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ABSTRACT: Although many diterpenoid alkaloids have been evaluated recently for antiproliferative activity against human cancer
cell lines, little data have been offered relating to the antiproliferative effects of hetisine-type C20-diterpenoid alkaloids, such as
kobusine (1), likewise as their derivatives. A total of 43 novel diterpenoid alkaloid derivatives (2−10, 2b, 3a, 3b, 6a−16a, 7b, 9b,
10b, 13, 15−26, 15b, 18a, 23a, 27a) were prepared by C-11 and -15 esterification of 1. Antiproliferative effects of the natural parent
compound (1) and all synthesized kobusine derivatives against human cancer cell lines, including a triple-negative breast cancer
(TNBC) cell line as well as a P-glycoprotein overexpressing multidrug-resistant subline, were assessed. The structure-based design
strategy resulted in the lead derivative 11,15-dibenzoylkobusine (3; average IC50 7.3 μM). Several newly synthesized kobusine
derivatives (particularly, 5−8, 10, 13, 15−26) exhibited substantial suppressive effects against all tested human cancer cell lines. In
contrast, kobusine (1), 11,15-O-diacetylkobusine (2), 11-acylkobusine derivatives (3a, 6a, 9a, 11a, 12a, 15a, 27a), and 15-
acylkobusine derivatives (2b, 3b, 7b, 9b, 10b, 15b) showed no effect. The most active kobusine derivatives primarily had two
specific substitution patterns, C-11,15 and C-11. Notably, 11,15-diacylkobusine derivatives (3, 6−10, 13, 15, 16, 18, 23) were more
potent compared with 11- and 15-acylkobusine derivatives (3a, 3b, 6a−10a, 7b, 9b, 10b, 13a, 15a, 15b, 16a, 18a, 23a). Derivatives
13 and 25 induced MDA-MB-231 cells to the sub-G1 phase within 12 h. 11,15-Diacylation of kobusine (1) appears to be crucial for
inducing antiproliferative activity in this alkaloid class and could introduce a new avenue to overcome TNBC using natural product
derivatives.

■ INTRODUCTION
Chemotherapy refers primarily to the usage of cytotoxic small
molecules for cancer treatment, and natural products are major
sources of currently available chemotherapeutics. Based on a
review of New Chemical Entities (NCE) from 1981 to 2019,
nearly 75% of antitumor agents are not purely synthetic
compounds, with 47% either being natural products including
their derivatives or mimicking natural products.1 A great
variety of chemically and biologically active anticancer agents
are used in cancer chemotherapy, and classical plant alkaloids
such as vincristine and paclitaxel are still commonly used in
clinical practice.2−10 While studies on the phytochemistry and
synthetic and medicinal chemistry of diterpenoid alkaloids
have led to the discovery of remarkable pharmacological
activities and structural complexity, little facts at the
antiproliferative properties have been reported.

A large number of diterpenoid alkaloids isolated from
various species of Aconitum and Delphinium (Ranunculaceae)
have been identified as the main bioactive constituents related
to both toxicity and medical uses.11 These diterpenoid
alkaloids are categorized in line with their chemical structure
as C19-diterpenoid alkaloids, which have a lycoctonine or an
aconitine skeleton, and C20-diterpenoid alkaloids, which have a
veatchine or an atisine skeleton.12 The former group contains
aconitine, mesaconitine, hypaconitine, and jesaconitine, which
are extraordinarily toxic, while compounds in the latter group,
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together with lucidusculine, kobusine (1), pseudokobusine,
and atisine, are much less toxic.11 The pharmacological
properties of the C19-diterpenoid alkaloids have been studied
expansively and reviewed.13 However, the pharmacological
characteristics of the C20-diterpenoid alkaloids and their
derivatives have been less investigated.

Our earlier study confirmed the effects of several semi-
synthetic and natural diterpenoid alkaloids on growth of the
A172 human malignant glioma cell line.14 Effects of various
types of novel diterpenoid alkaloid derivatives on antiprolifera-
tion and radiosensitization were also studied.15 Two novel
hetisine-type C20-diterpenoid derivatives exhibited noteworthy
suppressive effects against the Raji non-Hodgkin’s lymphoma
cell line.16 Moreover, the effects of several novel hetisine-type
C20-diterpenoid alkaloid derivatives on the growth of the A549
human lung cancer cells were examined, and subsequent
structure−activity relationships (SAR) for the antiproliferative
activities against A549 cells were reported.17 In previous
pharmacological studies, several diterpenoid alkaloids and their
derivatives displayed antiproliferative activity against several
human cancer cell lines, including A549 (lung carcinoma),
DU145 (prostate carcinoma), KB (cervical carcinoma HeLa
derivative), and its MDR subline KB-VIN (P-gp over-
expressing vincristine-resistant KB subline).18,19 As recently
reported, we evaluated lycoctonine-type C19-diterpenoid
alkaloids, delcosine, 14-acetyldelcosine, and 14-acetylbrow-
niine, and synthesized derivatives for antiproliferative effects
against five human cancer cell line panels {A549, MDA-MB-
231 [triple-negative breast cancer (TNBC), hormone receptor-
negative and HER2-negative], MCF-7 (estrogen receptor-
positive, HER2-negative breast cancer), KB, and KB-VIN}.20

Among such diterpenoid alkaloids, lycoctonine-type C19-
diterpenoid and C20-diterpenoid alkaloid derivatives exhibited
significant antiproliferative activity and, thus, provided
promising novel leads for further development as antineo-
plastic agents. Less data are available regarding the
antiproliferative properties of natural hetisine-type C20-
diterpenoid alkaloids as well as their derivatives. However,
11,15-dibenzoylkobusine (3) exhibited significant potency
against A549, KB, and KB-VIN cell lines (average IC50 7.3
μM), although the natural parent alkaloid kobusine (1), a
hetisine-type C20-diterpenoid alkaloid, and 11,15-diacetylko-
busine (2) were inactive (IC50 > 20 μM) against the same
three cell lines.19 Therefore, in this current study, prior and
newly synthesized kobusine derivatives were evaluated for
antiproliferative activity against five human cancer cell line
panels (A549, MDA-MB-231, MCF-7, KB, and KB-VIN).

