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Abstract: Modern wound treatment calls for hydroactive dressings. Among the variety of materi-
als that have entered the field of wound care in recent years, the carbohydrate polymer bacterial
cellulose (BC) represents one of the most promising candidates as the biomaterial features a high
moisture-loading and donation capacity, mechanical stability, moldability, and breathability. Al-
though BC has already gained increasing relevance in the treatment of burn wounds, its potential
and clinical performance for “chronic wound” indications have not yet been sufficiently investi-
gated. This article focuses on experimental and clinical data regarding the application of BC within
the indications of chronic, non-healing wounds, especially venous and diabetic ulcers. A recent
clinical observation study in a chronic wound setting clearly demonstrated its wound-cleansing
properties and ability to induce healing in stalling wounds. Furthermore, the material parameters of
BC dressings obtained through the static cultivation of Komagataeibacter xylinus were investigated
for the first time in standardized tests and compared to various advanced wound-care products.
Surprisingly, a free swell absorptive capacity of a BC dressing variant containing 97% moisture was
found, which was higher than that of alginate or even hydrofiber dressings. We hypothesize that the
fine-structured, open porous network and the resulting capillary forces are among the main reasons
for this unexpected result.

Keywords: bacterial cellulose; carbohydrate polymer; advanced wound care; chronic wounds; clinical
data; exudate management; moisture vapor transmission rate

1. Introduction

Chronic wounds represent an enormous burden for patients and caregivers and
have an immense economic impact on society [1,2]. Studies estimate that between 1 and
4% of total healthcare expenditure in developed countries is spent on chronic wound
treatment and related interventions [1,3]. One important prerequisite for successful wound
management is the selection of a suitable wound dressing [4,5].

Wounds can be described as disruptions in the epithelial integrity of the skin due
to physiochemical or thermal damage or medical pathology. Consequently, essential
skin barrier functions, such as thermal insulation and protection against pathogens or
external mechanical damage, are impaired [6–8]. Although acute wounds usually progress
through the four temporally and spatially overlapping stages of hemostasis, inflammation,
proliferation, and remodeling, and close within 8–12 weeks, chronic wounds typically
remain in the inflammatory stage, exceeding this period and may be associated with heavy
exudation, pain, or infections, and can lead to sepsis or amputations [8–11].
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Although the causes of chronic wounds are highly diverse, the majority of cases
share similar underlying processes and can be classified into the categories of pressure
ulcers, vascular ulcers (venous, arterial, or mixed leg ulcers) and diabetic ulcers [11,12].
Pressure ulcers often occur in patients with compromised mobility, in which case the tis-
sue is subjected to unrelieved pressure that exceeds the capillary perfusion, leading to
ischemia, hypoxia, and thus tissue necrosis [11–13]. In venous leg ulcers (VLUs), damaged
or incompetent vein valves lead to venous stasis, hypertension, and oedema [13]. The
increased pressure exceeds capillary perfusion pressure and blood vessel permeability re-
sulting in macromolecules leaking into the perivascular space. Following ischemia, oedema
and hypoxic conditions impede healing of minor trauma and accelerate skin breakdown,
which is associated with inflammation and bacterial invasion. Arterial ulcers are much
rarer than venous ulcers and result from arterial insufficiency due to atherosclerosis or
arterial embolism in the extremities. A narrowed arterial vessel lumen and ischemia of
the tissue are associated with hypoxia, through which healing of minor trauma is severely
affected and tissue breakdown is accelerated. Lastly, diabetic (foot) ulcers differ from other
chronic wound types on account of their specific pathophysiology. Diabetic peripheral
polyneuropathy manifests in sensory loss, senso-motorical separation, atrophic structural
changes, and thus an increased risk of ulceration from repeated mechanical stress. Impaired
perfusion and metabolic derangements further disrupt wound healing and contribute to
the chronification of diabetic ulcers [11–14].

Although treatment of the underlying diseases and causes is critical to successful
wound management, the principles and advantages of a moist healing milieu, which
were first studied by Winter in 1962 [15], are meanwhile widely accepted and backed by
evidence [16,17]. A moist wound environment promotes autolytic debridement [18], the
proliferation of keratinocytes and fibroblasts [19,20], and collagen synthesis [21], which
leads to less pain, reduced scar formation, and faster wound closure [16,17,22].

In order to benefit from these findings in clinical praxis, a plethora of different materials
for advanced (chronic) wound care have been developed over the past decades. Dependent
on the wound’s exudate level, one can choose from highly absorbant polyurethane foam
dressings, hydrogel-forming carbohydrate polymers such as alginate and carboxymethyl-
cellulose dressings, occlusive film and hydrocolloid dressings, or even moisture-donating
products such as hydrogels and bacterial cellulose dressings [23,24]. Furthermore, many
promising dressing developments based on techniques such as electrospinning or 3D bio-
printing have been reported in recent years. These dressings show broad applicability and
feature advantageous properties such as the controlled release of incorporated drugs or
antibacterial activity [25,26]. Today, they are primarily used in regenerative medicine and
tissue-engineering techniques [27].

Although there are some dressings that should be used primarily for special indica-
tions such as burns, the selection of an appropriate dressing is based less on the classification
of the wound as chronic or acute and more on its characteristics such as tissue perfusion,
exudate level, the occurrence of necrosis and infection, or localization of the wound [4].
Above all, ensuring a moist wound environment, protection against microorganisms, and
thermal insulation are of high importance in both wound classifications [28]. Thus, the chal-
lenge of finding a material that sufficiently addresses all these properties and at the same
time provides a moist wound environment has not yet been adequately overcome. Bacterial
cellulose, however, may be a very promising candidate to fulfill these requirements.

