junctions. Vehicle 
control did not protect tight junctions from HG-mediated damage (open arrow, Figure 
1B). The osmotic control (HM) had no effect on RPE tight junctions (Figure 1B). 

2.2. Albumin Leakage in db/db Mice 
To understand at which time point BRB leakage occurred in the db/db mice, we con-

ducted dual staining of vascular endothelial cells (isolectin B4) and albumin (an indicator 
of vascular leakage) in retinal sections collected from different ages of db/db (2.5–7 
months) mice and wild-type mice. Albumin detected outside the endothelial cells was 
considered to indicate iBRB leakage (Figure A1A). Our results showed that db/db mice 
have elevated albumin leakage at three months of age (Figure A1B). Albumin leakage into 
the neuroretina at three-month-old db/db mice was confirmed to be significantly elevated 
compared to age-matched control non-diabetic heterozygous mice (Figure 2). 

Figure 1. The effect of tofacitinib citrate on high glucose-induced tight junction dysmorphia.
UT = untreated control. To mimic hyperglycaemia, cells were treated with physiologically high
levels (25 mM) of D-glucose (HG) or D-mannitol (HM). Co-treatment with tofacitinib citrate (Tofa)
(4.955 µM) or vehicle control (Veh) were used to investigate the effect of JAK1 inhibition on HG-
induced junctional protein morphology. Immunostaining for cell nuclei (DAPI in blue) and junctional
proteins (red) claudin 5 in bEnd.3 endothelial cells (A) and ZO-1 in ARPE-19 RPE cells (B). Ar-
rows in (A) indicating disruption of claudin 5; asterisk in (A) indicating a rounded endothelium.
Open arrows in (B) indicating ZO-1 disruption in ARPE19 cells. Representative images of n = 3
independent experiments.

2.2. Albumin Leakage in db/db Mice

To understand at which time point BRB leakage occurred in the db/db mice, we con-
ducted dual staining of vascular endothelial cells (isolectin B4) and albumin (an indicator of
vascular leakage) in retinal sections collected from different ages of db/db (2.5–7 months)
mice and wild-type mice. Albumin detected outside the endothelial cells was considered
to indicate iBRB leakage (Figure A1A in Appendix A). Our results showed that db/db mice
have elevated albumin leakage at three months of age (Figure A1B). Albumin leakage into
the neuroretina at three-month-old db/db mice was confirmed to be significantly elevated
compared to age-matched control non-diabetic heterozygous mice (Figure 2).
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Figure 2. Albumin leakage in db/db and control db/m mice at 3 months of age. Immunostaining for 
leakage marker albumin and blood-vessel marker isolectin B4 were performed on retinal sections 
from 3-month old db/db and db/m mice. (A) Representative images of DAPI (blue), isolectin B4 (red) 
and albumin (green) staining in control (db/m) and diabetic (db/db) mice, n ≥ 5 animals per group. 
Arrow indicating extravascular albumin. GCL—ganglion cell layer; IPL—inner plexiform layer; 
INL—inner nuclear layer; OPL—outer plexiform layer; ONL—outer nuclear layer. (B) Quantifica-
tion of albumin extravasation. Mean ± SD, ** p < 0.01, by unpaired t-test. 

Having shown BRB leakage in three-month-old db/db mice, we then examined 
pJAK1 expression in the neuroretinas of db/m and db/db mice (Figure 3). Indeed, elevated 
pJAK1 levels were found in the neuroretinas of db/db mice compared to db/m mice (Fig-
ure 3). 

 
Figure 3. pJAK1 expression in 3-month old db/db mouse retinas. (A) Representative images of 
pJAK1(red) immunostaining, n ≥ 8 animals per group. GCL—ganglion cell layer; IPL—inner plexi-
form layer; INL—inner nuclear layer; OPL—outer plexiform layer; ONL—outer nuclear layer. (B) 
Quantification of pJAK1 expression in the neuroretina of db/db mice compared to heterozygous 
non-diabetic controls. Mean ± SD, * p < 0.05, by unpaired t-test. 

2.3. The Effect of Tofacitinib Citrate on Albumin Leakage in db/db Mice 
Having identified that pJAK1 levels were elevated in db/db mouse retinas, we then 

examined whether JAK1 inhibitor tofacitinib citrate could ameliorate BRB leakage in these 
mice. Firstly, we examined the effect of this inhibitor on blood glucose levels (Figure 4). 
The baseline glucose level was significantly higher in db/db mice than that in db/m mice 
(Figure 4A). There were no changes from baseline glucose following the two-week treat-
ment with tofacitinib citrate, when sexes were analysed together (Figure 4B), or when fe-
male mice (Figure 4C) or male mice (Figure 4D) were analysed separately. As expected, 

Figure 2. Albumin leakage in db/db and control db/m mice at 3 months of age. Immunostaining for leakage marker
albumin and blood-vessel marker isolectin B4 were performed on retinal sections from 3-month old db/db and db/m mice.
(A) Representative images of DAPI (blue), isolectin B4 (red) and albumin (green) staining in control (db/m) and diabetic
(db/db) mice, n ≥ 5 animals per group. Arrow indicating extravascular albumin. GCL—ganglion cell layer; IPL—inner
plexiform layer; INL—inner nuclear layer; OPL—outer plexiform layer; ONL—outer nuclear layer. (B) Quantification of
albumin extravasation. Mean ± SD, ** p < 0.01, by unpaired t-test.

Having shown BRB leakage in three-month-old db/db mice, we then examined pJAK1
expression in the neuroretinas of db/m and db/db mice (Figure 3). Indeed, elevated pJAK1
levels were found in the neuroretinas of db/db mice compared to db/m mice (Figure 3).
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Figure 3. pJAK1 expression in 3-month old db/db mouse retinas. (A) Representative images of
pJAK1(red) immunostaining, n ≥ 8 animals per group. GCL—ganglion cell layer; IPL—inner
plexiform layer; INL—inner nuclear layer; OPL—outer plexiform layer; ONL—outer nuclear layer.
(B) Quantification of pJAK1 expression in the neuroretina of db/db mice compared to heterozygous
non-diabetic controls. Mean ± SD, * p < 0.05, by unpaired t-test.