■ RESULTS AND DISCUSSION
Kobusine (1), a hetisine-type C20-diterpenoid alkaloid, was
purified from Aconitum yesoense var. macroyesoense (NAKAI)
TAMURA (Ranunculaceae) by a previously described
procedure.21,22 Kobusine (1) was reacted with various acyl
chlorides in pyridine (Figure 1) to give C-11-, C-15-, or C-
11,15-substituted acyl derivatives (4−10, 13, 15−26, 3a, 3b,
6a−16a, 7b, 9b, 10b, 15b, 18a, 23a, 27a) (Figure 2). The
synthesized derivatives (4, 5, 7−9, 7a−9a, 7b, 9b, 13, 13a,
16−25, 16a, 18a, 23a) were evaluated for antiproliferative
activity against our five human cancer cell line panels.
Paclitaxel was used as an experimental control (data shown
in Table 1). In this study, previously synthesized 18 derivatives
(2, 2b, 3, 3a, 3b, 6, 6a, 10, 10a−12a, 10b, 14a, 15, 15a, 15b,

26, 27a) were evaluated for antiproliferative activity against
human cancer cell lines [A549, DU145, KB, and KB-VIN].19

With three exceptions [11-acyl derivatives 11a, 12a, and
27a, containing a 2-trifluoromethylbenzoyl, 3-trifluoromethyl-
benzoyl, or nicotinoyl group, respectively, were inactive (IC50
> 20 μM)], acylation of the C-11 and/or C-15 hydroxy group
of kobusine (1) led to various degrees of antiproliferative
activity. Among the derivatives esterified at both C-11 and -15,
derivatives 5 [11,15-di-(3-methoxybenzoyl)kobusine], 6
[ 1 1 , 1 5 - d i a n i s o y l k o b u s i n e ] , 7 [ 1 1 , 1 5 - d i - ( 3 , 4 , 5 -
trimethoxybenzoyl)kobusine], 8 [11,15-di-(4-ethoxybenzoyl)-
kobusine], 10 [11,15-di-p-nitrobenzoylkobusine], 13 [11,15-
di-(4-trifluoromethylbenzoyl)kobusine], 15 [11,15-di-(4-
fluorobenzoyl)kobusine], 16 [11,15-di-(4-fluoro-3-
methylbenzoyl)kobusine], 17 [11,15-di-(3-chloro-4-
fluorobenzoyl)kobusine], 18 [11,15-di-(2,4,5-trifluoro-3-
methoxybenzoyl)kobusine], 19 [11,15-di-(2,3,4,5,6-
p e n t a fl u o r o b e n z o y l ) k o b u s i n e ] , 20 [ 1 1 , 1 5 - d i - ( 2 -
chlorobenzoyl)kobusine], 21 [11,15-di-(3-chlorobenzoyl)-
kobusine], 22 [11,15-di-(4-chlorobenzoyl)kobusine], 23
[11,15-di-(3,5-dichlorobenzoyl)kobusine], 24 [11,15-di-(4-
chloro-3-nitrobenzoyl)kobusine], 25 [11,15-di-(4-
dichloromethylbenzoyl)kobusine], and 26 [11,15-di-(3-
trifluoromethylcinnamoyl)kobusine] exhibited significant po-
tency against three to five human cancer cell lines (average
IC50 4.2−6.8). Derivatives 4 [11,15-di-(2-methoxybenzoyl)-
kobusine] and 9 [11,15-di-(3-nitrobenzoyl)kobusine] showed
moderate potency against all five human cancer cell lines
(average IC50 15.7 and 18.8 μM, respectively). Although
derivative 4 displayed good antiproliferative activity against
MCF-7 and KB cells (IC50 13.4 and 13.0 μM, respectively), it
was much less active against A549, MDA-MB-231, and KB-
VIN cells.

Among the C-11 esterified derivatives, derivatives 8a [11-(4-
ethoxybenzoyl)kobusine], 10a [11-p-nitrobenzoylkobusine],
13a [11-(4-trifluoromethylbenzoyl)kobusine], and 14a [11-
(4-trifluoromethoxybenzoyl)kobusine] exhibited moderate
potency against three to five tested cell lines (average IC50
12.4, 17.1, 19.0, and 12.2 μM, respectively). Derivative 8a
showed significant antiproliferative activity against A549, KB,
and KB-VIN cells (IC50 7.8, 8.9, and 11.2 μM, respectively)
but was less active against MDA-MB-231 and MCF-7 (IC50
15.9 and 18.0 μM, respectively). Derivatives 7a [11-(3,4,5-
trimethoxybenzoyl)kobusine], 16a [11-(4-fluoro-3-
methylbenzoyl)kobusine], and 18a [11-(2,4,5-trifluoro-3-
methoxybenzoyl)kobusine] exhibited only weak potency
against all five human cancer cell lines (average IC50 23.3,
30.4, and 27.7 μM, respectively). Derivatives 3a, 6a, 9a, 11a,
12a, 15a, and 27a were inactive against all tested human
cancer cell lines. All five C-15 esterified derivatives, 3b, 7b, 9b,
10b, and 15b, were also inactive against all tested human
cancer cell lines.

Figure 1. Synthesis of kobusine derivatives.
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Particularly, C-11,15 diacylated kobusine derivatives (3, 6−
10, 13−16, 18) showed significantly better potency compared
with the corresponding C-11 or -15 monoacylated kobusine
derivatives (3a, 3b, 6a−10a, 7b, 9b, 10b, 13a−16a, 18a).
Thus, C-11,15 diesterification was crucial for enhanced
antiproliferative activity of kobusine (1) derivatives.

Prominent observations from the data in Table 1 were the
reliable identities of the most active derivatives. Kobusine
derivatives 5−8, 10, 13, and 16−26 displayed the highest
potency against all tested cancer cell lines with IC50 values
ranging from 2.8 to 6.9 μM. A similar range of potency was
found with derivatives 3 and 15 against KB cells (6.0 and 5.2
μM, respectively). The potencies of 3, 8a, and 15 (IC50 5.2−
11.2 μM) generally graded somewhat below those of the most
potent derivatives, except against MDA-MB-231 and MCF-7
cell lines, where they were even less active. Derivative 14a
showed moderate activity against KB and KB-VIN (11.7 and
10.9 μM, respectively).