The usage of polysaccharide materials has a long history in the field of wound care;
from oil-soaked linen strips over traditional cotton gauze to advanced wound-care prod-
ucts [29]. In particular, semi-synthetic cellulose derivatives such as carboxymethylcellulose
possess numerous advantageous properties and are nowadays of great value in advanced
wound care [30]. However, carbohydrate-biopolymer bacterial cellulose (BC) has recently
attracted greater attention as the subject of numerous works. In contrast to plant-derived
cellulose, BC is biosynthesized by various bacteria strains from glucose monomers that
form a three-dimensional network of interconnected nanostructured cellulose fibers [31,32].
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It can be produced on a large scale by controlled fermentation [33]. In this process, planar
hydrogel fleeces are formed on the surface between the nutrient medium and the air. Those
dimensionally stable BC hydrogel membranes can be applied as wet wound dressings
directly after purification and sterilization without further processing [34]. However, since
the selected bacteria strain, as well as the biotechnological production process, can influence
the key characteristics and material properties, it is important to independently investigate
the suitability of each strain for the intended application [35]. For the strain Komagataeibacter
xylinus DSM 14666 (see Methods section), an extensive basis of experimental data for the
mentioned properties is already available from previous works. Dressings produced using
this strain show, for example, a well-suited moisture vapor transmission rate (MVTR)
of around 3000 g/m2/24 h [36,37] when measured in contact with vapor. Excellent bio-
compatibility of the unmodified material could be shown in vitro for RAW264.7 (murine
macrophage-like cells) and THP-1 (human monocytic/macrophage-like cells) in standard
MTT assay [36,37] as well as for HaCaT keratinocytes in luminometric ATP assay [38]. Fur-
thermore, ex-ovo biocompatibility using a shell-less hen’s egg test on chick area vasculosa
(HET-CAV) was once more confirmed, and in vitro wound healing in a HaCaT scratch
assay showed no negative effects on cell monolayer closure [36,37]. All moist BC wound
dressings have in common high biocompatibility, water-holding capacity, conformability,
vapor permeability, and mechanical stability while providing a physical barrier against
bacteria and other pathogens. Compared to many alternative products, BC also stands
out for its high water-holding capacity, which helps to create a moist wound environment.
This is due to the microscopic structure of the material: the interconnected fibers with a
diameter of less than 100 nm result in a remarkable surface area and enclose large amounts
of water, which stabilizes the cellulose network via hydrogen bonds [31,39]. With regard
to these characteristics, BC dressings have been shown in several clinical observations
to effectively relieve pain, absorb and retain exudate, provide an optimal moist wound
environment, diminish infection rates, and last but not least, hasten re-epithelization and
shorten wound healing. [34,40–44]. An overview of previously published clinical data as
well as key findings can be found in the Supplementary Materials, Tables S1 and S2.

Clinical data published so far focused on clinical experiences with BC wound dressings
in the treatment of burn wounds and chronic wounds alike without taking into account
the high variability of the material, which allows an adaption of material properties on
the wound type. Previous work furthermore focused on investigating the underlying
mechanisms on a cellular level. Although the properties of BC that promote wound
healing cannot yet be fully explained, some specific mechanisms have been observed in the
past. After Sanchavanakit et al. first demonstrated that BC dressings support the growth,
spreading, and migration of human keratinocytes in vitro [45], other groups observed
accelerated angiogenesis, tissue regeneration, and collagen expression in vivo [46,47]. The
high water content of the dressings has been shown to induce a local cooling effect in ex
vivo burn wounds, reducing intradermal temperature and thermal damage [48]. In recent
years, it has been shown that an acidic pH value is favorable for fast and successful wound
healing, e.g., chronic wounds show an alkaline pH [49]. BC dressings that had an acidic
pH were associated with faster wound healing than neutral or alkaline dressings, which is
a promising finding for future clinical applications [50].

However, in addition to the positive effects of the unmodified material, many studies
have taken the development one step further and demonstrated the strong potential of the
carbohydrate-based material as a drug carrier to treat chronic wounds. To give an example,
Hoff et al. showed how the controlled release of α-13’-carboxychromanol, a long-chain
vitamin E metabolite, promoted wound healing and closure in a diabetic mouse model [51].

What is still missing is the thorough analysis of the material properties of BC-based
wound dressings and the differences as well as similarities with respect to other advanced
wound-dressing materials. Consequently, there is a lack of experience as to which parame-
ters must be adjusted to adapt and optimize a BC-based wound dressing to the individual
requirements of certain indications or stages of wound healing.
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To gain further clinical experience and identify the potential for the optimization
of the material with regard to chronic wounds, a post-market clinical follow-up study
featuring epicitehydro, a BC wound dressing already widely used in burn treatment, was
carried out. The clinical observation was accompanied by comparative analyses of the
material properties in standardized tests and adapting bacterial cellulose dressings to the
specific requirements identified in the clinical and in vitro tests. The results of the combined
studies could provide further important information for the general understanding of the
unique aspects of BC in wound healing. Moreover, the study aims to shed light on how
this biomaterial can be adapted to the specific requirements of treating different kinds
of wounds.

2. Results and Discussion
2.1. Post-Market Clinical Follow-Up Study

The hydroactive BC wound dressing epicitehydro (BC_A) has already been proven
to perform very well in the treatment of burn wounds [52–55]. In order to investigate
its clinical performance in chronic wound treatment, a PMCF observation study with
44 patients suffering from venous leg ulcers, mixed leg ulcers, and diabetic foot syndrome
was carried out.

