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HIGHLIGHTS

• We test whether symbolic number comparison is handled by an analog noisy system.

• Analog system model has systematic biases in describing symbolic number

comparison.

• This suggests that symbolic and non-symbolic numbers are processed by different

systems.

Dominant numerical cognition models suppose that both symbolic and non-symbolic

numbers are processed by the Analog Number System (ANS) working according to

Weber’s law. It was proposed that in a number comparison task the numerical distance

and size effects reflect a ratio-based performance which is the sign of the ANS activation.

However, increasing number of findings and alternative models propose that symbolic

and non-symbolic numbers might be processed by different representations. Importantly,

alternative explanations may offer similar predictions to the ANS prediction, therefore,

former evidence usually utilizing only the goodness of fit of the ANS prediction is not

sufficient to support the ANS account. To test the ANS model more rigorously, a more

extensive test is offered here. Several properties of the ANS predictions for the error

rates, reaction times, and diffusion model drift rates were systematically analyzed in

both non-symbolic dot comparison and symbolic Indo-Arabic comparison tasks. It was

consistently found that while the ANS model’s prediction is relatively good for the non-

symbolic dot comparison, its prediction is poorer and systematically biased for the

symbolic Indo-Arabic comparison. We conclude that only non-symbolic comparison

is supported by the ANS, and symbolic number comparisons are processed by other

representation.
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REPRESENTATION BEHIND SYMBOLIC
NUMBER PROCESSING

Analog Number System
In their seminal work Moyer and Landauer (1967) described that
in an Indo-Arabic single digit number comparison task the
performance is worse (i.e., reaction time is slower and error
rate is higher) when the difference between the two numbers is
relatively small (numerical distance effect) or when the numbers
are relatively large (numerical size effect). They proposed that
the effects are the expression of a general ratio-based effect in
which number pairs with smaller ratio are harder to process.
This ratio-based performance was thought to be the result of a
simple representation working according to Weber’s law, termed
the Analog Number System (ANS), similar to the representations
working behind simple physical feature comparison tasks. Since
then, the ratio-based performance (usually measured only with
the distance effect) is thought to be the signal of a noisy analog
representation working in the background.

The ratio-based performance was also specified with
quantitative descriptions. Originally, Moyer and Landauer
(1967) demonstrated that the reaction time pattern can
be described appropriately with a function used at that
time in physical property comparison tasks: a K × log
(large_number/(large_number–small_number)) function
correlates well with the measured reaction time, r = 0.75.
Later, more precise mathematical descriptions were offered (see
Dehaene, 2007 for an extensive mathematical description of
the model). According to one of the implementations of these
descriptions, the numbers are stored as noisy representation
following a Gaussian distribution, and the noise is proportional
to the value of the number. This increasing noise can produce
the ratio-based performance. For example, the overlap between
the representations of two numbers predicts the error rate in
a comparison task, or more generally, this overlap predicts the
difficulty of the task, expressed as drift rate in the diffusion model
(see more details in the Methods section). (This proportionally
increasing noise can also be implemented in a logarithmic
representation with constant noise on a logarithmic scale).

The ANS is supposed to work behind any number
comparison, independent of the notation of the numbers
(Dehaene, 1992; Nieder, 2005; Piazza, 2010), because the same
ratio-based performance can be observed behind symbolic and
non-symbolic tasks (Moyer and Landauer, 1967; Dehaene, 2007),
and because overlapping brain areas are activated in symbolic
and non-symbolic number processing (Eger et al., 2003; Nieder,
2005). Although there could be differences between the symbolic
and non-symbolic number processing, and even there could be
two different representations working with different sensitivity
(i.e., Weber fraction), both of these stimuli are processed by
the same type of representations, which representations work
according to Weber’s law, producing a ratio-based performance
(Dehaene, 2007; Piazza, 2010).