The identity of the substituent(s) on the acyl group affected
the cytotoxic potency. Notably, among the C-11,15 disub-
stituent derivatives, derivatives 5−8, 10, 13, and 16−26 with
variously substituted benzoyl or cinnamoyl esters showed
significant potency against all tested human cancer cell lines.
Among derivatives with small alkoxy groups on the benzoate
esters, 5 (3-methoxy), 6 (4-methoxy), 7 (3,4,5-trimethoxy),
and 8 (4-ethoxy) were more potent than 4 (2-methoxy).
Derivative 5 (3-methoxybenzoyl) was more potent than 6 (4-
methoxybenzoyl), and derivative 7 with 3,4,5-trimethoxy
substitution on the benzoyl ester was more potent than 5
with the 3-methoxy group. Also, derivative 10 with a 4-nitro
moiety was more potent than 9 with the 3-nitro group.

Further, the fluorinated derivatives 16 (4-fluoro-3-methyl), 17
(3-chloro-4-fluoro), 18 (2,4,5-trifluoro-3-methoxy), and 19
(2,3,4,5,6-pentafluoro) were more potent than 15 with only a
single 4-fluoro substituent. Similarly, derivatives 13 (4-
trifluoromethylbenzoate) and 26 (3-trifluoromethylcinnamate)
showed increased antiproliferative activity against the three to
five cancer cell lines compared with 4-fluorinated derivative 15.
The fluorinated derivatives (13, 16−19, and 26: average IC50
4.9) were more potent than derivatives with small alkoxy
groups (4−8: average IC50 7.1) and nitro groups (9, 10, and
24: average IC50 9.9) on the benzoate esters. Moreover, the 3-,
4-, or 3,5-chlorinated derivatives 21−24 as well as 25, which
has 4-dichloromethyl substitution on the benzoate ester, were
more potent than 20 with only a single 2-chloro substituent.
Derivatives 21 (3-chlorobenzoate) and 23 (3,5-dichloroben-
zoate) were equipotent and more potent than 22 (4-
chlorobenzoate) and 24 (4-chloro-3-nitrobenzoate), which
were also equipotent.

Additionally, among 17 derivatives (5−8, 10, 13, and 16−
26), 13 derivatives (5, 7, 8, 13, 16−19, and 21−25) exhibited
significant potency against MDA-MB-231 cell lines with IC50
values ranging from 2.8 to 5.0 μM. Particularly, derivative 22
(4-chlorobenzoate, IC50 2.8 μM) exhibited the highest potency
against this cell line. Meanwhile, the IC50 values for the same
13 derivatives (5, 7, 8, 13, 16−19, and 21−25) ranged from
4.2 to 5.3 μM against the MCF-7 cell line. A similar range of
potency (IC50 4.4−5.5 μM) was found with 15 derivatives (5,
7, 8, 13, and 16−26) against the A549 cell line. Furthermore,
derivatives 5−8, 10, 13, and 15−26 were potent against the
KB cell line with IC50 values ranging from 4.1 to 5.3 μM.
Moreover, derivatives 5−8, 10, 13, and 16−26 exhibited

Figure 2. Chemical structures of derivatives 1−27a.
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significant potency against the KB-VIN cell line with IC50
values ranging from 3.1 to 5.7 μM. Particularly, derivative 26
(3-trifluoromethylcinnamate, IC50 3.1 μM) exhibited the
highest potency against the KB-VIN cell line. Many derivatives
displayed comparable potency against the KB and KB-VIN cell
lines, in contrast to paclitaxel.

The 11-monoacylated derivatives with moderate potency
against the three to five tested cancer cell lines contained 4-
ethoxy- (8a) and 4-trifluoromethoxy- (14a) benzoyl esters.
Furthermore, with some exceptions against certain cell lines,
derivatives with unsubstituted (3a), methoxy (6a), trimethoxy

(7a), nitro (9a, 10a), trifluoromethyl (11a-13a), fluoro (15a),
4-fluoro-3-methyl (16a), 2,4,5-trifluoro-3-methoxy (18a), and
3,5-dichloro (23a) substituted benzoate esters or nicotinoyl
(27a) ester were less active or inactive. In contrast, the 15-
monoacylated derivatives 3b, 7b, 9b, 10b, and 15b were
inactive against all three to five tested cancer cell lines.

Intriguingly, the potent derivatives were generally effective
against the P-gp-overexpressing MDR subline KB-VIN, while
alkaloids such as paclitaxel and vincristine are less effective due
to excretion from the MDR cells by P-gp. These results
indicate that these derivatives are not substrates for P-gp.

Table 1. Antiproliferative Activity of Kobusine (1) and Derivatives 2−27a

cell line/IC50 (μM)a

alkaloid A549 MDA-MB-231 MCF-7 KB KB-VIN

1c >20 >20 >20
2c >20 >20 >20
2bc >20 >20 >20
3c 8.4 6.0 7.5
3ac >20 >20 >20
3bc >20 >20 >20
4 17.0 19.0 13.4 13.0 16.1
5 4.5 4.5 4.7 4.7 4.8
6c 6.7 5.3 5.2
6ac >20 >20 >20
7 4.4 4.7 4.2 4.2 4.6
7a 19.5 21.2 26.9 19.9 28.9
7b >40 >40 >40 >40 >40
8 4.5 4.6 5.2 4.6 5.0
8a 7.8 15.9 18.0 8.9 11.2
9 19.5 19.9 18.3 17.4 19.1
9a >40 >40 >40 >40 >40
9b >40 >40 >40 >40 >40
10c 6.9 5.3 5.5
10ac 19.5 13.9 17.9
10bc >20 >20 >20
11ac >20 >20 >20
12ac >20 >20 >20
13 4.8 4.5 4.7 4.6 4.8
13a 18.1 19.3 19.6 18.1 20.1
14ac 14.1 11.7 10.9
15c 8.1 5.2 7.1
15ac >20 >20 >20
15bc >20 >20 >20
16 4.6 4.8 4.9 4.5 4.7
16a 30.0 32.1 29.5 27.1 33.2
17 4.5 4.6 4.6 4.4 4.6
18 4.5 5.0 4.6 4.7 4.6
18a 27.9 26.8 23.8 28.7 31.1
19 4.5 4.4 4.7 4.5 5.2
20 5.3 6.4 6.3 5.1 5.6
21 4.4 4.7 4.7 4.7 4.6
22 4.5 2.8 5.3 5.1 5.7
23 4.4 4.5 4.5 4.6 4.6
23a 20.4 21.0 18.6 21.5 21.0
24 5.2 4.4 5.3 4.8 5.7
25 4.4 4.2 4.5 4.5 4.6
26c 5.5 4.1 3.1
27ac >20 >20 >20
paclitaxelb 0.0052 0.0067 0.0073 0.0050 1.3

