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The functional organization of the dorsal striatum is complex, due to the diversity

of neural inputs that converge in this structure and its subdivision into direct

and indirect output pathways, striosomes and matrix compartments. Among the

neurotransmitters that regulate the activity of striatal projection neurons (SPNs), opioid

neuropeptides (enkephalin and dynorphin) play a neuromodulatory role in synaptic

transmission and plasticity and affect striatal-based behaviors in both normal brain

function and pathological states, including Parkinson’s disease (PD). We review recent

findings on the cell-type-specific effects of opioidergic neurotransmission in the dorsal

striatum, focusing on the maladaptive synaptic neuroadaptations that occur in PD and

levodopa-induced dyskinesia. Understanding the plethora of molecular and synaptic

mechanisms underpinning the opioid-mediated modulation of striatal circuits is critical

for the development of pharmacological treatments that can alleviate motor dysfunctions

and hyperkinetic responses to dopaminergic stimulant drugs.
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INTRODUCTION

Opioidergic signaling is involved in several functional aspects of the peripheral and central
nervous system and due to the broad distribution of opioid receptors throughout the brain,
its activation modulates different neural circuits. Opiate drugs are widely used as analgesic to
induce antinociception and to treat pain disorders. However, edonic effects of opiates induce
addictive behaviors that entail the involvement of opioidergic system in reward processes (1, 2).
Opioid receptors and the endogenous opioid peptides Enkephalin (Enk) and Dynorphin (Dyn) are
expressed at striatal circuits, where the opioid system modulates the activity of spiny projection
neurons (SPNs) during movement control in both a healthy state and in motor disorders such
as Parkinson’s disease (PD). In PD, functional changes in striatal pathways are associated with a
reorganization of molecular and synaptic mechanisms that counteract the loss of dopaminergic
cells. However, aberrant neuroadaptations in the striatal circuit can be responsible for critical
aspects of PD, as observed in levodopa-induced dyskinesia (LID). It is still unclear what role
opioid transmission plays in striatal circuity and how this system affects neural reorganization,
both in PD and in response to dopaminergic treatment. Here, we review recent findings on
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the cell-type-specific effects of opioid transmission in the
dorsal striatum, including the signaling pathways, synaptic and
behavioral effects mediated by opioid ligands, as well as their
interactions with dopaminergic transmission in both a PD
state and in response to dopaminergic treatment with levodopa
(L-DOPA).

ANATOMY AND PHYSIOLOGY OF THE
BASAL GANGLIA

The basal ganglia (BG) comprise a distributed group of nuclei
that include the striatum, which is composed by the caudate
and putamen (CPu), the globus pallidus, with the pars externa
(GPe) and interna (GPi), the subthalamic nucleus (STN); and
the substantia nigra pars compacta (SNpc) and pars reticulata
(SNpr). The Striatum and the STN represent the main input
nuclei of the BG, while the GP and SNpr are the two output
structures projecting to the thalamus and brainstem (3–7). The
BG nuclei’s connectivity to cortical regions provides a complex
network of sensorimotor, limbic and associative information,
conferring on the BG a pivotal role in the control of movement
as well as in associative learning, emotion and reward-related
behavior (8).

Nearly 95% of the striatum is composed of striatal projection
neurons (SPNs), which are GABA (γ-aminobutyric acid)-
ergic neurons that relay inhibitory efferent transmission and
are rich in dopaminergic receptors (DR). These neurons are
classified in two subtypes based on their projection targets,
neuropeptides expression and DR subtypes (9). SPNs that
express the neuropeptide Dyn and bear D1 excitatory receptors
(D1Rs) (10) belong to what is termed the direct striatonigral
pathway (dSPNs), projecting directly to the GPi/SNpr. On the
other hand, SPNs expressing Enk and bearing D2 inhibitory
receptors (D2Rs) project to the GPi/SNpr indirectly through
the GPe, as part of the indirect striatopallidal pathway (iSPNs)
(9, 11). In a healthy state (see Figure 1A), the activation
of the direct pathway promotes movement execution by
reducing the neural firing of the GPi/SNpr to the thalamus
and boosting glutamatergic thalamocortical transmission. In
parallel, activation of the indirect pathway reduces movement
initiation, exciting GPi/SNpr transmission by inhibiting the GPe
and activating the STN, ultimately leading to the inhibition
of thalamocortical transmission (4, 12, 13). The concomitant
activation of both striatofugal pathways maintains a balance
between the direct and indirect pathways, activating specific and
voluntary actions through the direct pathway and inhibiting
involuntary movements through the indirect pathway (13, 14).