Selected results with respect to (a) wound area and wound-depth progression, (b) share
of non-irritated wound margins, (c) share of fibrous tissue, as well as (d) exudate update
and hydration are shown in Figure 1.

Figure 1a shows a significant (p < 0.006) reduction in the mean wound size and depth
over the study period of 28 days. Both results can be explained, at least in part, by the
ability of BC_A to create a moist environment that promotes the healing of even stagnating
chronic wounds, proving that this ability of BC_A is not limited to burn wounds. For
BC-based wound dressings in general, these results tie in well with previous clinical trials,
wherein the suitability for chronic wounds was demonstrated (Supplementary Materials,
Table S1). Another promising result is the consistent and significant (p = 0.001) reduction
in fibrous tissue (c), which can be explained by the high moisture content of the wound
dressing. The associated cleansing effect could be attributed to a softening of the plaques
and therefore facilitation of autolytic debridement. A similar conclusion was reached by
Alvarez et al. in a randomized clinical trial analyzing a wet BC dressing for the treatment
of venous leg ulcers [56]. Future works should compare the wound-cleansing efficiency
achieved using a dry dressing as a control group.

Since an excess of moisture at the dressing–wound interface can lead to macerations of
the periwound skin, the condition of the wound margins needs to be carefully observed [57].
In the PMCF study, it was shown that the share of wound margins free of irritation
significantly increased during the observed trial period (Figure 1b). These results suggest
that BC_A may even have a desirable soothing effect on irritated periwound skin.

Although the aforementioned results indicate high suitability of BC_A in the treatment
of chronic wounds, a survey of participating users revealed that exudate uptake was
rated only as “good” to “satisfactory” and wound hydration as “good”. Since exudate
management plays a crucial role in successful wound treatment [24,57] and is one important
factor in dressing selection, an enhancement of the exudate-handling properties of BC_A is
desirable to optimize the dressing for chronic wound treatment.

In the following sections, the material properties of BC wound dressings compared
to other advanced wound dressings will be discussed to provide recommendations for
the adaption of the dressing for further use in exuding wound environments based on
experimental evidence. The work focused on exudate-handling properties under the free-
swell condition as well as compression, moisture donation capacity, and the permeability
measured using the MVTR. To increase the capability of the experimental BC to absorb
wound exudate, certain cultivation parameters were varied, and the dressings underwent
a partial dehydration process. An overview of all evaluated parameters, tests, and results
is shown in Section 2.7.
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2.2. Solid Content

To characterize the commercial and experimental BC dressings, first regarding their
hydration level, the solid content (SC) of the experimentally produced wet BC wound
dressings (BC_C1; BC_C2) and commercial wet BC dressings epicitehydro (BC_A) and
Suprasorb X (XBC) was determined (Figure 2). The solid content of a specific BC dressing
describes the proportion of BC in the total mass of the sample. The parameter is of interest
since moist BC wound dressings can be described as hydrogel bodies consisting of a varying
amount of water and an interconnected 3D network of thin cellulose fibers [31,32]. All
other commercial wound dressings investigated were excluded from this experiment since
they are dry.
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Figure 2. Solid content of wet bacterial cellulose wound dressings (mean ± SD; n = 8).

BC_A represents a moist dressing with an SC of 1.57 ± 0.10%, which is in accordance
with former works [36]. The value was increased by more than two, resp. five times to
3.27 ± 0.27% for BC_C1 and 8.20 ± 0.57% for BC_C2. The commercial product XBC is
comparable to BC_C1 in terms of the SC. Since the dressings tend to reswell to their original
water resp. solid content when in contact with excess liquid such as wound exudate, the
increased solid content represents the starting point for an improved exudate absorption.

2.3. Free Swell Absorptive Capacity

Although a moist healing environment is widely accepted as beneficial for successful
wound healing and represents the standard for modern wound management, an excess
of exudate can lead to wound complications and skin deterioration (e.g., irritation, mac-
eration) [57,58]. In contrast to acute wounds, exudate in chronic wounds differs in its
composition and has been shown to slow down cell proliferation, interfere with growth
factor availability, and lead to successive degradation of the extracellular matrix [24,57]. To
maintain an optimal moisture balance, a dressing must be able to absorb excess exudate
and hydrate the wound at the same time. In order to compare the BC-based wound dress-
ings, the free swell absorptive capacity according to EN 13726-1:2002 was determined for
BC_A, BC_C1, BC_C2, XBC, and five different commercial wound dressings that represent
a variety of commonly used options for the treatment of chronic wounds in Germany
(Figure 3).

BC_A, typically used in the treatment of burns, showed a relatively low AC0.5 of
6.7 ± 0.5 g/100 cm2, which can be attributed to its high water content (>98%, see Figure 2).
The cellulose network is already saturated with water and thus not well-suited for further
fluid uptake. This property has proven to be beneficial in the treatment of burn wounds
in multiple studies, mainly due to the dressing’s ability to provide a moist wound envi-
ronment [52,53,55]. However, in the treatment of chronic wounds, exudate absorption is
of higher importance. Never-dried BC dressings feature the ability to almost completely
reswell after the mechanical removal of water. In this work, the combination of increasing
the thickness of the initial cellulose layer together with the intensified removal of water
aimed to improve its ability to absorb aqueous fluids such as wound exudate. The deter-
mined AC0.5 of the produced dressings BC_C1 and BC_C2 was found to be more than 3,
resp. 4 times higher compared to BC_A and exceeded the AC0.5 of XBC by 2, resp. 3 times.
This finding suggests that increased solid content leads to the higher absorptive capacity
of BC-based wound dressings, which could therefore be more suitable for the therapy of
medium to highly exuding wounds.
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Figure 3. Free swell absorptive capacity (AC) of bacterial cellulose wound dressings and alternative
wound care products (mean ± SD; n = 5). The fluid uptake was measured at three successive time
points (AC0.5; AC2; AC24) in the same experimental setting for epicitehydro (BC_A); Suprasorb®

X (XBC); Suprasorb® A (ALG); Aquacel® Extra™ (CMC); Hydrocoll® (HC); ALLEVYN Gentle
(FOAM_1); Mepilex® (FOAM_2).