2.3. The Effect of Tofacitinib Citrate on Albumin Leakage in db/db Mice

Having identified that pJAK1 levels were elevated in db/db mouse retinas, we then
examined whether JAK1 inhibitor tofacitinib citrate could ameliorate BRB leakage in these
mice. Firstly, we examined the effect of this inhibitor on blood glucose levels (Figure 4).
The baseline glucose level was significantly higher in db/db mice than that in db/m mice
(Figure 4A). There were no changes from baseline glucose following the two-week treatment
with tofacitinib citrate, when sexes were analysed together (Figure 4B), or when female mice
(Figure 4C) or male mice (Figure 4D) were analysed separately. As expected, the endpoint
level of blood glucose in db/db mice was significantly higher than that db/m mice (Figure 4E).
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levels in female (C) and male (D) of different groups of db/m and db/db mice before tofacitinib 
citrate or vehicle treatment. (E) Endpoint blood glucose values in tofacitinib citrate or vehicle treated 
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In both male and female mice, there were no differences across the treatment or gen-
otype groups in body weight, when measured as a percentage of the baseline for each 
animal. When gross body weight was compared, differences were only found between 
genotypes (diabetic obese versus non-diabetic non-obese, Figure 5A), but no differences 
were found between treatment groups (Tofacitinib citrate versus vehicle control, Figures 
5B–D). Two-week treatment with tofacitinib or vehicle did not affect the body weight in 
db/db and db/m mice (Figure 5E).  

These data indicate that tofacitinib citrate is well tolerated by diabetic mice, and it 
does not seem to reduce BRB leakage via reduction of glycaemia. 

Figure 4. Tofacitinib citrate does not alter non-fasting blood glucose levels in db/db and db/m mice. Blood glucose
measurements were taken from all mice between 2–3 pm at the beginning and end of the study. (A) db/db mice have
higher levels of baseline blood-glucose than their db/m mice at 2.5 months of age. **** p < 0.0001 by Mann Whitney test.
(B) Blood glucose levels in different groups of db/m and db/db mice before tofacitinib citrate (Tofa) or vehicle (Veh)
treatment. (C,D) Blood glucose levels in female (C) and male (D) of different groups of db/m and db/db mice before
tofacitinib citrate or vehicle treatment. (E) Endpoint blood glucose values in tofacitinib citrate or vehicle treated db/db and
db/m mice. Mean ± SD, ns = not significant difference, Kruskall-Wallis test.

In both male and female mice, there were no differences across the treatment or genotype
groups in body weight, when measured as a percentage of the baseline for each animal. When
gross body weight was compared, differences were only found between genotypes (diabetic
obese versus non-diabetic non-obese, Figure 5A), but no differences were found between
treatment groups (Tofacitinib citrate versus vehicle control, Figure 5B–D). Two-week treatment
with tofacitinib or vehicle did not affect the body weight in db/db and db/m mice (Figure 5E).
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urements were taken from all mice daily throughout the study. (A) Baseline body weight in db/db 
and db/m mice at 2.5 months of age. **** p < 0.0001, Mann Whitney test. (B) Body weight in different 
groups of db/m and db/db mice before tofacitinib citrate or vehicle treatment. (C,D) Body weight in 
female (C) and male (D) of different groups of db/m and db/db mice before tofacitinib citrate (Tofa) 
or vehicle (Veh) treatment. (E) Endpoint body weight in tofacitinib citrate or vehicle treated db/db 
and db/m mice. Mean ± SD, ns = not significant difference, Kruskall-Wallis test. 

Tofacitinib citrate treatment (daily for two weeks) reduced pJAK1 expression in the 
INL and OPL in the retina of three-month-old db/db mice (Figure A2). The treatment sig-
nificantly reduced albumin leakage in db/db mice compared to vehicle control treatment, 
while it did not affect albumin leakage in non-diabetic mice (Figure 6). 

Figure 5. Tofacitinib citrate does not alter body weight in db/db or db/m mice. Blood weight measurements were taken
from all mice daily throughout the study. (A) Baseline body weight in db/db and db/m mice at 2.5 months of age.
**** p < 0.0001, Mann Whitney test. (B) Body weight in different groups of db/m and db/db mice before tofacitinib citrate
or vehicle treatment. (C,D) Body weight in female (C) and male (D) of different groups of db/m and db/db mice before
tofacitinib citrate (Tofa) or vehicle (Veh) treatment. (E) Endpoint body weight in tofacitinib citrate or vehicle treated db/db
and db/m mice. Mean ± SD, ns = not significant difference, Kruskall-Wallis test.

These data indicate that tofacitinib citrate is well tolerated by diabetic mice, and it
does not seem to reduce BRB leakage via reduction of glycaemia.

Tofacitinib citrate treatment (daily for two weeks) reduced pJAK1 expression in the
INL and OPL in the retina of three-month-old db/db mice (Figure A2). The treatment
significantly reduced albumin leakage in db/db mice compared to vehicle control treatment,
while it did not affect albumin leakage in non-diabetic mice (Figure 6).
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old db/db and db/m mice were treated with tofacitinib citrate or vehicle for 2 weeks. Eyes were then 
collected and stained for isolectin B4 (red) and albumin (green). (A) Representative images showing 
isolectin B4 and albumin in db/m and db/db mice treated with either tofacitinib citrate or vehicle 
control. GCL—ganglion cell layer; IPL—inner plexiform layer; INL—inner nuclear layer; OPL—
outer plexiform layer; ONL—outer nuclear layer. (B) Quantification of albumin extravasation. Mean 
± SD, * p < 0.05, ** p < 0.01 by One Way ANOVA followed by Tukey′s multiple comparisons. 

2.4. pJAK1 Expression in the Human Diabetic Retina 
To understand the potential clinical relevance of pJAK1 as a target in DR manage-

ment, we conducted a pilot study to examine pJAK1 expression in human retina samples 
from patients with no diabetes, diabetes but no clinical retinopathy, and diabetes compli-
cated by retinopathy. pJAK1 was detected in one out of four retinas from non-diabetes 
donors and none in the retina from diabetes patients without DR. In two out of four DR 
patients, we saw increased pJAK1 staining in the neuroretina (Figure 7). These data indi-
cate that at least a subset of DR patients have elevated pJAK1 in their neuroretinas and 
may therefore benefit from tofacitinib citrate treatment. 