aAntiproliferative activity as IC50 values for each cell line, the concentration of the derivative that caused 50% reduction in growth relative to
untreated cells as determined by the SRB assay. bPaclitaxel was used as an experimental control. cSee ref 19.
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To address the mechanism of action (MOA) of the kobusine
(1) derivatives, we further examined the effects of derivatives
on cell cycle progression. The TNBC cell line MDA-MB-231
was treated for 12 or 24 h with derivatives at threefold (3 ×
IC50) concentrations of their IC50. DMSO (CTRL) or 0.2 μM
(3 × IC50) combretastatin A-4 (CA-4) was used as a vehicle
control or a tubulin polymerization inhibitor arresting cells at
G2/M, respectively. Cell cycle distributions of treated cells
were analyzed by flow cytometry (LSRII) after staining with
propidium iodide (PI) in the presence of RNase. Time-course
studies were carried out at 12 and 24 h using derivatives at 3 ×
IC50 (Figure 3). With all derivatives tested, sub-G1 cells heavily
accumulated after 12 h treatment at 3 × IC50, while normal cell
cycle progression was disrupted after 12 h treatment with 13
and 25 with decreasing numbers of cells in S and G2/M
phases, resulting in accumulation of sub-G1. These results
proved that derivatives 13 and 25 act through a similar MOA
to induce sub-G1 accumulation within 12 h. In general, sub-G1
cells undergo apoptosis, unlike cytolysis. These observations
suggested that derivatives 13 and 25 likely induced apoptosis
within 12 h, but a detailed MOA analysis should be required to
determine whether sub-G1 accumulation is due to apoptosis
induction.

■ CONCLUSIONS
C-11 and -15 acylations of kobusine (1), a hetisine-type C20-
diterpenoid alkaloid, were carried out to provide 43 novel
derivatives (2−10, 2b, 3a, 3b, 6a−16a, 7b, 9b, 10b, 13, 15−
26, 15b, 18a, 23a, 27a). The natural alkaloid 1 and all
synthesized derivatives (2−10, 2b, 3a, 3b, 6a−16a, 7b, 9b,
10b, 13, 15−26, 15b, 18a, 23a, 27a) were evaluated for
antiproliferative activity against A549, MDA-MB-231, MCF-7,
KB, and KB-VIN cancer cell lines. Several newly synthesized
kobusine derivatives (particularly, 3, 5−8, 10, 13, 15−26)
showed significant suppressive effects against these cell lines. In
contrast, kobusine (1), 11,15-O-diacetylkobusine (2), 11-

acylkobusine derivatives (3a, 6a, 9a, 11a, 12a, 15a, 27a) and
15-acylkobusine derivatives (2b, 3b, 7b, 9b, 10b, 15b) showed
no effect. Among the active acyl derivatives, most 11,15-
diacylkobusine derivatives (3, 6−10, 13, 15, 16, 18, 23)
showed more potency compared with 11- and 15-acylkobusine
derivatives (3a, 3b, 6a−10a, 7b, 9b, 10b, 13a, 15a, 15b, 16a,
18a, 23a). Derivatives 13 and 25 induced accumulation of sub-
G1 cells within 12 h. 11,15-Diacylation of 1 as a lead appears
to be critical for producing antiproliferative activity in this
hetisine-type C20-diterpenoid alkaloid class. Continual studies
are merited to demonstrate the molecular MOA of sub-G1
accumulation by treatment with derivatives.

■ EXPERIMENTAL SECTION
Chemistry. IR spectra were recorded using a SHIMADZU

model IRAffinity-1S (Shimadzu, Kyoto, Japan). NMR spectra
were recorded in CDCl3 on a JEOL model ECZ400
spectrometer (JEOL, Tokyo, Japan) with TMS as an internal
standard. Mass spectrometry and high-resolution mass
spectrometry were performed on a JEOL model JMS-700
mass spectrometer (JEOL, Tokyo, Japan).
Alkaloids. Kobusine (1) was extracted from A. yesoense var.

macroyesoense, followed by purification and identification by
methods described previously.21,22 A total of 18 acyl
derivatives, 11,15-O-diacetylkobusine (2),23 15-O-acetylkobu-
sine (2b),23 11,15-dibenzoylkobusine (3),23 11-benzoylkobu-
sine (3a),23 15-benzoylkobusine (3b),23 11,15-dianisoylkobu-
sine (6),24 11-anisoylkobusine (6a),24 11,15-di-p-nitrobenzoyl-
kobusine (10),17 11-p-nitrobenzoylkobusine (10a),17 15-p-
nitrobenzoylkobusine (10b),17 11-(2-trifluoromethylbenzoyl)-
kobusine (11a),19 11-(3-trifluoromethylbenzoyl)kobusine
(12a),14 11-(4-trifluoromethoxybenzoyl)kobusine (14a),19

11,15-di-(4-fluorobenzoyl)kobusine (15),1 9 11-(4-
fluorobenzoyl)kobusine (15a),19 15-(4-fluorobenzoyl)-
kobusine (15b),19 11,15-di-(3-trifluoromethylcinnamoyl)-

Figure 3. Effects of derivatives 13 and 25 on the cell cycle. MDA-MB-231 (TNBC) cells were treated for 12 or 24 h with derivatives at a 3-fold (3
× IC50) concentration of their IC50. DMSO (CTRL) or 0.2 μM (3 × IC50) combretastatin A-4 (CA-4) was used as a vehicle control or a tubulin
polymerization inhibitor arresting cells in G2/M, respectively. Cell cycle distributions of treated cells were assessed by flow cytometry (LSRII) after
staining with PI in the presence of RNase.
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kobusine (26),19 and 11-(nicotinoyl)kobusine (27a),24 were
prepared by methods described previously.
General Procedure for the Synthesis of Kobusine

Analogues. Kobusine (1) and an acyl chloride dissolved in
pyridine were stirred at 60 °C (derivatives 13 and 18) or room
temperature under Ar. The reaction solution was quenched
with water, and ammonia water was added to pH 10. The
reaction solution was extracted with CHCl3 (three times). The
combined organic layers were washed with saturated aq.
NaHCO3 and brine and dried over anhydrous MgSO4. Then,
the solvent was removed in vacuo. The crude products were
purified by silica gel column chromatography eluting with n-
hexane−CHCl3 saturated with 28% aq. NH3.