Hydrofiber and alginate dressings form gels instantly, resp. over a period of several
hours when in contact with exudate, and are used for highly exuding, deep wounds [23]. In
the performed test, ALG and CMC were within a range of AC0.5 = 15–20 g/100 cm2, which
is in line with the literature [59,60]. They exceeded BC_A in terms of their absorbency but
fell short of BC_C1 and BC_C2. The tested foam dressings were observed to absorb the
most exudate of all dressing classes investigated and feature an AC0.5 of ~60–85 g/100 cm2,
which compares well with previously published data on the AC of commercial foam
dressings and can be explained by the open structure of the foam network [61].

It was further observed that all BC-based wound dressings were not saturated within
the test period of 0.5 h and continued to absorb exudate beyond the test duration of 2 h,
whereas the other tested dressings showed little difference between AC0.5 and AC24.

2.4. Absorptive Capacity under Pressure

Although the standardized measurement of the free swell absorptive capacity is
a good indication for the comparison of different wound dressings, it is only partially
representative for specific applications [62]. In particular for patients with chronic wounds
due to oedema or venous leg ulcers, compression therapy is indicated and represents a well-
established standard [63]. The applied pressure can lead to a reduction in venous pooling
volume, and an improvement in muscle pump function and venous blood flow [64]. Effects
such as increased ulcer healing rates and reduced healing duration under compressive
bandages are supported with evidence [64]. The successful use of a wound dressing to
treat chronic wounds from, e.g., venous ulcers, therefore, also depends on its capability
to absorb and retain exudate under the influence of mechanical pressure. To analyze the
absorption behavior in that specific case, a method based on prEN 13726 was selected with



Pharmaceuticals 2022, 15, 683 8 of 21

the samples subjected to a pressure of 40 mmHg corresponding to compression class 3
(CCL3, Figure 4) [65].
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In comparison to free swell AC (Figure 3), all wound dressings exhibited reduced
AC0.5 values under the influence of pressure, with CMC dressings showing the lowest
reduction of 16.7%. It could be observed that the materials react differently to the influence
of mechanical pressure and vary in their ability to retain exudate. The AC0.5 of the tested
foam dressings decreased by a range of AC0.5 = 30–40 g/100 cm2. The differences in
AC reduction can be explained by the different mechanisms of water absorption and
retention. Although foam and BC-based dressings feature an open structure with free
swell absorptive capacity, dressings such as ALG and CMC form hydrogels with the
absorbed exudate [13,66]. Despite the fact that the absorbed water in foam dressings can
be considered as “free”, the fluid that is bound in a hydrogel can be retained better under
compression [66].

Negative AC0.5 in the case of BC_A can be explained by the fact that the material is
already saturated with moisture, which is partly pressed out of the dressing by mechanical
force. Looking at the BC-based wound dressings, BC_C2 performed best in terms of
absorptive capacity, whereas BC_C1 and XBC lost most of their absorptive capacity. The
reduced AC, especially of BC_A, should therefore be considered when treating chronic
wounds that require compression therapy. With regard to that application, foam and
hydrofiber dressings perform well in particular, but dressings such as BC_C2 with an
increased solid content also show promising results.

2.5. Moisture Vapor Transmission Rate

Since the physiological skin barrier is damaged in the case of a wound, the evapora-
tion of water represents a key factor in the regulation of a wound’s moisture level. The
loss of water from a wound site mainly takes place through absorption from the wound



Pharmaceuticals 2022, 15, 683 9 of 21

dressing and evaporation through and from the dressing. Therefore, the moisture vapor
transmission rate (MVTR) of a chosen dressing is of fundamental importance in the exudate
management of a wound [16,67]. To compare the evaporation of water through different
wound dressings, the standardized Paddington cup method as described in EN 13726
was chosen.

As described in the standard, MVTR data was determined for two different experi-
mental settings: dressings in contact with vapor (Supplementary Materials, Figure S1) and
dressings in contact with liquid (Figure 5).
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Although the contact with liquid method is recommended because it simulates more
closely the wound environment as the dressing is in direct contact with the exudate [68],
some dressings (see ALG; CMC) do not feature waterproofness and can therefore only be
analyzed by the contact with vapor method (see Supplementary Materials, Figure S1).

In previous works as well as in this test, it was observed that all dressings showed
relatively high MVTR values when in contact with liquid [69]. The BC dressings exceed
the MVTR of foam dressings, the latter exhibiting an MVTR range close to that of the
BC dressings in contact with vapor. Furthermore, the increase in water permeability
when in contact with liquid instead of vapor was found to be remarkably lower for the
foam dressings. Since BC dressings featuring an MVTR of >25,000 g/m2/24 h when
in contact with water exhibit lower absorptive capacity than foams, the mechanism of
exudate removal is likely to be more pronounced on evaporation than on absorption.
Similar results concerning the exceptional increase in water permeability of a bacterial
cellulose wound dressing were published for the first time by Thomas [70]. However, they
have never before been set in the context of the surprisingly high free swell absorptive
capacity values. We hypothesize that the fine-structured, open-porous structure network
of hydrophilic cellulose fibers supports moisture transport by capillary forces from the
wound through the dressing to the surrounding air or the second dressing, facilitating a
unique hydrobalance property.