 
Figure 7. The expression of pJAK1 in human DR retinas. Retinal sections from non-diabetes, diabe-
tes without retinopathy and diabetes with retinopathy were stained for pJAK1 (purple) and imaged 

Figure 6. The effect of tofacitinib citrate on albumin leakage in db/db mice. Two and a half months old db/db and db/m
mice were treated with tofacitinib citrate or vehicle for 2 weeks. Eyes were then collected and stained for isolectin B4 (red)
and albumin (green). (A) Representative images showing isolectin B4 and albumin in db/m and db/db mice treated with
either tofacitinib citrate or vehicle control. GCL—ganglion cell layer; IPL—inner plexiform layer; INL—inner nuclear layer;
OPL—outer plexiform layer; ONL—outer nuclear layer. (B) Quantification of albumin extravasation. Mean ± SD, * p < 0.05,
** p < 0.01 by One Way ANOVA followed by Tukey′s multiple comparisons.

2.4. pJAK1 Expression in the Human Diabetic Retina

To understand the potential clinical relevance of pJAK1 as a target in DR management,
we conducted a pilot study to examine pJAK1 expression in human retina samples from
patients with no diabetes, diabetes but no clinical retinopathy, and diabetes complicated
by retinopathy. pJAK1 was detected in one out of four retinas from non-diabetes donors
and none in the retina from diabetes patients without DR. In two out of four DR patients,
we saw increased pJAK1 staining in the neuroretina (Figure 7). These data indicate that at
least a subset of DR patients have elevated pJAK1 in their neuroretinas and may therefore
benefit from tofacitinib citrate treatment.
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Figure 7. The expression of pJAK1 in human DR retinas. Retinal sections from non-diabetes, diabetes without retinopathy
and diabetes with retinopathy were stained for pJAK1 (purple) and imaged by light microscopy. (A) Representative images
from n = 4 patients per group, showing immunohistochemistry for pJAK1 in different groups of retinas. (B) Quantification
of the density of pJAK1 in human retinas from different groups. Mean ± SD.
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3. Discussion

In this study, we showed that the JAK1 inhibitor tofacitinib citrate preserved BRB
integrity and reduced retinal vascular leakage in a model of T2DM. We also showed that
pJAK1 expression was elevated in some DR patients compared to non-diabetic and people
with diabetes without retinopathy. The JAK1/2 are normally activated by type 1 and
type 2 cytokines [19]. We recently reported that a type 1 cytokine, IL-17A is capable of
inducing pJAK1 expression in the retina [12]. Altered JAK1 signalling has been associated
with T1DM previously, in studies that show JAK1 inhibition successfully ameliorated
autoimmune diabetes in mice [20,21] and reduced insulin dependency in a patient with
rheumatoid arthritis, systemic sclerosis, and T1DM [20]. In terms of diabetic complications,
a JAK1 inhibitor baracitinib has been shown to protect the kidney from T2DM-induced
albuminuria [22], highlighting a role for JAK1 in diabetes-induced vascular barrier dys-
function. Furthermore, gain-of-function in STAT3 mutations have been found to lead to
T1DM [23]. Together, these studies highlight the potential of the JAK/STAT pathway as a
therapeutic target in autoimmune diabetes and microvascular complications of both T1DM
and T2DM.

Tofacitinib citrate selectively inhibits JAK1 and JAK3, and to a lesser extent than
JAK2, and is approved by the European Medicines Agency and U.S. Food and Drug
Administration for various autoimmune diseases, including rheumatoid arthritis, psoriatic
arthritis, ulcerative colitis, and polyarticular juvenile idiopathic arthritis. Other JAK1
inhibitors, such as filgotinib, upadacitinib, peficitinib, and brepocitinib, have also been
approved to treat autoimmune diseases [24–26]. The clinical approval of these drugs
suggests that they are effective and safe and can be re-purposed for ocular use. A few
studies have provided evidence of favorable ocular tolerance of tofacitinib citrate [27,28],
as well as evidence of tofacitinib citrate in controlling ocular inflammation in dry eye
disease [28–30], refractory uveitis and scleritis [31], and in spondyloarthritis-associated
uveitis [32].

The JAK/STAT pathway is essential for the biological function of various cytokines
and growth factors, the potential adverse effect of JAK1 inhibition on diabetes is an impor-
tant consideration. One large clinical study compared the effects of tofacitinib citrate on
diabetes worsening to other commonly used treatments for rheumatoid arthritis, namely
abatacept, a TNF inhibitor (TNFi), rituximab, and tocilizumab. The authors found no
difference in worsening of DM (measured as switching or intensification of treatment)
with the use of the aforementioned four drugs, and a less of a risk in patients treated with
tofacitinib citrate [33]. This was in line with our observation that tofacitinib treatment did
not affect the blood glucose levels and body weight in T2D db/db mice.

Db/db mice are a widely used model of T2DM, and the mice age-dependently develop
retinal neuronal and vascular degeneration–typical signs of DR [34,35]. A previous study
reported no vascular leakage using fluorescence angiography in seven months old db/db
mice [36]. In this study, we used sophisticated methods of detection, i.e., extravascular al-
bumin leakage using fluorescence microscopy and Western blot, and observed significantly
increased albumin leakage at three months of age, although the leakage declined after this
time point. The increased retinal vascular leakage was accompanied by higher levels of
pJAK1 expression, which may explain the therapeutic effect of tofacitinib citrate in our
study. Importantly, we found that pJAK1 is also expressed in some human DR retinas. This
observation suggests a likely role of pJAK1 in human DR. Future studies should aim to
understand the link between pJAK1 expression and DMO in clinical settings and identify
patients suitable for JAK1 targeted therapy.

In this study, we used intraperitoneal administration of tofacitinib citrate (15 mg/kg)
in mice, which was well tolerated and was in line with previous studies [12,37,38]. Human
patients currently receive tofacitinib citrate (Xelanjz) orally for the treatment of rheumatoid
arthritis, ulcerative colitis amongst other inflammatory diseases. As diabetes is a systemic
inflammatory disease, this administration route may be effective in DR, particularly for
DMO management that requires immediate short-term intervention. However, for other
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DR-related pathologies, such as capillary degeneration, that require a lifetime management
strategy, prolonged systemic inhibition of the JAK/STAT pathway may cause adverse
effects, e.g., the risk of infection. For example, increased risk of fungal infection has been
associated with long-term use of tofacitinib citrate [38]. Therefore, local (e.g., intravitreal)
delivery of JAK1 inhibitors may be preferable.