Excitatory corticostriatal transmission on SPNs is modulated
by dopaminergic input from the SNpc through “diffusion-
based volume transmission,” where dopamine (DA) diffuses away
from the synapse to reach extrasynaptic receptors and regulate
excitability of SPNs (15). However, sparse release sites defined as
active zone have been identified in the striatal DA axons to allow
for a fast DA release and to generate a localized DA signal (16).
Once released, DA exerts a dual effect on striatal neurons (17),
exciting the direct pathway by binding to D1Rs and inhibiting

the indirect pathway by binding to D2Rs. DA discharge from the
dopaminergic neurons of the SNpc is crucial for the initiation and
execution of motor sequences (14, 18).

THE OPIOIDERGIC SYSTEM: PEPTIDES
AND RECEPTORS

Enk, Dyn and β-endorphin belong to family of endogenous
peptides produced through the proteolytic cleavage of protein
precursors such as preproenkephalin-A (PPENK), which
forms six copies of methionine-Enk (Met-Enk) and one
copy of leucine-Enk; preproenkephalin-B (also known as
preprodynorphin), which produces Dyn and endorphin; and
finally, proopiomelanocortin, which produces β-endorphin. The
endogenous peptides have different degrees of selectivity for the
opioid receptors; Enk binds δ opioid receptors (DORs) and µ

opioid receptors (MORs), Dyn is selective for κ-opioid receptors
(KORs), and β-endorphin binds MORs (1).

Opioid receptors (ORs) are seven-transmembrane receptors
and belong to a superfamily of G protein-coupled receptors
(GPCRs) with inhibitory activity (Gαi/o) on cellular excitability
and synaptic transmission (1). OR activity promotes the
activation of G-protein-coupled inwardly rectifying K+ channels,
inhibits Ca+ channels and adenylyl cyclase (AC), and reduces
neurotransmitter release and neural activity (19, 20). ORs are
broadly distributed in the brain, with some structures exhibiting
higher expression of a specific type of receptor, while others have
three overlapping receptors that can interact locally with one
another in synergistic or antagonistic ways (21).

A broad distribution of MORs has been observed in the
thalamus, amygdala and locus coeruleus (1), and in the thalamic
afferents to the striatum (22). MOR expression has also been
observed in CPu striosomal compartments that project to
the SNpc (23) (Figure 2). Specifically, MORs are expressed in
striosomes both on dSPNs enriched in Dyn precursor and on
iSPNs (24), where they colocalize with D2Rs in dendrites (25).
MORs are also expressed on striatal cholinergic interneurons
(26, 27).

DORs are abundant in layers II, III, IV and V of the cerebral
cortex and in the striosomes and matrix compartments of the
CPu, with a higher dorsolateral distribution than ventromedial
(28). On a cellular level, DORs are expressed within the nucleus
and in the somatodendritic area on iSPNs, but not on dSPNs
(24, 29).

KORs are predominantly found in the medial sector of
the CPu and in the nucleus accumbens and showed a
higher coexpression with D1Rs (24). They are also localized
presynaptically in the nigrostriatal afferents of the SNpc.

OPIOID RECEPTOR SIGNALING

The activation of opioidergic GPCRs by endogenous opioid
peptides or exogenous agonists leads to the dissociation of
Gα/βγ subunits that stimulate various intracellular effectors.
The inhibitory activity of opioid receptors includes several
processes that are selectively initiated by the Gα and Gβγ protein
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FIGURE 1 | Basal ganglia motor loop in (A) normal, (B) PD, and (C) LID condition. The schematic represents the direct, indirect and hyperdirect pathways projecting

to the thalamus and spinal cord and the changes of expression of opiod peptides, Enk and Dyn. Red, blue and black lines indicate GABA-ergic, glutamatergic and

dopaminergic projections, respectively. Changes in the rate of neural transmission are indicated with thick (increased activity) and thin (decreased activity) lines.