In the case of the contact with vapor method, the MVTR values obtained were in a
broad range. Hydrocolloid dressing (HC) showed the lowest MVTR of 98 ± 5 g/m2/24 h,
and can, therefore, be categorized as an occlusive dressing (MVTR < 300 g/m2/24 h [5]). The
low MVTR can be explained by their composition of an outer layer as being a polymeric film,
which holds a layer of absorbent hydrocolloids such as sodium carboxymethyl cellulose
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and gelatine as well as adhesives and gelling agents [32,33]. Occlusive dressings are suited
for use on low or no-exuding wounds to keep a moist wound environment, but can lead
to periwound skin maceration and dressing leakage on wounds with higher levels of
exudation and are not recommended to be used on infected wounds [5,28,71,72].

The MVTR in contact with vapor for the tested BC-based wound dressings was found
to be in a range of 2697 ± 118 g/m2/24 h (BC_C1) to 4039 ± 230 g/m2/24 h (BC_A), which
is in accordance with previously published data (MVTR~3000 g/m2/24 h) [36,37] and close
to the ideal MVTR range reported for maintaining the optimal moisture content of a wound
(2000–2500 g/m2/24 h, measured in contact with vapor) [73,74]. In the case of BC_A, the
high MVTR is compensated by the intrinsic moisture of the dressing, which hydrates the
wound and maintains a moist environment. Although the increased cellulose content and
thickness of the produced dressings BC_C1 and BC_C2 clearly decreased the moisture
vapor permeability, the MVTR was still found to be in the optimal range. With regard to
the clinical application, this finding suggests that an increased absorptive capacity is not at
the expense of an adequate permeability of moisture in vapor form.

2.6. Fluid Donation

Although the successful healing of many types of chronic wounds is likely to be
affected by an excess of exudate, the moisture balance needs to be evaluated continuously.
Whereas fibrous tissue and other plaque often need to be removed first by, e.g., an autolytic
debridement before the healing process can be reactivated in a stagnating wound, the
exudate level also changes as healing progresses to the later stages. In such cases, exter-
nal hydration (e.g., via moist dressings) can ensure an optimal moisture level and thus
successful wound closure [75].

Since most wound-dressing products used today in the treatment of chronic wounds
come in a dry state to absorb an excess of exudate, the native hydration of BC-based wound
dressings such as BC_A or XBC represents the rare property they share with only a few
products, such as amorphous hydrogels or hydrogel dressings. To evaluate the influence of
an increased solid content and to compare BC dressings in terms of their fluid donation (FD)
capability to an artificial gelatin wound bed, a method based on EN 13726 was adapted.

In a comparison of the tested moisture-donating commercial wound dressings, BC_A
showed the highest FD of 18.9 ± 1.8 g/100 cm2, whereas the FD was remarkably lower for
XBC with 9.0 ± 0.2 g/100 cm2 (Figure 6). The difference in FD between the BC dressings
is probably partly due to the differing overall water content (BC_A > 98%, XBC > 96%).
The gel dressing Suprasorb® G (GEL) consists of an acrylic polymer-based hydrogel with a
water content of ~70% [76] and consequently showed the lowest FD of all tested samples
with 2.0 ± 0.9 g/100 cm2. Considering the experimental dressing samples BC_C1 and
BC_C2, the reduced water content of BC_C2 also correlates with a low FD capability. It
stands out, however, that the modification in the case of BC_C1 did not lead to a reduction
in the FD; the dressing performed similarly to BC_A in the experiment. Although this
outcome seems contradictory at first, a possible rationalization could be that BC_C1 features
not only an increased solid content but also a higher overall mass per area, whereas the
absolute amount of water is comparable to that of BC_A. Taken together, these findings
suggest that BC_C1 is as equally suited as the commercial dressing BC_A for the external
hydration of a dry resp. low-exuding wound maintaining a suitable moist environment for
successful wound healing, whereas the higher absorption capacity also suggests application
on medium- to higher-exudation wounds.
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2.7. Overview of Results

The results of all performed in vitro tests are shown in Table 1.

Table 1. Overview of evaluated parameters, tests, and results.

Wound
Dressing

Solid
Content

Free Swell Absorptive
Capacity (0.5 h; 2 h; 24 h)

Absorptive
Capacity under

Pressure

MVTR In
Contact With

Vapor

MVTR in
Contact with

Liquid

Fluid
Donation to

Gelatin

Unit % g/100 cm2 g/100 cm2 g/m2/24 h g/m2/24 h g/100 cm2

ALG -

17.6 ± 1.3

11.0 ± 1.4 6135 ± 78 - -18.0 ± 1.1

18.4 ± 1.1

CMC -

20.1 ± 1.7

17.2 ± 0.5 6844 ± 282 - -20.3 ± 1.7

21.0 ± 1.3

HC -

3.9 ± 0.3

3.0 ± 0.9 98 ± 5 330 ± 42 -6.0 ± 0.4

15.2 ± 1.1

FOAM_1 -

82.0 ± 2.9

35.3 ± 2.5 3510 ± 225 12,790 ± 747 -85.1 ± 5.4

92.5 ± 6.4

FOAM_2 -

60.1 ± 1.6

32.0 ± 1.9 2808 ± 103 16,750 ± 419 -58.6 ± 3.9

61.1 ± 3.4

XBC 3.16 ± 0.18

13.3 ± 0.5

2.2 ± 0.3 3458 ± 198 27,663 ± 959 9.0 ± 0.218.4 ± 0.9

22.1 ± 1.2
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Table 1. Cont.