4. Materials and Methods
4.1. Human Eye Tissue

Human eyes were obtained under a Material Transfer Agreement (MTA) with the
University of Oklahoma (Oklahoma City, OK, USA). The study was approved by the
Ethical Review Boards of Queen′s University Belfast (Approval date: 5 April 2017, Ref
17.08v2) and carried out within the parameters of the declaration of Helsinki. Human
ocular tissues were stored in accordance with the Human Tissue Act (2004). Informed
consent was waived because the human retinal sections were obtained, de-identified and
postmortem, from NDRI (National Disease Research Interchange, Philadelphia, PA, USA),
as previously described [39,40] and according to stipulated clinical criteria.

4.2. Cell Culture and Treatments

The human RPE cell line, ARPE-19 (ATCC® CRL-2302™, Manassas, VA, USA) were
cultured on glass coverslips in 24-well plates, in Dulbecco′s Modified Eagle Medium:
Nutrient Mixture F-12 (DMEM/F12) (Cat. 11320033) supplemented with 10% FCS (Cat.
10270106) and 1% penicillin-streptomycin (Cat. 15140122) (all from Gibco, Waltham, MA,
USA). For experiments, media was changed to lower serum (1% FCS) 24 h before treat-
ment, to facilitate RPE cell quiescence. The mouse brain endothelial cell line, bEnd.3 cells
(ATCC® CRL-2299™) were cultured on glass coverslips in 24-well plates and maintained
for experiments in DMEM with GlutaMAX™ Supplement (Gibco, Cat. 10566016) medium
with 10% FCS and 1% penicillin-streptomycin, of same origins as above. An additional
25 µM D-glucose (Cat. G8769, Sigma-Aldrich, St. Louis, MO, USA) or osmotic control
D-mannitol (Cat. M4125, Sigma-Aldrich) were added to culture medium for experiments.
Tofacitinib citrate (Sigma, Cat. PZ0017) (25 mg) was dissolved in 100 µL dimethylsulfoxide
(DMSO, Cat. No. D8418 Sigma-Aldrich, St. Louis, MO, USA) and further diluted in PBS
immediately before use to 2.5 µg/mL (4.955 µM). Vehicle control for tofacitinib was DMSO
diluted 1:100,000 in PBS, i.e., 0.00001% DMSO. Cells were pre-treated with tofacitinib citrate
for 30 min before the addition of high glucose and tofacitinib citrate as a co-treatment for
3 days (endothelial cells) and 6 days (RPE cells).

4.3. Immunocytochemistry

Following high glucose or control treatment, with or without tofacitinib citrate, ARPE-
19 and bEnd.3 cells were stained for rabbit anti-ZO-1, rabbit anti-Claudin 5 respectively,
to examine tight junction alterations. Cells were fixed in 2% PFA or ice-cold methanol
respectively for 10 min. For methanol-fixed cells, no permeabilisation was required, and
for PFA-fixed cells, 0.1% Triton X was used in the blocking buffer, which was 5% Donkey
Serum for all experiments. Antibodies were incubated overnight at 4 degrees. The next day,
coverslips were thoroughly washed prior to incubation with secondary antibody diluted
1:300 in blocking buffer for 1 h at room temperature. Following washing, coverslips were
mounted using Vectashield containing DAPI and imaged using Leica Dmi8 microscope.

4.4. Animal Care and Housing

The BKS.Cg-Dock7m+/+LeprdbJ and the heterozygotes from the colony BKS.Cg-
Dock7m+/+Leprdb/+ (referred as db/db and db/m respectively in this paper) mice (Jackson
Laboratory, Bar Harbor, ME, USA), aged 2.5, 3, 5 and 6 months old, of both sexes were
used for these studies, n ≥ 6 animals of each genotype were assigned per experimental
group (tofacitinib citrate versus vehicle). Mice were maintained in the Biological Services
Unit at Queen′s University Belfast with free access to food and water on a 12 h light/dark
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cycle, in accordance with the ARVO Statement for the Use of Animals in Ophthalmic
and Vision Research. All procedures were approved by the UK Home Office Animals
(Scientific Procedures) Act 1986, and the local animal welfare ethical review board of
Queen′s University Belfast. Mice were monitored routinely for changes in blood glucose
and body weight. Blood glucose measurements were taken from tail blood using the SD
Code free Blood Glucose Meter (SD Biosensor Inc., Irvine, CA, USA).

4.5. Tofacitinib Citrate Administration

2.5-month-old db/db and db/m mice (n > 6 per group) were treated with tofacitinib
citrate (15 mg/kg, i.p. in 100 µL) once daily for two weeks. This dose and route of tofacitinib
citrate administration was based on previous studies from us and others and was proven
to be well-tolerated and effective [12,37,38]. The age-matched db/db mice in control group
received the same volume of vehicle (0.01% DMSO) daily for 2 weeks.

Blood glucose levels and body weight were measured before and after treatment. At
endpoint, eyes were collected and processed for analyses of albumin leakage and pJAK1
expression (see below).

4.6. Processing of Mouse Eyes

Paraffin-embedded eyes were sectioned at 5 µm thickness. De-waxing was carried out
by immersing slides in 3 changes of clearene for 5 min each, followed by 3 changes of 100%
ethanol for 3 min each, and followed by 5 min in running water. Citraconic anhydride
(Sigma, Cat. 125318) pH 7.4 at 95 ◦C for 30 min was used for antigen retrieval.

4.7. Albumin Staining & Quantification

Mouse eye sections were incubated with goat anti-albumin and biotinylated Griffonia
Simplicifolia Lectin I Isolectin B4 (Table 1) overnight at 4 ◦C. The next day, slides were
washed in PBS prior to incubation with appropriate secondary antibodies. Slides were
mounted with DAPI-Vectashield and imaged using Leica DMi8 epifluorescence microscope.
Images were analysed using FIJI (National Institutes of Health, Bethesda, MD, USA),
Isolectin B4-positive ROIs were restored on the albumin channel and measured, prior to
whole neuroretina measurements. Leakage ratio was calculated as follows:

Leakage Ratio = (Extravascular albumin)/(Total albumin in neuroretina)

Table 1. Antibodies used for immunostaining.