Changes in the expression of Enk and Dyn are depicted in green (increased levels) and light green (decreased levels). The gray color of substantia nigra pars compact

(SNc) is representative of PD state due to the loss of dopaminergic cells.

FIGURE 2 | Representative cartoon of opioid receptors distribution and expression in striosomes and matrix compartments of the dorsal striatum. The drawing shows

the different input and output pathways related to the striosomes (red lines) and matrix compartments (green lines) and the changes in the expression levels of MOR

and DOR. GPe (globus pallidus pars externa) and STN (subthalamic nucleus) indicate the indirect pathway targets; SNr (substantia nigra pars reticulata) and GPi

(globus pallidus pars interna) indicate the direct pathway targets; SNc (substantia nigra pars compacta) is the target of the specific pathway arising from the striosomal

compartments.
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subunits. The Gα subunit inhibits AC by decreasing intracellular
cyclic adenosine monophosphate (cAMP) levels and activates the
inward-rectifier K+ channel, leading to the hyperpolarization of
the cellular membrane and the inhibition of neural activity (30).
The inhibition of AC and cAMP by the Gα subunit can also lead
to a reduction of Ca2+ conductance (31), although this reduction
is predominately induced by the direct binding of Gβγ subunit
to the channel, and the consequent decrease in neurotransmitter
release. Indeed, activation of KORs on the nigrostriatal afferents
of the SNpc reduces the release of DA and influences the kinetics
of the DA transporter (32, 33). Intrastriatal injection of a MOR
agonist alters extracellular DA levels in the shell and core of the
nucleus accumbens and in the rostral and caudal subregions of
the dorsal striatum, where the reduction is thought to be due
to presynaptic activation of MORs on DA terminals (34, 35).
Activation of MORs on striatal cholinergic interneurons reduces
Ach release and decreases cholinergic interneurons excitability
(26, 27).

Besides inhibiting the AC /cAMP, opioid receptors shape
several other cellular responses. The interaction with different
G proteins, β-arrestins or kinases, can promote the activation
of different effectors or signaling pathways (36), or prompt
the internalization and desensitization of receptor functional
activity (19, 37), with significant changes in behavior (38). The
direct activation of opioid receptors and the release of Gβγ

subunits can promote the activation of mitogen-activated protein
kinases (MAPKs) (19, 39). Notably, activation of MAPK can
be also mediated by binding of DA to D1R. In the dorsal
striatum of PD animal models, pulsatile replacement of DA,
for example by L-DOPA treatment, leads to an overstimulation
of the direct striatonigral pathway that promotes the activation
of MAPK and its downstream effectors, such as extracellular
signal-regulated kinases ERK1/2 or transcription factors (40–42).
Increased levels of phosphorylated ERK (p-ERK) or immediate
early genes are associated with aberrant cellular responses and
dysfunctional behaviors in PD and LID state (43–45). Therefore,
opioidergic and dopaminergic receptors could both activate
postsynaptic signaling cascades that converge to ultimately
promote an increase of proteins and transcriptional factors
that affect striatal-based behaviors. However, it is still unclear
whether alterations of the striatal motor function arise from a
synergic activity of the dopaminergic and opioidergic system or if
opioid transmission only modulates the molecular and synaptic
mechanisms mediated by dopaminergic transmission.

COMPARTMENT-SPECIFICITY
LOCALIZATION OF OPIOID RECEPTORS
IN THE DORSAL STRIATUM

Beyond the classical division of the striatum into the direct
and indirect pathways, this structure is also subdivided into
striosomes (defined as striatal bodies) and matrix compartments
(Figure 2), which are defined according to neurotransmitter
and receptor segregation, afferent and efferent connections (46),
signaling cascade activation (47) and neurophysiological features
(48). Striosomes represent about 10–15% of the dorsal striatum

and are mainly localized in the medial sector of the CPu (29, 49),
where they are characterized by acetylcholinesterase (AchE)-poor
zones and by immunoreactivity against Enk, substance P and
GABA (50). The matrix compartment comprises 85% of the
remaining striatum. It is rich in AchE, contains calcium-binding
proteins such as parvoalbumin and calbindin, and is directly
affiliated with the sensorimotor system (51). Both striosomes
and matrix contain dSPNs and iSPNs, although dSPNs are
more prevalent in the striosomal compartment and project
predominantly to dopaminergic neurons in the SNpc (50, 52).