11,15-Di-(2-methoxybenzoyl)kobusine (4). 39% yield;
colorless amorphous solid; HR−FABMS m/z: 582.2849 [M
+ H]+ calcd for C36H40NO6, 582.2856; IR (ATR) νmax cm−1:
2928, 2859, 1721, 1601, 1581, 1234, 1130, 1022, 953; 1H
NMR (CDCl3): δ 0.99 (3H, s, 18-CH3), 3.78 and 3.84 (each
3H, s, OCH3), 5.10 and 5.35 (each 1H, s, C�CH2), 5.39 (1H,
d, J = 4.5 Hz, 11-H), 5.77 (1H, s, 15-H), 6.36 and 6.71 (each
1H, t, J = 8.2 Hz, Ar−H), 6.87 (2H, d, J = 8.2 Hz, Ar−H), 7.32
and 7.40 (each 1H, t, J = 8.2 Hz, Ar−H), 7.73 and 7.77 (each
1H, d, J = 8.2 Hz, Ar−H); FABMS m/z: 582 [M + H]+.

11,15-Di-(3-methoxybenzoyl)kobusine (5). 76% yield;
colorless amorphous solid; HR−FABMS m/z: 582.2867 [M
+ H]+ calcd for C36H40NO6, 582.2856; IR (ATR) νmax cm−1:
2924, 2855, 1740, 1721, 1585, 1219, 1103, 1038, 957; 1H
NMR (CDCl3): δ 0.95 (3H, s, 18-CH3), 3.59 and 3.65 (each
3H, s, OCH3), 5.15 and 5.36 (each 1H, s, C�CH2), 5.46 (1H,
d, J = 4.5 Hz, 11-H), 5.79 (1H, s, 15-H), 7.00 and 7.01 (each
1H, t, J = 8.2 Hz, Ar−H), 7.08 and 7.10 (each 1H, dd, J = 8.2,
2.7 Hz, Ar−H), 7.48 and 7.50 (each 1H, s, Ar−H), 7.51 and
7.57 (each 1H, d, J = 8.2 Hz, Ar−H); FABMS m/z: 582 [M +
H]+.

11,15-Di-(3,4,5-trimethoxybenzoyl)kobusine (7). 15%
yield; colorless amorphous solid; HR−FABMS m/z:
702.3277 [M + H]+ calcd for C40H48NO10, 702.3278; IR
(ATR) νmax cm−1: 2940, 2851, 1740, 1589, 1219, 1126, 995;
1H NMR (CDCl3): δ 0.96 (3H, s, 18-CH3), 3.51 and 3.56
(each 6H, s, Ar-OCH3), 3.81 and 3.82 (each 3H, s, Ar-OCH3),
5.21 and 5.42 (each 1H, s, C�CH2), 5.47 (1H, d, J = 5.0 Hz,
11-H), 5.81 (1H, s, 15-H), 7.16 and 7.26 (each 2H, s, Ar−H);
FABMS m/z: 702 [M + H]+.

11-(3,4,5-Trimethoxybenzoyl)kobusine (7a). 35% yield;
colorless amorphous solid; HR−FABMS m/z: 508.2692 [M
+ H]+ calcd for C30H38NO6, 508.2699; IR (ATR) νmax cm−1:
3449, 2940, 2866, 1713, 1589, 1219, 1123, 1034, 1003, 961;
1H NMR (CDCl3): δ 0.98 (3H, s, 18-CH3), 3.87 (6H, s, Ar-
OCH3), 3.90 (3H, s, Ar-OCH3), 4.01 (1H, d, J = 8.2 Hz, 15-
H), 5.12 and 5.29 (each 1H, s, C�CH2), 5.38 (1H, d, J = 5.0
Hz, 11-H), 7.24 (2H, s, Ar−H); FABMS m/z: 508 [M + H]+.

15-(3,4,5-Trimethoxybenzoyl)kobusine (7b). 12% yield;
colorless amorphous solid; HR−FABMS m/z: 508.2726 [M
+ H]+ calcd for C30H38NO6, 508.2699; IR (ATR) νmax cm−1:
3449, 2924, 2851, 1736, 1589, 1227, 1130, 1038, 988; 1H
NMR (CDCl3): δ 0.97 (3H, s, 18-CH3), 3.91 (6H, s, Ar-
OCH3), 3.92 (3H, s, Ar-OCH3), 4.09 (1H, bs, 11-H), 5.24 and
5.38 (each 1H, s, C�CH2), 5.71 (1H, s, 15-H), 7.30 (2H, s,
Ar−H); FABMS m/z: 508 [M + H]+.

11,15-Di-(4-ethoxybenzoyl)kobusine (8). 15% yield; color-
less amorphous solid; HR−FABMS m/z: 610.3156 [M + H]+

calcd for C38H44NO6, 610.3169; IR (ATR) νmax cm−1: 2928,
2866, 1736, 1605, 1250, 1169, 1042, 957; 1H NMR (CDCl3):

δ 0.98 (3H, s, 18-CH3), 1.38 and 1.41 (each 3H, t, J = 7.2 Hz,
OCH2CH3), 3.98 (4H, q, J = 7.2 Hz, OCH2CH3), 5.12 and
5.35 (each 1H, s, C�CH2), 5.40 (1H, d, J = 5.0 Hz, 11-H),
5.74 (1H, s, 15-H), 6.65 (4H, d, J = 8.6 Hz, Ar−H), 7.84 and
7.88 (each 2H, d, J = 8.6 Hz, Ar−H); FABMS m/z: 610 [M +
H]+.

11-(4-Ethoxybenzoyl)kobusine (8a). 30% yield; colorless
amorphous solid; HR−FABMS m/z: 462.2656 [M + H]+ calcd
for C29H36NO4, 462.2644; IR (ATR) νmax cm−1: 3456, 2943,
2866, 1740, 1605, 1213, 1111, 1038; 1H NMR (CDCl3): δ
0.99 (3H, s, 18-CH3), 1.44 (3H, t, J = 7.2 Hz, OCH2CH3),
4.00 (1H, s, 15-H), 4.08 (2H, q, J = 7.2 Hz, OCH2CH3), 5.09
and 5.27 (each 1H, s, C�CH2), 5.36 (1H, d, J = 5.0 Hz, 11-
H), 6.89 and 7.89 (each 2H, d, J = 8.6 Hz, Ar−H); FABMS m/
z: 462 [M + H]+.