Target Company, Product Number Dilution Used

ZO-1 Thermofisher, 61-7300 1:50 (IF)

Claudin 5 Thermofisher, 34-1600 1:50 (IF)

Phospho-JAK1 (Tyr1034, Tyr1035) Thermofisher, PA5-104554 1:50 (IF, IHC-P)

Albumin Bethyl, a90-134a 1:800 (IHC-p), 1:1000 (WB)

Biotinylated Isolectin B4 Vector Labs, VEC.B-1205 1:50 (IHC-P)

Alexa Fluor® 594 AffiniPure donkey
anti-rabbit IgG (H + L) Stratech, 711-585-152 1:300 (IF), 1:300 (IHC-p)

Donkey anti-rabbit 488 Thermofisher, 34-1600 1:50 (IF)

Streptavidin, Alexa Fluor™ 594 conjugate Thermofisher, S11227 1:300 (IHC-p)

Alexa Fluor® 488 AffiniPure donkey
anti-goat IgG (H + L) Stratech, 705-545-147 1:300 (IHC-p)

IF: immunofluorescence; IHC: Immunohistochemistry-paraffin.



Int. J. Mol. Sci. 2021, 22, 11876 11 of 14

4.8. pJAK1 Staining & Quantification

Mouse eye sections were blocked with 5% donkey serum for 1 h at room temperature,
followed by incubation with anti-pJAK1 antibody (1:100) overnight at 4 ◦C. After several
washes, samples were incubated with donkey anti-rabbit 594 (1:300, Stratech Scientific Ltd.,
Ely, UK) for 2 h. Slides were washed, mounted with DAPI-vectashield, and imaged as
above. pJAK1 in the neuroretina was quantified using FIJI.

For human eyes, paraffin-embedded eye sections were melted in a histology oven,
before de-waxing. Antigen retrieval with citraconic anhydride was carried out as described
above. Eye sections were permeabilised for 15 min with 2% Triton X, and blocked for 12 min
with BLOXALL (Vector Labs). The samples were incubated with pJAK1 antibody (1:50,
Invitrogen) overnight at 4 ◦C. Slides were washed 3 times in PBS followed by incubation
with anti-rabbit HRP (1:100, Abcam) for 2 h at room temperature. After thorough washing,
slides were incubated with VIP solution (1 drop of reagents 1, 2, 3 and 4 in 1.66 mL PBS)
(Vector Labs) for 6 min at room temperature. Slides were put through 3 × 5 min ethanol
and 3 × 5 min clearene before mounting in DPX (Sigma). Samples were imaged using
Leica Dmi8 microscope.

4.9. Statistical Analyses

Graph generation and statistical analyses were performed using GraphPad Prism
9 (GraphPad Software Inc., San Diego, CA, USA). The Mann-Whitney test was used to
compare difference between two groups and three or more groups were analysed using
One-way ANOVA followed by Tukey′s multiple comparisons.

5. Conclusions

JAK1 activation is involved in BRB dysfunction in db/db mice and inhibition of pJAK1
with tofacitinib citrate ameliorated retinal vascular leakage in db/db mice. Targeting pJAK1
may be a novel approach to treat diabetic macular oedema.
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inas showing pJAK1 (red) and DAPI (blue). INL—inner nuclear layer; OPL—outer plexiform layer; 
ONL—outer nuclear layer. (B) Quantification of pJAK1 mean gray value in the neuroretina. Tofa = 
tofacitinib citrate, Veh = vehicle control. 

References 
1. Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, 

K.; et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the 
International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. 
https://doi.org/10.1016/j.diabres.2019.107843. 

2. Liu, E.; Craig, J.E.; Burdon, K. Diabetic macular oedema: Clinical risk factors and emerging genetic influences. Clin. Exp. Optom. 
2017, 100, 569–576. https://doi.org/10.1111/cxo.12552. 

3. Teo, Z.L.; Tham, Y.-C.; Yu, M.; Chee, M.L.; Rim, T.H.; Cheung, N.; Bikbov, M.M.; Wang, Y.X.; Tang, Y.; Lu, Y.; et al. Global 
Prevalence of Diabetic Retinopathy and Projection of Burden through 2045: Systematic Review and Meta-analysis. 
Ophthalmology 2021. https://doi.org/10.1016/j.ophtha.2021.04.027. 

4. Graue-Hernandez, E.O.; Rivera-De-La-Parra, D.; Hernandez-Jimenez, S.; Aguilar-Salinas, C.A.; Kershenobich-Stalnikowitz, D.; 
Jimenez-Corona, A. Prevalence and associated risk factors of diabetic retinopathy and macular oedema in patients recently 
diagnosed with type 2 diabetes. BMJ Open Ophthalmol. 2020, 5, 1–11. https://doi.org/10.1136/bmjophth-2019-000304. 

Figure A1. Albumin leakage in db/db mice of various ages. (A) Representative images of DAPI (blue), Isolectin B4 (red)
and albumin (green) staining in 3-month old db/m (WT) and db/db mice of different ages (2.5, 3. 5, 6 and 7 months).
(B) Quantification of albumin extravasation. Mean ± SD, n ≥ 2 mice per group. * p < 0.05 by One Way ANOVA. # p < 0.05,
## p < 0.01, compared to WT controls by unpaired t-test.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 12 of 14 
 

 

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the 
design of the study; in the collection, analyses or interpretation of data; in the writing of the manu-
script; or in the decision to publish the results. 

Appendix A 

 
Figure A1. Albumin leakage in db/db mice of various ages. (A) Representative images of DAPI 
(blue), Isolectin B4 (red) and albumin (green) staining in 3-month old db/m (WT) and db/db mice of 
different ages (2.5, 3. 5, 6 and 7 months). (B) Quantification of albumin extravasation. Mean ± SD, n 
≥ 2 mice per group. * p < 0.05 by One Way ANOVA. # p < 0.05, ## p < 0.01, compared to WT controls 
by unpaired t-test. 

 
Figure A2. The effect of tofacitinib citrate treatment on pJAK1 expression in the retinas of db/db and 
db/m mice. 2.5-month old db/db and db/m mice were treated with tofacitinib daily for 2 weeks. Eyes 
were collected for pJAK1 staining. (A) Representative immunofluorescence of db/m and db/db ret-
inas showing pJAK1 (red) and DAPI (blue). INL—inner nuclear layer; OPL—outer plexiform layer; 
ONL—outer nuclear layer. (B) Quantification of pJAK1 mean gray value in the neuroretina. Tofa = 
tofacitinib citrate, Veh = vehicle control. 

References 
1. Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, 

K.; et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the 
International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. 
https://doi.org/10.1016/j.diabres.2019.107843. 

2. Liu, E.; Craig, J.E.; Burdon, K. Diabetic macular oedema: Clinical risk factors and emerging genetic influences. Clin. Exp. Optom. 
2017, 100, 569–576. https://doi.org/10.1111/cxo.12552. 