The common mechanism and the strong relation between
symbolic and non-symbolic processing is also reflected by several
findings showing that, for example, the sensitivity of the ANS
measured in a non-symbolic dot comparison task correlates with

symbolic math achievement (Halberda et al., 2008), or training
non-symbolic number processing improves the symbolic number
processing (Park and Brannon, 2013). To summarize, it is widely
supposed that number processing is supported by a noisy, analog
representation, working according to Weber’s law, and therefore
producing a ratio-based performance in comparison tasks. Also,
this type of mechanism works behind both symbolic and non-
symbolic number processing, as reflected by many similarities
and relations between symbolic and non-symbolic numerical
tasks.

Different Symbolic and Non-symbolic
Number Processing
However, there are increasing number of findings in the
literature suggesting that the symbolic and non-symbolic number
processing is not backed by the same representation or by the
same type of representations. For example, it has been shown
that performance of the symbolic and non-symbolic number
comparison tasks do not correlate in children (Holloway and
Ansari, 2009; Sasanguie et al., 2014). As another example, while
former studies found that common brain areas are activated
by both symbolic and non-symbolic stimuli (Eger et al., 2003;
Piazza et al., 2004), later works with more sensitive methods
found only notation-specific activations (Damarla and Just,
2013; Bulthé et al., 2014, 2015). In another fMRI study, the
size of the symbolic and non-symbolic number activations
did not correlate, and more importantly, the activation for
the symbolic number processing seemed to be discrete and
not analog (Lyons et al., 2015a). According to an extensive
meta-analysis, while it was repeatedly found that the simple
number comparison task (the supposed index for the sensitivity
of the ANS) correlates with mathematical achievement, it
seems that non-symbolic comparison correlates much less
with math achievement, than symbolic comparison (Schneider
et al., 2017). In another example, Noël and Rousselle (2011)
found that while older than 9- or 10-year-old children
with developmental dyscalculia (DD) perform worse in both
symbolic and non-symbolic tasks than the typically developing
children, younger children with DD perform worse than control
children only in the symbolic tasks, but not in the non-
symbolic tasks, meaning that the deficit is more strongly
related to the symbolic number processing, and the impaired
non-symbolic performance is only the consequence of the
symbolic processing problems. See a more extensive review of
similar findings in Leibovich and Ansari (2016). All of these
findings are in line with the present proposal, suggesting that
symbolic and non-symbolic numbers are processed by different
systems.

Additionally, there are a few alternative models that are
in line with these later findings showing that symbolic and
non-symbolic number processing is not backed by the same
representation or by the same type of systems. In a connectionist
model of symbolic number processing, the model successfully
explains many phenomena the ANS model cannot handle
(Verguts et al., 2005; Verguts and Van Opstal, 2014). Although
this model is interpreted as a version of the ANS (Verguts
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and Fias, 2004; Dehaene, 2007), critically, it does not show
the defining feature of the ANS: the model does not produce
inherently the ratio-based performance, instead, introduction of
the uneven frequency of the digits is necessary to produce the
size effect (Verguts and Fias, 2004; Verguts et al., 2005). Thus,
the model proposes different type of mechanisms for symbolic
and non-symbolic number processing. Another model assumes
that primitives (simple representational units) are stored in the
long term memory only for the digits (numbers between 0
and 9) (Pinhas and Tzelgov, 2012), but not for other values
(Kallai and Tzelgov, 2009; Tzelgov et al., 2009), suggesting a
symbolic-only representation. In a third model it was proposed
that symbolic numbers can be stored in a Discrete Semantic
System (DSS), similar to the mental lexicon or a semantic
network. In this system numbers are represented by nodes, and
the connections of the nodes reflect the semantic relations of
the nodes mostly directed by the numerical distance of the
number pairs (Krajcsi et al., 2016). The distance effect might
be originated in the semantic relation of the nodes, as was
seen in the similar semantic distance effect in a picture naming
task (Vigliocco et al., 2002). The numerical size effect could be
rooted in the fact that smaller numbers are more frequent than
larger numbers (Dehaene and Mehler, 1992), and more frequent
numbers can be processed more easily. The DSS model can be
easily extended to account for symbolic numerical interference
effects as well (Proctor and Cho, 2006; Leth-Steensen et al., 2011;
Patro et al., 2014). Thus, the DSS can account for symbolic
numerical effects, independent of the non-symbolic number
processing.