11,15-Di-(3-nitrobenzoyl)kobusine (9). 47% yield; colorless
amorphous solid; HR−FABMS m/z: 612.2354 [M + H]+ calcd
for C34H34N3O8, 612.2346; IR (ATR) νmax cm−1: 2924, 2851,
1717, 1616, 1531, 1354, 1258, 1134, 1072, 957; 1H NMR
(CDCl3): δ 0.98 (3H, s, 18-CH3), 5.20 and 5.43 (each 1H, s,
C�CH2), 5.55 (1H, d, J = 4.5 Hz, 11-H), 5.86 (1H, s, 15-H),
7.44 and 7.50 (each 1H, t, J = 8.2 Hz, Ar−H), 8.28 (4H, m,
Ar−H), 8.63 and 8.70 (each 1H, t, J = 1.8 Hz, Ar−H); FABMS
m/z: 612 [M + H]+.

11-(3-Nitrobenzoyl)kobusine (9a). 11% yield; colorless
amorphous solid; HR−FABMS m/z: 463.2261 [M + H]+

calcd for C27H31N2O5, 463.2233; IR (ATR) νmax cm−1: 3429,
2924, 2855, 1724, 1616, 1528, 1346, 1250, 1134, 1072, 957;
1H NMR (CDCl3): δ 0.99 (3H, s, 18-CH3), 4.06 (1H, s, 15-
H), 5.10 and 5.27 (each 1H, s, C�CH2), 5.42 (1H, d, J = 4.1
Hz, 11-H), 7.64 (1H, t, J = 8.2 Hz, Ar−H), 8.27 and 8.41
(each 1H, d, J = 8.2 Hz, Ar−H), 8.82 (1H, s, Ar−H); FABMS
m/z: 463 [M + H]+.

15-(3-Nitrobenzoyl)kobusine (9b). 7% yield; colorless
amorphous solid; HR−FABMS m/z: 463.2261 [M + H]+

calcd for C27H31N2O5, 463.2233; IR (ATR) νmax cm−1: 3456,
2924, 2855, 1724, 1616, 1531, 1350, 1258, 1134, 1072, 961;
1H NMR (CDCl3): δ 0.96 (3H, s, 18-CH3), 4.14 (1H, bs, 11-
H), 5.26 and 5.40 (each 1H, s, C�CH2), 5.76 (1H, s, 15-H),
7.67 (1H, t, J = 8.2 Hz, Ar−H), 8.34 and 8.44 (each 1H, d, J =
8.2 Hz, Ar−H), 8.87 (1H, s, Ar−H); FABMS m/z: 463 [M +
H]+.

11,15-Di-(4-trifluoromethylbenzoyl)kobusine (13). 86%
yield; colorless amorphous solid; HR−FABMS m/z:
658.2381 [M + H]+ calcd for C36H34F6NO4, 658.2392; IR
(ATR) νmax cm−1: 2932, 2870, 1717, 1585, 1258, 1119, 1065,
953; 1H NMR (CDCl3): δ 0.97 (3H, s, 18-CH3), 5.17 and 5.39
(each 1H, s, C�CH2), 5.49 (1H, d, J = 4.5 Hz, 11-H), 5.80
(1H, s, 15-H), 7.42, 7.44, 7.98 and 8.02 (each 2H, d, J = 8.6
Hz, Ar−H); FABMS m/z: 658 [M + H]+.

11-(4-Trifluoromethylbenzoyl)kobusine (13a). 8% yield;
colorless amorphous solid; HR−FABMS m/z: 486.2256 [M +
H]+ calcd for C28H31F3NO3, 486.2256; IR (ATR) νmax cm−1:
3333, 2920, 2851,1717, 1601, 1582, 1277, 1123, 1065; 1H
NMR (CDCl3): δ 1.08 (3H, s, 18-CH3), 4.10 (1H, s, 15-H),
5.13 and 5.28 (each 1H, s, C�CH2), 5.35 (1H, d, J = 4.5 Hz,
11-H), 7.69 and 8.05 (each 2H, d, J = 8.1 Hz, Ar−H); FABMS
m/z: 486 [M + H]+.

11,15-Di-(4-fluoro-3-methylbenzoyl)kobusine (16). 45%
yield; colorless amorphous solid; HR−FABMS m/z:
586.2764 [M + H]+ calcd for C36H38F2NO4, 586.2769; IR
(ATR) νmax cm−1: 2928, 2866, 1709, 1593, 1231, 1115, 1022,
957; 1H NMR (CDCl3): δ 0.96 (3H, s, 18-CH3), 2.00 and 2.02
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(each 3H, d, J = 1.8 Hz, Ar-CH3), 5.14 and 5.37 (each 1H, s,
C�CH2), 5.46 (1H, d, J = 4.5 Hz, 11-H), 5.77 (1H, s, 15-H),
6.83 and 6.86 (each 1H, t, J = 8.6 Hz, Ar−H), 7.42 (1H, dd, J
= 7.3, 1.3 Hz, Ar−H), 7.80 (3H, m, Ar−H); FABMS m/z: 586
[M + H]+.

11-(4-Fluoro-3-methylbenzoyl)kobusine (16a). 25% yield;
colorless amorphous solid; HR−FABMS m/z: 450.2439 [M +
H]+ calcd for C28H33FNO3, 450.2444; IR (ATR) νmax cm−1:
3456, 2928, 2870, 1709, 1593, 1231, 1115, 1034, 957; 1H
NMR (CDCl3): δ 0.97 (3H, s, 18-CH3), 2.29 (3H, d, J = 1.8
Hz, Ar-CH3), 3.99 (1H, d, J = 7.7 Hz, 15-H), 5.07 and 5.25
(each 1H, s, C�CH2), 5.35 (1H, d, J = 4.6 Hz, 11-H), 7.02
(1H, t, J = 8.6 Hz, Ar−H), 7.75 (1H, m, Ar−H), 7.81 (1H, dd,
J = 7.2, 1.3 Hz, Ar−H). FABMS m/z: 450 [M + H]+.