3. Teo, Z.L.; Tham, Y.-C.; Yu, M.; Chee, M.L.; Rim, T.H.; Cheung, N.; Bikbov, M.M.; Wang, Y.X.; Tang, Y.; Lu, Y.; et al. Global 
Prevalence of Diabetic Retinopathy and Projection of Burden through 2045: Systematic Review and Meta-analysis. 
Ophthalmology 2021. https://doi.org/10.1016/j.ophtha.2021.04.027. 

4. Graue-Hernandez, E.O.; Rivera-De-La-Parra, D.; Hernandez-Jimenez, S.; Aguilar-Salinas, C.A.; Kershenobich-Stalnikowitz, D.; 
Jimenez-Corona, A. Prevalence and associated risk factors of diabetic retinopathy and macular oedema in patients recently 
diagnosed with type 2 diabetes. BMJ Open Ophthalmol. 2020, 5, 1–11. https://doi.org/10.1136/bmjophth-2019-000304. 

Figure A2. The effect of tofacitinib citrate treatment on pJAK1 expression in the retinas of db/db and db/m mice.
2.5-month old db/db and db/m mice were treated with tofacitinib daily for 2 weeks. Eyes were collected for pJAK1 staining.
(A) Representative immunofluorescence of db/m and db/db retinas showing pJAK1 (red) and DAPI (blue). INL—inner
nuclear layer; OPL—outer plexiform layer; ONL—outer nuclear layer. (B) Quantification of pJAK1 mean gray value in the
neuroretina. Tofa = tofacitinib citrate, Veh = vehicle control.

References
1. Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova,

K.; et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the
International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. [CrossRef]

2. Liu, E.; Craig, J.E.; Burdon, K. Diabetic macular oedema: Clinical risk factors and emerging genetic influences. Clin. Exp. Optom.
2017, 100, 569–576. [CrossRef]

3. Teo, Z.L.; Tham, Y.-C.; Yu, M.; Chee, M.L.; Rim, T.H.; Cheung, N.; Bikbov, M.M.; Wang, Y.X.; Tang, Y.; Lu, Y.; et al. Global Preva-
lence of Diabetic Retinopathy and Projection of Burden through 2045: Systematic Review and Meta-analysis. Ophthalmology 2021.
[CrossRef]

4. Graue-Hernandez, E.O.; Rivera-De-La-Parra, D.; Hernandez-Jimenez, S.; Aguilar-Salinas, C.A.; Kershenobich-Stalnikowitz, D.;
Jimenez-Corona, A. Prevalence and associated risk factors of diabetic retinopathy and macular oedema in patients recently
diagnosed with type 2 diabetes. BMJ Open Ophthalmol. 2020, 5, e000304. [CrossRef] [PubMed]

5. Castro-Navarro, V.; Cervera-Taulet, E.; Navarro-Palop, C.; Monferrer-Adsuara, C.; Hernández-Bel, L.; Montero-Hernández, J.
Intravitreal dexamethasone implant Ozurdex® in naïve and refractory patients with different subtypes of diabetic macular edema.
BMC Ophthalmol. 2019, 19, 15. [CrossRef]

6. Xu, H.; Chen, M. Diabetic retinopathy and dysregulated innate immunity. Vis. Res. 2017, 139, 39–46. [CrossRef] [PubMed]
7. Funatsu, H.; Noma, H.; Mimura, T.; Eguchi, S.; Hori, S. Association of Vitreous Inflammatory Factors with Diabetic Macular

Edema. Ophthalmology 2009, 116, 73–79. [CrossRef]

http://doi.org/10.1016/j.diabres.2019.107843
http://doi.org/10.1111/cxo.12552
http://doi.org/10.1016/j.ophtha.2021.04.027
http://doi.org/10.1136/bmjophth-2019-000304
http://www.ncbi.nlm.nih.gov/pubmed/32201732
http://doi.org/10.1186/s12886-018-1022-9
http://doi.org/10.1016/j.visres.2017.04.013
http://www.ncbi.nlm.nih.gov/pubmed/28571700
http://doi.org/10.1016/j.ophtha.2008.09.037


Int. J. Mol. Sci. 2021, 22, 11876 13 of 14

8. Noma, H.; Mimura, T.; Yasuda, K.; Shimura, M. Role of Inflammation in Diabetic Macular Edema. Ophthalmologica 2014, 232,
127–135. [CrossRef] [PubMed]

9. Funatsu, H.; Yamashita, H.; Sakata, K.; Noma, H.; Mimura, T.; Suzuki, M.; Eguchi, S.; Hori, S. Vitreous levels of vascular
endothelial growth factor and intercellular adhesion molecule 1 are related to diabetic macular edema. Ophthalmology 2005, 112,
806–816. [CrossRef] [PubMed]

10. Alsaffar, H.; Martino, N.; Garrett, J.P.; Adam, A.P. Interleukin-6 promotes a sustained loss of endothelial barrier function via
janus kinase-mediated STAT3 phosphorylation and de novo protein synthesis. Am. J. Physiol. Cell Physiol. 2020, 314, C589–C602.
[CrossRef]

11. Li, X.; Cai, Y.; Wang, Y.-S.; Shi, Y.-Y.; Hou, W.; Xu, C.-S.; Wang, H.-Y.; Ye, Z.; Yao, L.-B.; Zhang, J. Hyperglycaemia Exacerbates
Choroidal Neovascularisation in Mice via the Oxidative Stress- Induced Activation of STAT3 Signalling in RPE Cells. PLoS ONE
2012, 7. [CrossRef] [PubMed]

12. Byrne, E.M.; Llorián-Salvador, M.; Tang, M.; Margariti, A.; Chen, M.; Xu, H. IL-17A Damages the Blood—Retinal Barrier through
Activating the Janus Kinase 1 Pathway. Biomedicines 2021, 9, 831. [CrossRef]

13. Gurzov, E.N.; Stanley, W.J.; Pappas, E.G.; Thomas, H.E.; Gough, D.J. The JAK/STAT pathway in obesity and diabetes. FEBS J.
2016, 283, 3002–3015. [CrossRef] [PubMed]

14. O’Shea, J.J.; Pesu, M.; Bori, D.C.; Changelian, P.S. A New Modality for Immunosuppression: Targeting the JAK/STAT Pathway.
Nat. Rev. Drug Discov. 2004, 3, 555–564. [CrossRef]