Wound
Dressing

Solid
Content

Free Swell Absorptive
Capacity (0.5 h; 2 h; 24 h)

Absorptive
Capacity under

Pressure

MVTR In
Contact With

Vapor

MVTR in
Contact with

Liquid

Fluid
Donation to

Gelatin

BC_A 1.57 ± 0.10

6.7 ± 0.5

−2.9 ± 2.2 4039 ± 230 27,648 ± 488 18.9 ± 1.88.7 ± 0.8

9.9 ± 0.9

BC_C1 3.27 ± 0.27

23.2 ± 5.1

1.7 ± 0.5 2697 ± 118 26,334 ± 1465 19.1 ± 1.731.2 ± 5.6

36.1 ± 5.7

BC_C2 8.20 ± 0.57

30.1 ± 6.3

13.1 ± 1.5 2908 ± 95 27,212 ± 913 3.0 ± 0.337.4 ± 6.5

43.9 ± 7.7

GEL - - - - - 2.0 ± 0.9

3. Materials and Methods
3.1. Post-Market Clinical Follow-Up Study Design

Commercially available BC wound dressing epicitehydro (BC_A) was evaluated in a
multi-center study in 44 patients with mainly venous leg ulcers, mixed leg ulcers, and
diabetic foot syndrome. This observational data collection has been performed according to
Medical Devices Documents (MEDDEV) 2.12/2 Rev. 2 guidelines for post-market clinical
follow-up studies in compliance with German medical devices legislation (§§ 20 ff. Medical
Device Act). Therefore, formal ethical approval was not required.

The dressing was evaluated regarding criteria such as wound area and depth progres-
sion, fibrous tissue, exudation, hydration, and state of wound margins, among others. The
baseline of the study is shown in Table 2, whereas diagnoses, previous local treatment, and
causal therapy are provided as Supplementary Materials (Tables S2–S4).

Table 2. Baseline of BC_A Post-Market Clinical Follow-up study.

Male Female

Sex 22 22

Mean Median SD

Patient Age [years] 66.9 71 15.94

Wound Age [weeks] 66.56 13 120.04

Yes Not specified

Diagnosis of underlying disease 42 2

Treatment of underlying disease 29 15

Wound area determination was carried out by either measurement of wound length
and width or calculation by wound-documentation software. Fibrous tissue share was
assessed by visual inspection of wound surface. Exudation and wound hydration were
evaluated through interviews with participating physicians and care specialists. To as-
sess condition of wound margins, one or several of the following parameters: ‘free from
irritations, reddened, edematous, macerated, discolorated skin, necrotic, keratotic or under-
mined conditions’, were chosen. Statistical analysis was performed using SPSS.
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3.2. In Vitro Tests
3.2.1. Materials

The commercially available wound dressings tested in in vitro tests included BC dress-
ing epicitehydro (QRSKIN GmbH, Würzburg, Germany) (BC_A), bacterial cellulose dressing
Suprasorb® X (XBC), calcium alginate dressing Suprasorb® A (ALG), and gel dressing
Suprasorb® G (GEL), all by Lohmann & Rauscher GmbH & Co. KG (Neuwied, Germany);
polyurethane foam dressing ALLEVYN Gentle (FOAM_1) by Smith & Nephew Medical
Ltd. (Hull, UK); soft silicone foam dressing Mepilex® (FOAM_2) by Mölnlycke Health Care
AB (Göteborg, Sweden); hydrocolloid dressing (HC) Hydrocoll® (PAUL HARTMANN
Limited, Heywood, UK); and sodium carboxymethylcellulose dressing Aquacel® Extra™
(CMC) by ConvaTec Limited (Flintshire, UK). Sodium chloride was purchased from VWR
Chemicals (Radnor, PA, USA). Calcium chloride dihydrate was obtained from Merck KgaA
(Darmstadt, Germany) and gelatin 180 bloom was purchased from Carl Roth GmbH + Co
KG (Karlsruhe, Germany).

3.2.2. Preparation of Native BC

Experimental, non-commercial BC dressings (BC_C1 and BC_C2) were produced
using the Komagataeibacter xylinus strain DSM 14666, deposited at the German Collection of
Microorganism and Cell Cultures (DSMZ, Braunschweig, Germany) in a static cultivation
technique as previously described [36,37]. Briefly, K. xylinus was cultivated at 28 ◦C in a
process-controlled pilot plant with an area of 1 m2 (JeNaCell GmbH, Jena, Germany) using
Hestrin–Schramm culture medium (HSM) [77]. In order to obtain BC dressings with high
cellulose content, cultivation time and volume of HSM were adjusted empirically, so that a
thickness of 8 mm was accomplished, which was chosen in order to double the thickness of
most commercially available BC-based wound dressings (4 mm). Following cultivation,
harvesting, and purification, BC dressings were cut into square pieces of 5 cm × 5 cm,
sterilized by autoclaving (121 ◦C, 20 min, 2 bar), and stored at room temperature until
further tests were carried out. Moisture content of BC_C was modified by flattening out the
never-dried dressings by homogeneous vertical pressure until the sample weight reached an
empirically predetermined weight range. BC_C1 and BC_C2 were produced with a weight
range of 6.3 to 7.0 g per 5 cm × 5 cm sample, resp. 1.3 to 2.0 g per 5 cm × 5 cm sample.