11,15-Di-(3-chloro-4-fluorobenzoyl)kobusine (17). 58%
yield; colorless amorphous solid; HR−FABMS m/z:
626.1689 [M + H]+ calcd for C34H32Cl2F2NO4, 626.1676;
IR (ATR) νmax cm−1: 2932, 2866, 1717, 1597, 1227, 1103,
1061, 957; 1H NMR (CDCl3): δ 0.96 (3H, s, 18-CH3), 5.15
and 5.36 (each 1H, s, C�CH2), 5.46 (1H, d, J = 5.0 Hz, 11-
H), 5.77 (1H, s, 15-H), 7.01 and 7.06 (each 1H, t, J = 8.6 Hz,
Ar−H), 7.85 (2H, m, Ar−H), 7.90 and 7.96 (each 1H, dd, J =
7.2, 2.3 Hz, Ar−H); FABMS m/z: 630 [M + 4 + H]+, 628 [M
+ 2 + H]+, 626 [M + H]+.

11,15-Di-(2,4,5-trifluoro-3-methoxybenzoyl)kobusine
(18). 55% yield; colorless oil; HR−FABMS m/z: 690.2303 [M
+ H]+ calcd for C36H34F6NO6, 690.2290; IR (ATR) νmax cm−1:
2943, 2870, 1717, 1620, 1234, 1103, 1057, 957; 1H NMR
(CDCl3): δ 0.97 (3H, s, 18-CH3), 3.94 and 3.95 (each 3H, s,
Ar-OCH3), 5.14 and 5.38 (each 1H, s, C�CH2), 5.40 (1H, d,
J = 5.0 Hz, 11-H), 5.73 (1H, s, 15-H), 7.29 and 7.42 (each 1H,
ddd, J = 10.4, 8.6, 6.4 Hz, Ar−H); FABMS m/z: 690 [M +
H]+.

11- (2,4,5-Trifluoro-3-methoxybenzoyl)kobusine (18a).
19% yield; colorless amorphous solid; HR−FABMS m/z:
502.2200 [M + H]+ calcd for C28H31F3NO4, 502.2205; IR
(ATR) νmax cm−1: 3391, 2932, 2859, 1724, 1223, 1103, 1057,
945; 1H NMR (CDCl3): δ 0.99 (3H, s, 18-CH3), 3.98 (1H, s,
15-H), 4.04 (3H, s, Ar-OCH3), 5.05 and 5.26 (each 1H, s, C�
CH2), 5.41 (1H, d, J = 4.9 Hz, 11-H), 7.48 (1H, ddd, J = 10.4,
8.6, 6.4 Hz, Ar−H); FABMS m/z: 502 [M + H]+.

11,15-Di-(2,3,4,5,6-pentafluorobenzoyl)kobusine (19).
26% yield; dark-brown oil; HR−EIMS m/z: 701.1597 [M]+

calcd for C34H25F10NO4, 701.1624; IR (ATR) νmax cm−1: 2931,
2870, 1728, 1651, 1523, 1497, 1330, 1227, 995; 1H NMR
(CDCl3): δ 1.00 (3H, s, 18-CH3), 5.16 and 5.35 (each 1H, s,
C�CH2), 5.43 (1H, d, J = 4.5 Hz, 11-H), 5.75 (1H, s, 15-H);
EIMS m/z: 701 [M]+, 506 [M − COC6F5]+, 195 [COC6F5]+.

11,15-Di-(2-chlorobenzoyl)kobusine (20). 59% yield;
colorless amorphous solid; HR−EIMS m/z: 589.1797 [M]+

calcd for C34H33Cl2NO4, 589.1787; IR (ATR) νmax cm−1:
2931, 2870, 2843, 1721, 1589, 1246, 1119, 1045; 1H NMR
(CDCl3): δ 0.97 (3H, s, 18-CH3), 5.13 and 5.36 (each 1H, s,
C�CH2), 5.42 (1H, d, J = 4.5 Hz, 11-H), 5.81(1H, s, 15-H),
6.74, 7.06, 7.27, and 7.36 (each 1H, t, J = 7.7 Hz, Ar−H), 7.37,
7.40, 7.67, and 7.69 (each 1H, d, J = 7.7 Hz, Ar−H); EIMS m/
z: 593 [M + 4]+, 591 [M + 2]+, 589 [M]+, 450 [M −
COC6H4Cl]+, 141 [COC6H4Cl + 2]+, 139 [COC6H4Cl]+.

11,15-Di-(3-chlorobenzoyl)kobusine (21). 69% yield;
colorless oil; HR−EIMS m/z: 589.1767 [M]+ calcd for
C34H33Cl2NO4, 589.1787; IR (ATR) νmax cm−1: 2931, 2866,
2847, 1713, 1574, 1250, 1126, 1072; 1H NMR (CDCl3): δ
0.96 (3H, s, 18-CH3), 5.14 and 5.36 (each 1H, s, C�CH2),

5.47 (1H, d, J = 4.9 Hz, 11-H), 5.79 (1H, s, 15-H), 7.15 and
7.20 (each 1H, t, J = 8.2 Hz, Ar−H), 7.42 and 7.46 (each 1H,
d, J = 8.2 Hz, Ar−H), 7.81 (2H, d, J = 8.2 Hz, Ar−H), 7.88
and 7.90 (each 1H, s, Ar−H); EIMS m/z: 593 [M + 4]+, 591
[M + 2]+, 589 [M]+, 450 [M − COC6H4Cl]+, 141
[COC6H4Cl + 2]+, 139 [COC6H4Cl]+.

11,15-Di-(4-chlorobenzoyl)kobusine (22). 28% yield;
colorless amorphous solid; HR−EIMS m/z: 589.1797 [M+]
calcd for C34H33Cl2NO4, 589.1787; IR (ATR) νmax cm−1:
2936, 2866, 2847, 1713, 1593, 1261, 1119, 1092; 1H NMR
(CDCl3): δ 0.97 (3H, s, 18-CH3), 5.14 and 5.36 (each 1H, s,
C�CH2), 5.45 (1H, d, J = 4.9 Hz, 11-H), 5.76 (1H, s, 15-H),
7.18, 7.21, 7.84, and 7.86 (each 2H, dt, J = 8.6, 1.8 Hz, Ar−H);
EIMS m/z: 593 [M + 4]+, 591 [M + 2]+, 589 [M]+, 450 [M −
COC6H4Cl]+, 141 [COC6H4Cl + 2]+, 139 [COC6H4Cl]+.