15. Bogdanov, P.; Corraliza, L.; Villena, J.A.; Carvalho, A.R.; Garcia-Arumí, J.; Ramos, D.; Ruberte, J.; Simó, R.; Hernández, C. The
db/db mouse: A useful model for the study of diabetic retinal neurodegeneration. PLoS ONE 2014, 9, e97302. [CrossRef]

16. Xiao, C.; He, M.; Nan, Y.; Zhang, D.; Chen, B.; Guan, Y.; Pu, M. Physiological effects of superoxide dismutase on altered visual
function of retinal ganglion cells in db/db mice. PLoS ONE 2012, 7. [CrossRef]

17. Liu, M.; Pan, Q.; Chen, Y.; Yang, X.; Zhao, B.; Jia, L.; Zhu, Y.; Zhang, B.; Gao, X.; Li, X.; et al. Administration of Danhong Injection
to diabetic db/db mice inhibits the development of diabetic retinopathy and nephropathy. Sci. Rep. 2015, 5, 11219. [CrossRef]

18. Jung, E.; Kim, J.; Kim, C.S.; Kim, S.H.; Cho, M.H. Gemigliptin, a dipeptidyl peptidase-4 inhibitor, inhibits retinal pericyte injury in
db/db mice and retinal neovascularization in mice with ischemic retinopathy. Biochim. Biophys. Acta Mol. Basis Dis. 2015, 1852,
2618–2629. [CrossRef] [PubMed]

19. Kisseleva, T.; Bhattacharya, S.; Braunstein, J.; Schindler, C.W. Signaling through the JAK/STAT pathway, recent advances and
future challenges. Gene 2002, 285, 1–24. [CrossRef]

20. Trivedi, P.M.; Graham, K.L.; Scott, N.A.; Jenkins, M.R.; Majaw, S.; Sutherland, R.M.; Fynch, S.; Lew, A.M.; Burns, C.J.; Krishna-
murthy, B.; et al. Repurposed JAK1/JAK2 inhibitor reverses established autoimmune insulitis in NOD mice. Diabetes 2017, 66,
1650–1660. [CrossRef]

21. Ge, T.; Jhala, G.; Fynch, S.; Akazawa, S.; Litwak, S.; Pappas, E.G.; Catterall, T.; Vakil, I.; Long, A.J.; Olson, L.M.; et al. The
JAK1 Selective Inhibitor ABT 317 Blocks Signaling Through Interferon-γ and Common γ Chain Cytokine Receptors to Reverse
Autoimmune Diabetes in NOD Mice. Front. Immunol. 2020, 11, 588543. [CrossRef] [PubMed]

22. Tuttle, K.R.; Brosius, F.C.; Adler, S.G.; Kretzler, M.; Mehta, R.L.; Tumlin, J.A.; Tanaka, Y.; Haneda, M.; Liu, J.; Silk, M.E.; et al.
JAK1/JAK2 inhibition by baricitinib in diabetic kidney disease: Results from a Phase 2 randomized controlled clinical trial.
Nephrol. Dial. Transplant. 2018, 33, 1950–1959. [CrossRef]

23. Flanagan, S.E.; Haapaniemi, E.; Russell, M.A.; Caswell, R.; Allen, L.; De Franco, E.; Mcdonald, T.J.; Rajala, H.; Ramelius, A.;
Barton, J.; et al. Activating germline mutations in STAT3 cause early-onset multi- organ autoimmune disease. Nat Genet. 2014, 46,
812–814. [CrossRef]

24. Gadina, M.; Le, M.T.; Schwartz, D.M.; Silvennoinen, O.; Nakayamada, S.; Yamaoka, K.; O’Shea, J.J. Janus kinases to jakinibs: From
basic insights to clinical practice. Rheumatology 2019, 58, i4–i16. [CrossRef]

25. Fragoulis, G.E.; Mcinnes, I.B.; Siebert, S. JAK-inhibitors. New players in the field of immune-mediated diseases, beyond
rheumatoid arthritis. Rheumatology 2019, 58, i43–i54. [CrossRef] [PubMed]

26. Veale, D.J.; McGonagle, D.; McInnes, I.B.; Krueger, J.G.; Ritchlin, C.T.; Elewaut, D.; Kanik, K.S.; Hendrikx, T.; Berstein, G.; Hodge,
J.; et al. The rationale for Janus kinase inhibitors for the treatment of spondyloarthritis. Rheumatology 2019, 58, 197–205. [CrossRef]

27. McInnes, I.B.; Byers, N.L.; Higgs, R.E.; Lee, J.; Macias, W.L.; Na, S.; Ortmann, R.A.; Rocha, G.; Rooney, T.P.; Wehrman, T.;
et al. Comparison of baricitinib, upadacitinib, and tofacitinib mediated regulation of cytokine signaling in human leukocyte
subpopulations. Arthritis Res. Ther. 2019, 21, 183. [CrossRef]

28. Liew, S.H.; Nichols, K.K.; Klamerus, K.J.; Li, J.Z.; Zhang, M.; Foulks, G.N. Tofacitinib (CP-690,550), a Janus kinase inhibitor for dry
eye disease: Results from a phase 1/2 trial. Ophthalmology 2012, 119, 1328–1335. [CrossRef] [PubMed]

29. Huang, J.F.; Yafawi, R.; Zhang, M.; McDowell, M.; Rittenhouse, K.D.; Sace, F.; Liew, S.H.; Cooper, S.R.; Pickering, E.H.
Immunomodulatory effect of the topical ophthalmic Janus kinase inhibitor tofacitinib (CP-690,550) in patients with dry eye
disease. Ophthalmology 2012, 119, e43–e50. [CrossRef]

30. Stevenson, W.; Sadrai, Z.; Hua, J.; Kodati, S.; Huang, J.F.; Chauhan, S.K.; Dana, R. Effects of topical Janus Kinase inhibition on
ocular surface inflammation and immunity. Cornea 2014, 33, 177–183. [CrossRef]