Importantly, in the DSS account a performance pattern
similar to the ANS model can be offered. For example, it is
possible that the reaction time could be proportional to the sum
of the linear distance effect and the size effect originated in the
frequency of the values, which in turn is related to the power
of those values (see the justification for this function and similar
possibilities in Krajcsi et al., 2016). Figure 1 shows two possible
implementations of the ANS and the DSS models, and it reveals
that the DSS model might generate a very similar pattern to
the one supposed by the ANS model (the correlation of the two
presented performance predictions is−0.89).

The similarity of the ANS and the DSS model predictions
means that the DSS model could be potentially an appropriate
alternative explanation for the observed distance and size
effects. Even more importantly, this means that former works
investigating whether the ANS model is correct might have
found high correlation between the ANSmodel and the observed
performance either because the ANS model is correct, or because
it is the DSS model that is correct, and as the ANS model
prediction correlates highly with the DSS model prediction, the
correlation between the ANS prediction and the performance was
only illusory.

To summarize, an increasing body of evidence indicates
that symbolic and non-symbolic numbers might be processed
by different types of representations, and there could be
appropriate alternative models to explain symbolic number
processing, which may also question the suitability of former
tests.

The Aim of the Study
The aim of the present study is to test the appropriateness
of the ANS model in comparison tasks more extensively. The
appropriateness of the ANS model for both symbolic and non-
symbolic notations have been investigated several times, finding
that the prediction of the ANS model is similar to the observed
performance (Moyer and Landauer, 1967; e.g., Dehaene, 2007).
Former studies usually investigated the goodness of fit of the
ANS model for the observed performance. However, these
former tests are insufficient, because similarity between the
ANS model prediction and the observed performance may be
caused by alternative models with similar predictions, such as
the DSS model. For example, it is possible that in the Moyer
and Landauer (1967) study, the r = 0.75 correlation between
the observed reaction time and the ANS model prediction is
the result of a stronger than r = 0.75 correlation between the
DSS model prediction and the observed performance, and the
strong correlation between the DSS model and the ANS model
predictions (e.g., r = −0.89). Therefore, it is not enough to show
that the ANS model’s prediction is similar to the observed data,
but a more extensive test is needed.

Here we test the appropriateness of the ANS model by
investigating whether the ANS model can explain both symbolic
and non-symbolic comparison tasks equally well, or whether
there are critical differences between symbolic and non-symbolic
comparison tasks.1 If the ANS account is correct, then one
should expect that the ANS model can describe both symbolic
and non-symbolic equally well, as suggested repeatedly in
the literature (Moyer and Landauer, 1967; Eger et al., 2003;
Nieder, 2005; Dehaene, 2007). However, if there are differences
between the symbolic and non-symbolic notations, one might
suppose that the ANS can describe the non-symbolic comparison
appropriately, in line with the fact that non-symbolic stimuli are
visual-perceptual as other physical properties processed by other
representations working according to Weber’s law (Moyer and
Landauer, 1967; Dakin et al., 2011; Gebuis and Reynvoet, 2012;
Stoianov and Zorzi, 2012), while the ANS model cannot account
for the symbolic comparison, as suggested by the alternative
symbolic number processing models.

One might question whether this type of test is meaningful,
because symbolic and non-symbolic comparison do not
necessarily work in the same way, even if the ANS model
is correct. For example, there could be additional notation-
specific mechanisms that could change behavioral performance,
therefore, one cannot expect that the two notations should show
the same performance pattern. However, if someone believes that
there could be additional components that might influence the
behavioral performance, then onemust also question whether the
findings suggesting ratio-based performance in any comparisons

1A similar investigation of symbolic and non-symbolic comparisons testing against
the ANS model was done by Dehaene (2007), however, in that study multi-
digit Indo-Arabic numbers were utilized. When comparing multi-digit symbolic
numbers one might process the numbers power by power, and holistic ANS
processing of the number cannot be guaranteed (Hinrichs et al., 1982; Poltrock
and Schwartz, 1984; Krajcsi and Szabó, 2012; Huber et al., 2016), therefore, in such
a test multi-digit symbolic numbers should be avoided. The present work utilizes
only single digit Indo-Arabic numbers.
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FIGURE 1 | Two possible predictions for the reaction time pattern by the ANS model (based on Crossman, 1955; Moyer and Landauer, 1967) and the DSS model

(based on Krajcsi et al., 2016) in a comparison task. The prediction of the models on a full stimulus space in a number comparison task of numbers between 1 and 9.