3.2.3. Solid Content

Solid Content (SC) was evaluated in accordance with Beekmann et al. [37]. Briefly,
moisture-adjusted dressings were cut into pieces of approximately 1 cm2 and weighed
(initial mass; mi). After air-drying for 48 h at room temperature (RT), weighing was
repeated (dry mass; md). SC was subsequently calculated using Equation (1):

SC [%] =
md
mi
× 100% (1)

3.2.4. Free Swell Absorptive Capacity

In order to assess the capability of different wound dressing materials to absorb fluid
from heavily exuding wounds, a technique based on EN 13726-1:2002 was used. Minor
modifications were made to align the method with the ongoing revision published as draft
prEN 13726:2021-02 [78,79]. In short, 5 cm × 5 cm sized wound dressings were measured
to the nearest 0.1 cm to determine the exact sample area (A) and weighed in a dry state
(m0). Wound exudate was simulated by a test solution containing 142 mmol sodium and
2.5 mmol calcium as chloride salts (Test Solution A). Dressings were placed in a petri dish
and immersed completely in the prewarmed test solution (37 ◦C ± 2 ◦C), transferred to an
incubator (Binder GmbH, Tuttlingen, Germany), and allowed to soak for 0.5 h, 2 h, and
24 h ± 1 min at 37 ◦C ± 2 ◦C. At the end of each period, samples were removed from the
test solution and excess fluid was allowed to drip off for 30 s ± 5 s. The dressings were
reweighed (m0.5 h, m2 h, m24 h) and transferred back to the test solution for the remaining
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time until the test was completed. Each test was performed on 5 samples. Absorptive
capacity (AC) was calculated for each test duration using Equation (2):

ACt

[
g

100 cm2

]
= (mt−m0)×100

A

t = test duration = 0.5 h | 2 h | 24 h
(2)

3.2.5. Absorptive Capacity under Pressure

To assess the absorptive capacity of dressing materials under pressure, the investiga-
tion was carried out in accordance with the method proposed in prEN 13726:2021 with
minor modifications [78]. Briefly, the setup described in Section 3.2.4 was adapted by
placing the wound dressings on a perforated plate before immersing them in Test Solution
A. Once the dressing was completely submerged, a pressure of 40 mmHg was applied
using a weight of 1359.5 g with the help of a rigid compression plate between the weight
and the dressing for homogenous pressure distribution. After 0.5 h, the setup consisting
of a perforated plate, dressing, compression plate, and weight was removed from the test
solution and allowed to drain for 5 min ± 10 s while pressure was still applied. Finally, the
dressing was reweighed (m0.5 h) and AC was calculated as reported above.

3.2.6. Moisture Vapor Transmission Rate

Moisture vapor transmission rate (MVTR) was evaluated according to EN 13726-2:2002.
For ALG, CMC, HC, XBC, FOAM_1, FOAM_2, BC_A, BC_C1, and BC_C2 test variation
A, ‘MVTR in contact with vapor’ was carried out. Briefly, the dry dressing materials were
clamped into the upper part of a standardized Paddington cup (test area: 10 cm2, The
Surgical Materials Testing Laboratory, Bridgend, UK) filled with deionized water leaving a
5 mm gap between the water surface and the dressing. Evaporation through the dressing at
37 ◦C and <20% relative humidity (RH) was measured by weighing the cup at the beginning
(m1) and the end (m2) of the 18 h to 24 h testing period (Figure 7).
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Figure 7. Standard Paddington cup method used to determine moisture vapor transmission rate
(MVTR) of different wound dressings. (A) Paddington cup with defined orifice of 10 cm2 filled with
deionized water; (B) Dressing sample placed over the orifice secured with clamping plate and sealed
with impermeable film to prevent evaporation through the edges; (C) Final setup for measuring
MVTR; fixation of the setup with screw clamps.

For HC, XBC, FOAM_1, FOAM_2, BC_A, BC_C1, and BC_C2 test variation B, ‘MVTR
in contact with liquid’ was assessed as proposed in EN 13726-2:2002 with minor modifica-
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tions. The upper part of the Paddington cup was covered with the dressing as described
above. Afterward, the cup was inverted, filled with 20 mL of deionized water, and incu-
bated at 37 ◦C, <20% RH for 18 h to 24 h. Determination of evaporation by weight loss
was executed as described above. The Paddington cup was modified using a base plate
with a fine vent hole (0.25 mm) on the opposite side of the dressing to prevent stretching of
the dressing as a consequence of negative pressure inside the cup. All experiments were
performed fivefold and MVTR for each variation was calculated using Equation (3):

MVTR
[

g
m2×24 h

]
= (m1 −m2)× 1000× 24

T

m1 = weight before incubation [g]
m2 = weight after incubation [g]

T = testing duration [h]

(3)

3.2.7. Fluid Donation

The wet dressings XBC, BC_A, BC_C, and GEL were compared regarding their fluid
donation abilities using a method based on EN 13726-1:2002 part 3.4. Briefly, 35.00 g of
gelatin powder was suspended in 65.00 g Test Solution A and incubated for 12 h at 60 ◦C
until completely dissolved. An amount of 30 g of gelatin solution was poured into a petri
dish of 90 mm diameter. The petri dishes were closed, sealed tightly, and incubated for 3 h
at 25 ◦C to allow gel-forming (Figure 8).
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Figure 8. Setup based on EN 13726-1:2002 part 3.4 to compare moisture-donating wound dressings
regarding their fluid donation. A gelatin gel with a water content < 35% was weighed before and
after 48 h of contact with the dressing samples. The petri dish was covered and sealed tightly to
prevent evaporation.