The matrix and striosomal compartments also receive
inputs from different cortical areas; striosomes are related
to the limbic area, whereas the matrix is associated with
sensorimotor and associative areas (53) (see Figure 2). Overall,
this complex striatal subdivision, together with a discrete
distribution of neuromodulators between matrix and striosomes
compartments, reflects that SPNs functional activity might differ
in compartment-specific manner and affect different striatal-
based behaviors (54).

While dSPNs and iSPNs are broadly distributed in both
striosomes and matrix, opioid-mediated synaptic transmission
seems to segregate (46), perhaps due to the different distributions
of opioid receptors on dSPNs and iSPNs in these compartments.
For example, application of MOR and DOR agonists reduces
GABAergic synaptic responses in both dSPNs and iSPNs
predominantly in the striosomal compartment, but not in the
matrix (29, 48). Specifically, the binding of Enk to DORs
located on iSPNs collaterals that synapse on dSPNs, suppresses
the inhibition of dSPNs only in the striosomes, but not in
matrix, leading to strengthened striosomal dSPNs responses to
corticostriatal inputs (29). The behavioral implications of this
connectivity might be relevant in PD, where changes in the levels
of the endogenous opioid Enk might promote or reduce dSPNs
response to cortical inputs, thereby affecting the release of DA
through the striatonigral pathway (29).

OPIOID-MEDIATED
NEUROTRANSMISSION AND SYNAPTIC
PLASTICITY IN THE DORSAL STRIATUM

The first neurophysiological studies on the opioid-mediated
neurostransmission at striatal circuits investigated the role of
these neuropeptides in the modulation of glutamatergic inputs
mainly arising from the cortex. These studies showed that MOR
and DOR agonists inhibited glutamatergic inputs to the striatum
(55) and more specifically, selective MOR agonists reduced the
excitatory inputs at the corticostriatal level in both striosomes
andmatrix compartments (48, 56). In addition, the application of
exogenous MOR and DOR agonists or the release of endogenous
opioids induced long-term depression (LTD) on striatal SPNs in
both the DLS and the dorsomedial striatum (DMS). Specifically,
MOR activation inhibited thalamostriatal excitatory inputs,
whereas the activation of DOR inhibited corticostriatal inputs;
these results indicate the specificity of opioid-mediated synaptic
plasticity in the dorsal striatum (22). Interestingly, applying an
exogenous KOR agonist induced LTD more selectively in the
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TABLE 1 | Summary of opioid-mediated neurotransmission and synaptic plasticity

in the dorsal striatum.

Activation of

opioid recepetors

Distribution Signal

MOR Thalamostriatal afferents

Striosomal dSPN and iSPN

Cholinergic interneurons

↓EPSCs (22)

↓IPSCs (29, 48)

↓ACh release (26, 27)

DOR Nigrostriatal terminal

iSPN striosomal collaterals

Corticostriatal afferents

↓ DA release (34, 35)

↓ IPSCs (29)

↓ EPSCs (22)

KOR Presynaptic nigrostriatal

afferents

Striatal SPNs in DLS

↓ DA release (33)

LTP (57)

LTD (22)

According to the specific distribution of opioid receptors, changes in neurotransmitter

release or synaptic plasticity are observed in response to exogenous and endogenous

opioid agonists. ESPCs, excitatory postsynaptic currents; ISPCs, inhibitory postsynaptic

currents; Ach, acetylcholine; DA, dopamine; LTP, long term potentiation; LTD, long term

depression.

DLS than in the DMS, suggesting subregional specificity of KOR-
mediated synaptic plasticity (22) (Table 1). This subregional
difference between the DLS and DMS might be related to their
distinct functional roles in motor control. Behavioral studies
demonstrate that the DLS is more connected to the control
of body movements rather than to more general control of
locomotor activity (58, 59). In PD animals treated with L-DOPA,
higher levels of Dyn precursor (PDYN) mRNA, selective for
KOR binding, are expressed in the DLS than the DMS (60–62).
Moreover, higher PDYN mRNA expression in the lateral striatal
portion of the DA-denervated hemisphere correlates only with
the severity of dyskinesia, instead of with locomotor variables that
define animals’ spontaneous motion (60, 62).