31. Paley, M.A.; Karacal, H.; Rao, P.K.; Margolis, T.P.; Miner, J.J. Tofacitinib for refractory uveitis and scleritis. Am. J. Ophthalmol. Case
Rep. 2019, 13, 53–55. [CrossRef]

http://doi.org/10.1159/000364955
http://www.ncbi.nlm.nih.gov/pubmed/25342084
http://doi.org/10.1016/j.ophtha.2004.11.045
http://www.ncbi.nlm.nih.gov/pubmed/15878060
http://doi.org/10.1152/ajpcell.00235.2017
http://doi.org/10.1371/journal.pone.0047600
http://www.ncbi.nlm.nih.gov/pubmed/23094067
http://doi.org/10.3390/biomedicines9070831
http://doi.org/10.1111/febs.13709
http://www.ncbi.nlm.nih.gov/pubmed/26972840
http://doi.org/10.1038/nrd1441
http://doi.org/10.1371/journal.pone.0097302
http://doi.org/10.1371/journal.pone.0030343
http://doi.org/10.1038/srep11219
http://doi.org/10.1016/j.bbadis.2015.09.010
http://www.ncbi.nlm.nih.gov/pubmed/26391252
http://doi.org/10.1016/S0378-1119(02)00398-0
http://doi.org/10.2337/db16-1250
http://doi.org/10.3389/fimmu.2020.588543
http://www.ncbi.nlm.nih.gov/pubmed/33343569
http://doi.org/10.1093/ndt/gfx377
http://doi.org/10.1038/ng.3040
http://doi.org/10.1093/rheumatology/key432
http://doi.org/10.1093/rheumatology/key276
http://www.ncbi.nlm.nih.gov/pubmed/30806709
http://doi.org/10.1093/rheumatology/key070
http://doi.org/10.1186/s13075-019-1964-1
http://doi.org/10.1016/j.ophtha.2012.01.028
http://www.ncbi.nlm.nih.gov/pubmed/22525048
http://doi.org/10.1016/j.ophtha.2012.03.017
http://doi.org/10.1097/ICO.0000000000000019
http://doi.org/10.1016/j.ajoc.2018.12.001


Int. J. Mol. Sci. 2021, 22, 11876 14 of 14

32. Vinicki, J.P.; Montagna, G.F. Successful treatment with tofacitinib in Spondyloarthritis associated Uveitis. MOJ Orthop. Rheumatol.
2021, 13, 31–32. [CrossRef]

33. Chen, S.K.; Lee, H.; Jin, Y.; Liu, J.; Kim, S.C. Use of biologic or targeted-synthetic disease-modifying anti-rheumatic drugs and risk
of diabetes treatment intensification in patients with rheumatoid arthritis and diabetes mellitus. Rheumatol. Adv. Pract. 2020, 4,
rkaa027. [CrossRef]

34. Hernández, C.; Bogdanov, P.; Solà-Adell, C.; Sampedro, J.; Valeri, M.; Genís, X.; Simó-Servat, O.; García-Ramírez, M.; Simó, R.
Topical administration of DPP-IV inhibitors prevents retinal neurodegeneration in experimental diabetes. Diabetologia 2017, 60,
2285–2298. [CrossRef]

35. Li, J.; Wang, J.J.; Chen, D.; Mott, R.; Yu, Q.; Ma, J.X.; Zhang, S.X. Systemic administration of HMG-CoA reductase inhibitor
protects the blood-retinal barrier and ameliorates retinal inflammation in type 2 diabetes. Exp. Eye Res. 2009, 89, 71–78. [CrossRef]
[PubMed]

36. Yang, Q.; Xu, Y.; Xie, P.; Cheng, H.; Song, Q.; Su, T.; Yuan, S.; Liu, Q. Retinal Neurodegeneration in db / db Mice at the Early
Period of diabetes. J. Ophthalmol. 2015, 2015, 757412. [CrossRef]

37. Bing, S.J.; Lyu, C.; Xu, B.; Wandu, W.S.; Hinshaw, S.J.; Furumoto, Y.; Caspi, R.R.; Gadina, M.; Gery, I. Tofacitinib inhibits the
development of experimental autoimmune uveitis and reduces the proportions of th1 but not of th17 cells. Mol. Vis. 2020, 26,
641–651.

38. Chen, Y.; Gong, F.Y.; Li, Z.J.; Gong, Z.; Zhou, Z.; Ma, S.Y.; Gao, X.M. A study on the risk of fungal infection with tofacitinib
(CP-690550), a novel oral agent for rheumatoid arthritis. Sci. Rep. 2017, 7, 6779. [CrossRef] [PubMed]

39. Wu, M.; Chen, Y.; Wilson, K.; Chirindel, A.; Ihnat, M.A.; Yu, Y.; Boulton, M.E.; Szweda, L.I.; Ma, J.X.; Lyons, T.J. Intraretinal
leakage and oxidation of LDL in diabetic retinopathy. Investig. Ophthalmol. Vis. Sci. 2008, 49, 2679–2685. [CrossRef] [PubMed]

40. Spranger, J.; Osterhoff, M.; Reimann, M.; Möhlig, M.; Ristow, M.; Francis, M.K.; Cristofalo, V.; Hammes, H.P.; Smith, G.; Boulton,
M.; et al. Loss of the antiangiogenic pigment epithelium-derived factor in patients with angiogenic eye disease. Diabetes 2001, 50,
2641–2645. [CrossRef] [PubMed]

http://doi.org/10.15406/mojor.2021.13.00543
http://doi.org/10.1093/rap/rkaa027
http://doi.org/10.1007/s00125-017-4388-y
http://doi.org/10.1016/j.exer.2009.02.013
http://www.ncbi.nlm.nih.gov/pubmed/19254713
http://doi.org/10.1155/2015/757412
http://doi.org/10.1038/s41598-017-07261-1
http://www.ncbi.nlm.nih.gov/pubmed/28754958
http://doi.org/10.1167/iovs.07-1440
http://www.ncbi.nlm.nih.gov/pubmed/18362112
http://doi.org/10.2337/diabetes.50.12.2641
http://www.ncbi.nlm.nih.gov/pubmed/11723044

	Introduction 
	Results 
	Tofacitinib Citrate Protected iBRB and oBRB Tight Junctions under High-Glucose Conditions 
	Albumin Leakage in db/db Mice 
	The Effect of Tofacitinib Citrate on Albumin Leakage in db/db Mice 
	pJAK1 Expression in the Human Diabetic Retina 

	Discussion 
	Materials and Methods 
	Human Eye Tissue 
	Cell Culture and Treatments 
	Immunocytochemistry 
	Animal Care and Housing 
	Tofacitinib Citrate Administration 
	Processing of Mouse Eyes 
	Albumin Staining & Quantification 
	pJAK1 Staining & Quantification 
	Statistical Analyses 

	Conclusions 
	
	References