Number 1 and 2 are the two values to be compared. White denotes fast responses, red denotes slow responses (note that numerically the ANS function increases,

and the DSS function decreases toward the high ratio, but the direction is irrelevant in the linear fit below). The distance effect can be seen as the gradual change

when getting farther from the top-left bottom-right diagonal, and the size effect is seen as the gradual change from top-left to bottom-right. Notations: large: larger

number; distance: distance between the two numbers; x1 and x2: the two numbers; a, a1, a2 and b are free parameters. In the figures the parameters a and a2 are

set to 1, a1 is 0.4, and parameter b is set to 0. See also the Methods section for the interpretation of these heat map graphs.

are valid: even if ratio-based performance is observed, the
contribution of the hypothesized additional components should
be removed, and if that additional component is unspecified,
then nothing could be known about the real mechanism in
the background. According to this view, the findings of Moyer
and Landauer (1967) or any similar results cannot lead to the
conclusion that a ratio-based mechanism is working in the
background. Overall, one can believe that the current test is
invalid, but at the same time it should also be supposed that all
tests demonstrating a ratio-based comparison performance are
invalid. Even if this viewpoint might seem unusual, it still could
be valid. In this case, another types of tests should be found
(see for alternative approaches for these tests in Krajcsi et al.,
2016; Krajcsi, 2017). But if one thinks that the works that have
proposed that ratio-based performance were valid, the present
test should be considered to be valid, too.

In the present work we systematically examine whether ANS
predicts both symbolic and non-symbolic number comparison
performance equally well. Specifically, we examine (1) whether
the error rates can be described equally well by the functions
derived from the ANS model, (2) whether the reaction time
pattern of the two notations fit each other linearly, and (3)
whether the diffusion model drift rates of the two notations
can be described by the same analog representation. According
to the widely accepted version of the ANS model, the model
should predict any comparison equally well, because the same
ANS-type mechanism processes any numbers independent of
their notations. On the other hand, the alternative views might
suggest that the ANS should work relatively well only for the
non-symbolic notation, but it should work relatively poorly
for symbolic notation, because symbolic precise numbers are
processed by other mechanisms. Finally, from a methodological
point of view, it is also possible that the difference between the
ANS and the alternative models is much smaller than the typical
noise in the measured data, thus, even if there are differences

between the symbolic and non-symbolic comparisons, the signal-
to-noise ratio is not high enough to reveal the difference.
For this reason only different behavioral patterns of symbolic
and non-symbolic comparisons can be conclusive, supporting
the alternative accounts, while lack of difference between the
symbolic and non-symbolic comparisons could be either due to
the correct ANS description or due to the lack of statistical power.

METHODS

Participants compared Indo-Arabic numbers in one condition,
and they compared dot arrays in another condition. In both
conditions error rate and reaction time were measured.

Stimuli and Procedure
In a trial two numbers were visible on the left and on the right
sides of the screen, and participants had to choose the larger one
by pressing one of the two response keys. The stimuli were visible
until key press. The response was followed by an empty screen for
500ms, then the next trial started.

In the Indo-Arabic condition the numbers were between 1 and
9, to avoid multi-digit numbers (see footnote 1 for more details).
All possible pairings of those values were presented, except ties,
resulting in 72 possible pairs. All pairs were presented 10 times,
resulting 720 trials in the condition. The order of the trials was
randomized.