Opioids have been shown to regulate striatal LTD (22). In
contrast, their effect on long-term potentiation (LTP) in the
dorsal striatum remains unexplored. Most of the studies that
have attempted to characterize the role of opioids in LTP have
examined different functional areas, such as the ventral tegmental
area (63), hippocampus or C-fiber of the spinal dorsal horn (64).
A recent study investigated the effect of KOR activation on LTP in
the corticostriatal pathway (57), and demonstrated that applying
Dyn reduced the release of DA, as expected by binding to KOR on
DA nigrostriatal terminals. Moreover, selective activation of the
D1R-SPNs that promote the co-release of Dyn also led to impared
corticostriatal LTP, likely due to the KOR-mediated reduction in
DA release from the nigrostriatal pathway (57) (Table 1).

OPIOID NEURONTRANSMISSION IN
PARKINSON’S DISEASE AND
LEVODOPA-INDUCED DYSKINESIA

The broad distribution of opioid receptors in the striatum and
their interplay with dopaminergic transmission point at critical
role for opioidergic neuropeptides in modulating striatal activity
andmotor control, in particular, both in healthy and pathological
states, such as in PD. This is a progressive neurodegenerative
disorder characterized by the loss of dopaminergic cells in the

SNpc, which results in motor deficits (i.e., bradykinesia, rest
tremor, rigidity, and postural and gait impairment) (65, 66).
PD patients develop these symptoms only after a significant
depletion of striatal DA– by 60 to 80% (67) – likely because of
compensatory DA production by surviving neurons or unknown
compensatory mechanisms within or outside of the BG (68).
Furthermore, the loss of dopaminergic neurons in the SNpc
results in a functional imbalance in the two major output
pathways of the striatum: hypoactivity in the direct circuit and
hyperactivity in the indirect circuit. This imbalance leads to an
overstimulation of the GPi/SNpr which decreases thalamic input
to motor cortical areas, resulting in reduced movement and
classical Parkinson’s symptoms (Figure 1B).

Various animalmodels of PD are used to better understand the
disease’s pathophysiology, but none of them fully exhibit all PD
symptoms, nor do they develop a neurodegenerative state similar
to that in PD patients. For this reason, the most suitable animal
model depends on the scientific question being investigated (69).
Parkinsonian motor deficits due to DA depletion or DA neuronal
death are usually recreated in animals through the injection of
selective neurotoxins such as 6-hydroxydopamine (6-OHDA) in
rat and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)
in mouse or primate, while specific molecular events and protein
aggregation are investigated using genetic models of PD-related
mutations (70).

PD symptoms can be alleviated with dopaminergic treatments
that aim to replace the DA deficiency in the nigrostriatal pathway.
No curative treatments exist for PD patients, and currently
available therapies are symptomatic. To date, L-DOPA remains
the most effective drug for exogenous dopaminergic replacement
and for counteracting PD symptoms. However, as the disease
progresses and dosages of L-DOPA increase, many patients
develop disabling complications, including severe fluctuations in
motor function (on-off phenomena) and abnormal involuntary
movements called L-DOPA-induced dyskinesia (LID) (71,
72). The pathophysiology of LID has been associated with
aberrant activation of the direct striatal pathway and with
increased levels of the endogenous opioid neuropeptides Enk
and Dyn (Figure 1C). It is still unclear whether opioid
transmission can affect the neural reorganization of striatal
pathways, and if changes in opioid expression might have a
compensatory or synergistic effect on striatal-based behaviors in
PD and LID.

OPIOID PEPTIDE EXPRESSION IN PD AND
LID

Several studies have been conducted in animal models to
investigate changes in the expression of endogenous opioids in
the dorsal striatum and their association with motor impairment
and dyskinetic movements. Indeed, DA and its binding to D1Rs
and D2Rs can modulate the striatal levels of mRNA expression
of Dyn and Enk neuropeptide precursors (PDYN and PPENK).
Changes in PDYN and PPENKmRNA levels have been observed
in PD, where DA transmission is lost, and in LID, during the
exogenous replacement of DA (Figure 1).