Petri dishes were opened and weighed (m1), and 5 cm × 5 cm sized wound dressings
were placed on the gel surface. After closing and sealing, the dishes were incubated
vertically at 25 ◦C for 48 h. Lid was removed and petri dishes were weighed again
after removal of the dressing samples (m2). Fluid Donation (FD) was calculated using
Equation (4):

FD
[

g
100 cm2

]
= (m2−m1)×100

A

m1 = weight before incubation [g]
m2 = weight after incubation [g]

(4)
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4. Conclusions

Millions of patients worldwide suffer from chronic wounds. Although there are nu-
merous types of wound dressings available in the market, selecting a suitable dressing can
be demanding and therapy success is not self-evident. Wound dressings based on BC such
as epicitehydro have gained increasing relevance and show excellent results in the treatment
of burn wounds. The post-market surveillance study featuring epicitehydro presented herein
revealed promising results regarding wound cleansing, pain reduction, a reduction in the
wound area, and depths as well as fibrous tissue in chronic wounds. Nonetheless, there
was still room for improvement in exudate management, where in vitro tests revealed that
epicitehydro fell short of higher absorptive materials such as foam dressings, alginates, or
hydrofibers in terms of exudate absorption.

In this work, the exudate-handling properties of BC dressings could be altered using
a readily feasiblemodification to provide a remarkably higher absorption capacity, which
represents a promising enhancement concerning the therapy of medium- to higher-exuding
wounds. For the first time, a potential interplay between the MVTR in contact with liquid
and the free swell absorptive capacity was described, the latter being surprisingly higher
for BC dressings featuring a moisture content of 92% or 97%, respectively, than for dry,
advanced wound dressings made of alginates, carboxymethylcellulose (hydrofibers), or
hydrocolloids. This unique property could be explained by capillary forces within the
open-porous and fine network structure of BC dressings. Both observations, the increase
in the free swell absorptive capacity over time (here: within 24 h), and the significantly
lower free swell absorptive capacity of the moisture-saturated version (BC_A) support this
hypothesis. Future studies should investigate whether these results can be replicated in
alternative experimental settings and could be effective in clinical use. Biomimetic concepts
such as wound-healing (scratch) assays, which have already been successfully applied to
BC-based wound dressings, could also be helpful in this context [36,80].

At the same time, the proven beneficial characteristics, such as a suitable permeability
and a strong ability to donate moisture, which have a clinically relevant impact on the
hydrobalance of wounds, could be maintained in the new versions BC_C1 and BC_C2. Car-
bohydrate polymer-based wound dressings made of bacterial cellulose such as epicitehydro

thus represent a very promising and adaptable material for the successful treatment of both
burn and chronic wounds of different origins.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ph15060683/s1, Table S1: Clinical trials assessing different BC-based wound dressings in
chronic wound care. Table S2: Clinical trials assessing different BC-based wound dressings in burn
wound care. Table S3: Overview of wound diagnoses in BC_A Post-Market Clinical Follow-up Study.
Table S4: Overview of local wound treatment prior to BC_A Post-Market Clinical Follow-up Study.
Table S5: Overview of causal therapy in BC_A Post-Market Clinical Follow-up Study. Figure S1:
Moisture vapor transmission rate (MVTR) of different wound dressings determined with standard
Paddington cup in contact with vapor method (mean ± SD; n = 5). References [81–91] are cited in the
supplementary materials.
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Abbreviations & Terms

AC Absorptive Capacity
ALG Calcium Alginate dressing Suprasorb® A

(Lohmann & Rauscher GmbH & Co. KG, Neuwied, Germany)
BC Bacterial Cellulose
BC_A BC based wound dressing epicitehydro

(QRSKIN GmbH, Würzburg, Germany)
BC_C1 Experimental, non-commercial and modified BC-based wound dressing
BC_C2 Experimental, non-commercial, and modified BC Cellulose-based wound dressing
CCl Compression Class
CMC Sodium carboxymethylcellulose dressing Aquacel® Extra™

(ConvaTec Limited, Flintshire, UK)
DSMZ Deutsche Sammlung von Mikroorganismen und Zellkulturen

(German Collection of Microorganisms and Cell Cultures)
FD Fluid Donation
FOAM_1 Polyurethan foam dressing ALLEVYN Gentle

(Smith & Nephew Medical Ltd., Hull, UK)
FOAM_2 Soft silicone foam dressing Mepilex®

(Mölnlycke Health Care AB, Göteborg, Sweden)
GEL Gel dressing Suprasorb® G

(Lohmann & Rauscher GmbH & Co. KG, Neuwied, Germany)
HC Hydrocolloid dressing Hydrocoll® (PAUL HARTMANN Limited, Heywood, UK)
HET-CAV Shell-less Hen’s Egg Test on Chick Area Vasculosa
HSM Hestrin–Schramm culture medium
K. xylinus Komagataeibacter xylinus
MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
MVTR Moisture Vapor Transmission Rate
PMCF Post-Market Clinical Follow-up (Study)
SC Solid Content
VLU Venous Leg Ulcer
XBC BC-based wound dressing Suprasorb® X

(Lohmann & Rauscher GmbH & Co. KG, Neuwied, Germany)
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