11,15-Di-(3,5-dichlorobenzoyl)kobusine (23). 75% yield;
colorless oil; HR−EIMS m/z: 657.0984 [M]+ calcd for
C34H31Cl4NO4, 657.1007; IR (ATR) νmax cm−1: 2928, 2866,
1717, 1570, 1254, 1146, 1099; 1H NMR (CDCl3): δ 0.97 (3H,
s, 18-CH3), 5.17 and 5.40 (each 1H, s, C�CH2), 5.47 (1H, d,
J = 5.0 Hz, 11-H), 5.77 (1H, s, 15-H), 7.43 and 7.46 (each 1H,
t, J = 1.8 Hz, Ar−H), 7.72 and 7.74 (each 2H, d, J = 1.8 Hz,
Ar−H); EIMS m/z: 667 [M + 8]+, 665 [M + 6]+, 661 [M +
4]+, 659 [M + 2]+, 657 [M]+, 484 [M − COC6H3Cl2]+, 175
[COC6H3Cl2 + 2]+, 173 [COC6H3Cl2]+.

11-(3,5-Dichlorobenzoyl)kobusine (23a). 10% yield; color-
less amorphous solid; HR−EIMS m/z: 485.1518 [M]+ calcd
for C27H29Cl2NO3, 485.1524; IR (ATR) νmax cm−1: 2970,
2936, 1738, 1570, 1215; 1H NMR (CDCl3): δ 0.99 (3H, s, 18-
CH3), 4.03 (1H, s, 15-H), 5.08 and 5.26 (each 1H, s, C�
CH2), 5.35 (1H, d, J = 4.5 Hz, 11-H), 7.53 (1H, t, J = 1.8 Hz,
Ar−H), 7.81 (2H, d, J = 1.8 Hz, Ar−H); EIMS m/z: 489 [M +
4]+, 487 [M + 2]+, 485 [M]+, 312 [M − COC6H3Cl2]+, 173
[COC6H3Cl2]+.

11,15-Di-(4-chloro-3-nitrobenzoyl)kobusine (24). 11%
yield; colorless amorphous solid; HR−FABMS m/z:
680.1559 [M + H]+ calcd for C34H32Cl2N3O8, 680.1566; IR
(ATR) νmax cm−1: 2924, 2856, 1717, 1605, 1535, 1242, 1103,
1049, 957; 1H NMR (CDCl3): δ 0.98 (3H, s, 18-CH3), 5.17
and 5.38 (each 1H, s, C�CH2), 5.50 (1H, d, J = 4.5 Hz, 11-
H), 5.81 (1H, s, 15-H), 7.51 and 7.56 (each 1H, d, J = 8.2 Hz,
Ar−H), 8.06 and 8.08 (each 1H, dd, J = 8.2, 1.8 Hz, Ar−H),
8.22 and 8.29 (each 1H, d, J = 1.8 Hz, Ar−H); FABMS m/z:
684 [M + 4 + H]+, 682 [M + 2 + H]+, 680 [M + H]+.

11,15-Di-(4-dichloromethylbenzoyl)kobusine (25). 62%
yield; colorless amorphous solid; HR−FABMS m/z:
686.1404 [M + H]+ calcd for C36H36Cl4NO4, 686.1398; IR
(ATR) νmax cm−1: 2924, 2855, 1713, 1612, 1582, 1231, 1107,
1018, 953; 1H NMR (CDCl3): δ 0.96 (3H, s, 18-CH3), 5.14
and 5.34 (each 1H, s, C�CH2), 5.47 (1H, d, J = 4.5 Hz, 11-
H), 5.79 (1H, s, 15-H), 6.63 and 6.65 (each 1H, s, Ar-CHCl2),
7.41, 7.42, 7.95, and 7.99 (each 1H, d, J = 8.6 Hz, Ar−H);
FABMS m/z: 694 [M + 8 + H]+, 692 [M + 6 + H]+, 690 [M +
4 + H]+, 688 [M + 2 + H]+, 686 [M + H]+.
Cell Culture, Cytotoxicity, and Cell Cycle Analysis. All

cell lines used in this study were obtained from American Type
Culture Collection (ATCC, Virginia, USA) or UNC Line-
berger Comprehensive Cancer Center (North Carolina, USA),
except KB-VIN (MDR subline established from KB), which
was provided by Professor Y.-C. Cheng (Yale University,
Connecticut, USA). All cell lines were cultured in RPMI 1640
medium containing 25 mM HEPES and 2 mM L-glutamine
(Corning, New York, USA), supplemented with 10% fetal
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bovine serum (Sigma-Aldrich, Missouri, USA), 100 μg/mL
streptomycin, 100 IU penicillin, and 0.25 μg/mL amphotericin
B (Corning, New York, USA). KB-VIN were maintained in a
medium containing 100 nM vincristine (Sigma-Aldrich,
Missouri, USA). Cells were cultured at 37 °C in a humidified
5% CO2 atmosphere.

Antiproliferative activity was assessed by the sulforhodamine
B (SRB) method as described before.25 Briefly, all derivatives
were prepared at 10 mM with DMSO, and the highest DMSO
concentration in the cultures (0.4% v/v) used for the
antiproliferative activity assay had no effect on cell growth.
Freshly trypsinized cell suspensions were seeded in 96-well
microtiter plates at densities of 4000−11,000 cells per well
with derivatives for 72 h, followed by fixation in 10%
trichloroacetic acid and then staining with 0.04% SRB. The
protein-bound dye was solubilized by 10 mM Tris base, and
the absorbance was measured at 515 nm using a ELx800
microplate reader operated by Gen5 software (BioTek,
Vermont, USA). The IC50 value was calculated from at least
three independent experiments performed in duplicate.

MDA-MB-231 (1 × 105 cells/well) cells were seeded in a
12-well plate 24 h prior to treatment with derivatives. After 12
or 24 h treatment with derivatives at a concentration 3-fold of
their IC50 value (3 × IC50), cells were harvested and fixed with
70% EtOH, followed by staining with PI containing RNase
(BD Bioscience). Stained cells were analyzed using a flow
cytometer (BD LSRII, BD Biosciences). 200 nM CA-4 was
used as tubulin polymerization inhibitor arresting cells in G2/
M.
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