Frontiers in Neurology | www.frontiersin.org 5 July 2018 | Volume 9 | Article 524

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Sgroi and Tonini Opioidergic Signaling at Striatal Circuits

In the striatum of 6-OHDA andMPTP animal models (60, 62,
73, 74), as well as in PD patients (75), the levels of PPENKmRNA
expression are increased, irrespective of L-DOPA treatment.
The levels of PPENK mRNA remain highly expressed in PD
animals also given chronic L-DOPA treatment (76) as well as
in PD patients affected by dyskinesia (77), suggesting persistent
adaptive changes in the Enk peptide (78).

In contrast, nigrostriatal DA denervation leads to a reduction
in the levels of PDYN mRNA (60, 62, 79, 80) that increase
under L-DOPA therapy compared to untreated or non-dyskinetic
states, consistently across different study models (62, 76, 78, 81).
These observations suggest that the expression of opioidergic
neuropeptides involved in the modulation of BG output is strictly
regulated by striatal DA levels, likely also through the activation
of postsynaptic transcription factors that ultimately can promote
the expression of multiple genes, including those for opioidergic
peptides.

In addition, in dyskinetic PD rat model, high levels of
both PPENK and PDYN are overall correlated with L-DOPA-
induced locomotor alterations. While there is a more specific
association between high levels of PDYN mRNA and dyskinetic
movements (60), on the other hand, high expression of PPENK
mRNA is also correlated with locomotor hyperactivity, beyond
dyskinesia (62). These observations suggest that Enk and Dyn
might play different roles in striatal-based behavioral effects and
in locomotor alterations in response to dopaminergic treatment.

OPIOID RECEPTOR EXPRESSION IN PD
AND LID

Along with different levels of opioidergic peptides expression,
alterations in the levels of opioidergic receptor immunoreactivity
have been observed in both PD patients and animal models.
Piccini et al. (82) found reduced opioid receptor binding in
the caudate of PD patients, and in the putamen and thalamus
of dyskinetic PD patients compared to non-dyskinetic. Similar
observations have been described in animal studies, although
some differences were found across the various models.

Striatal levels of MOR binding and µ-immunoreactivity were
reduced in PD rats (83) and in MPTP-lesioned macaques
treated with L-DOPA (80), as well as in PD patients undergoing
chronic L-DOPA therapy (84). Lower levels of DOR binding are
expressed in the GP and striatal areas of 6-OHDA dyskinetic
rats, while an increase of δ-immunoreactivity occurs in the
motor and premotor cortex (83) (Figure 2). Consistent with
these results, PD patients treated with L-DOPA have reduced
levels of DOR binding compared with control patients (84). KOR
binding levels are decreased in the striatal areas of dyskinetic
PD rats and in the GP of PD rats with and without LID (83);
low κ-immunoreactivity is observed only in the GP structure of
MPTP-denervated macaques with and without dyskinesia (80).

Even though the exposure to L-DOPA treatment in PD
animals and PD patients leads to a reduction in opioid receptor
binding levels, Chen and colleagues (85) assessed G protein-
coupled receptor signaling as a marker of MOR, DOR and KOR
activity in MPTP-lesioned non-human primates. Interestingly,

TABLE 2 | Summary of opioidergic drugs used as pharmacological intervention to

counteract parkinsonian symptoms and dyskinetic movements in PD animal

model.

Opioidergic

drugs

Opioid receptor

targets

Function Effect

Cyprodine

ADL5510

MOR Antagonist ↓ LID (86, 87)

Naltrindole DOR Antagonist ↓ LID (86, 88)

Akinesia (89)

SNC-80 DOR Agonist ↑ Kinesia in PD state

(90–92)

nor-BNI KOR Antagonist No effect on LID (86)

U50,488 KOR Agonist ↓ LID (93)

↑ Akinesia

Nalbuphine KOR-MOR Agonist-

antagonist

↓ LID (94)

Naloxone KOR-MOR-DOR Antagonist ↓ LID (95, 96)

nor-BNI, nor-binaltorphimine; LID, levodopa-induced dyskinesia; PD, Parkinson disease.

they found a hyperactive transduction signal mediated by all
three opioid receptors in the striatum. This suggests that in the
parkinsonian state under L-DOPA treatment, although the levels
of receptor binding can be decreased, the response to activation
of opioid receptors is in fact enhanced.

PHARMACOLOGICAL IMPLICATIONS OF
OPIOIDS IN MOTOR FUNCTION

Elucidating the role of opioidergic transmission in the molecular
mechanisms that control motor function is complex, not only
due to the striatum’s neural heterogeneity, but also because of the
broad distribution of opioid receptors throughout the brain. The
activation of opioid-mediated postsynaptic signaling cascades
likely depends on several factors, including opioid agonists and
their response to ORs, the type of ORs activated, and whether
receptor stimulation is acute or chronic. Systemic administration
of opioidergic drugs might affect different neural circuits
and modulate behavioral aspects beyond locomotor activity.
Therefore, pharmacological approaches used to distinguish the
neural pathways in the control and alteration of movement
should be considered critically.

Considering the enhanced expression of endogenous opioid
peptides in the striatum of PD animal models and in PD patients,
selective agonists and antagonists to ORs have been used to
counteract akinesia in PD and to reduce the development of
dyskinesia in response to L-DOPA treatment (Table 2). MOR
antagonists (cyprodine and ADL5510) alleviated LID in MPTP-
lesioned non-human primates without interfering with the
antiparkinsonian effects of L-DOPA (86, 87). A selective DOR
antagonist (naltrindole) has a similar effect, reducing dyskinetic
movements in MPTP-lesioned marmoset and 6-OHDA rats
treated with L-DOPA (86, 88), although there is an akinetic effect
on motor activity in a PD model without DA treatment (89). A
selective DOR agonist (SNC-80) increased locomotor activity in
naive and PD animals, but its potential therapeutic applications
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are limited by its convulsive effects (90–92). In contrast, a κ-
receptor antagonist (norBNI) did not induce any anti-dyskinetic
effect in MPTP-lesioned macaques (86); yet a selective κ-receptor
agonist (U50, 488) reduced LID in PD rats and monkeys, but
impaired the anti-parkinsonian effects of L-DOPA treatment
(93). In line with these effects, the synthetic opioid analgesic
nalbuphine, acting as both a KOR agonist and aMOR antagonist,
reduced LID in a non-human primatemodel of PD and decreased
the levels of specific molecular markers associated with the
development of dyskinesia (94). Also noteworthy is the effect
of the non-selective antagonist naloxone, which reduced LID
in 6-OHDA rats (95, 96), although results in MPTP-lesioned
macaques and PD patients were inconclusive (97, 98).

The literature makes it clear that different pharmacological
responses are expected across animal models and in human
patients, likely due to the greater neural organization and
connectivity in primates and humans. The lost of DA in PD
and its exogenous replacement by L-DOPA lead to changes in
the expression of opioid peptides and receptor immunoreactivity
that reflect a strong interaction between dopaminergic and
opioidergic systems in the BG motor circuit. However, it is
still debated whether changes in the opioid transmission occur
to compensate for DA denervation and L-DOPA treatment, or
whether these changes interact with the molecular and synaptic
mechanisms associated with altered neural responses in motor
diseases.

CONCLUDING REMARKS

The recent advances in understanding the striatal functionality
highlight the strong impact of opioidergic transmission to
modulate synaptic plasticity and cellular responses of the SPNs.
The studies here reviewed, demonstrate that opioid receptors
have a regional (ventral vs. dorsal striatum), compartmental
(striosomes vs. matrix) and cellular (dSPNs vs. iSPNs) specificity
that affects the striatal activity in response to different inputs.
Such specificity reflects the complexity of striatal organization

and the efforts to find selective opioidergic treatments that
can modulate specific neural pathways. Although the literature

points out the inhibitory effect of opioid agonists on synaptic
transmission and neurotransmitters release, it is still debated
how opioid receptors interact with dopaminergic receptors and
whether they share commonmechanisms to activate postsynaptic
signaling cascades and downstream effectors. The interaction
between opioidergic and dopaminergic pathways becomes
crucial in PD and LID where the high levels of endogenous
opioids occurs in parallel with aberrant dopaminergic
transmission, and are associated with alterated striatal-based
behaviors. Since the broad distribution of opioid receptors
throughout the brain, pharmacological approaches should aim
to selectively target defined receptor subtypes, in a cell-type- and
input-specific manner. The use of chemogenetic or optogenetic
approaches are therefore crucial to dissect opioidergic
neurotransmission within the striatum and its interaction
with dopaminergic system. This would be instrumental to
develop specific pharmacological treatments able to restore
maladaptive changes without interfering with other neuronal
pathways.
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