In the dots condition it is not appropriate to use the same 1–
9 range as in the Indo-Arabic condition, because sets with less
than five objects can be enumerated fast, which fast enumeration
is termed subitizing (Kaufman et al., 1949). Subitizing is not
an ANS directed process (Revkin et al., 2008), but it is most
probably based on pattern detection (Mandler and Shebo, 1982;
Krajcsi et al., 2013). Therefore, to measure the ANS based dot
estimation, the 1–4 range should be avoided. One option could
be to use only the numbers between 5 and 9, however, this
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solution would considerably decrease the stimulus space. Instead,
another solution was applied: it was not the 1–9 range itself
that was kept in the dot condition, but the ratios of the 1–9
range. Because according to the ANS model, it is the ratio of
the numbers that determines performance, changing the values
should not change the performance if the ratios of the values are
kept. Therefore, to avoid the 1–4 range, and to keep the critical
ratio-based feature at the same time, all numbers between 1 and
9 were multiplied by 5, resulting in a number range between 5
and 45.2 In an array of dots, black and white dots in random
positions were shown against a gray background (Dakin et al.,
2011), thus, the luminance of the stimuli was not informative
about the numerosity. Dots of an array were drawn randomly
in a 2 × 2◦ area, with a dot diameter of 0.2◦, therefore, density
and convex hull correlated with the numerosity. Although
our stimuli do not control all perceptual features that might
influence the perceived numerosity, in the current test, non-
numerical influence of the decision process is less relevant,
because the ANS model suggests that number comparison
is handled by an analog system that could be used in any
continuous physical feature comparison (Moyer and Landauer,
1967; Dehaene, 2007), hence, in a general sense, any continuous
physical feature comparison working according to the Weber’s
law could be an appropriate task in our test. Additionally, a
mixture of visual ratio-based performance and numerosity ratio-
based performance should also produce an approximately ratio-
based performance, as reflected in the similar psychometric
functions of visual comparison and numerical comparison tasks.
Therefore, the simple and limited visual control of the stimuli
is appropriate for the aim of the current test.3 As in the Indo-
Arabic condition, all possible pairs were presented 10 times,
resulting in 720 trials in the condition. The order of the trials was
randomized.

The order of the conditions was counterbalanced across
participants.

Participants
Twenty-four university students gave informed consent and
participated in the study for partial credit course.4 Four
participants were excluded, because their error rates were higher
than 1.5 standard deviation + mean error rates at least in one of
the conditions (6% in the Indo-Arabic condition and 15% in the

2One might raise that this way the two notations do not use the same number
ranges, consequently, the two conditions are not comparable. However, it is
important to highlight that the current work tests the ANS model, and in this
specific test any modifications that are in line with the ANS model are appropriate.
If the ratio-based transformations were not allowed, it would alreadymean that the
ANS model is incorrect, therefore, no further test would be needed.
3Similar to the reasoning in the previous footnote, we take advantage of the fact
that this work is an ANS test, and any addition that is in line with the ANS model,
is allowed. If one questions that the number-based comparison performance has
different properties than physical feature comparison performance, then the ANS
model itself is questioned, therefore, no further test would be needed.
4Because it is impossible to tell what effects sizes can be expected, or even what
properties could differ between the two notations, it is not possible to specify an
appropriate sample size in advance. Approximately 25 participants were set as a
convenient sample size where the most important effects are firmly observable, but
no reasonable prediction could be made regarding the reliability of yet unknown
differences between the notations.

dots condition). Among the remaining 20 participants there were
4 males, the age range was 19–24 years, with a mean of 21.0 years.

Analysis Methods
Figures Used in the Results Section
To explore the results in more detail, instead of showing the
distance and size effects in the traditional way, the full stimulus
space is displayed. The left of Figure 1 shows how an ANS
predicted pattern would look like. Rows and columns denote
the two numbers to be compared, and the cells include the
performance for a specific number pair. In this figure larger
values (on an arbitrary scale) and darker colors denote worse
performance.

To relate the current figures to the more widely known
effects, in Figure 2 some “pure” components of the typical
patterns can be seen. Distance effect is displayed as the distance
from the top-left and bottom-right diagonal, and size effect
is displayed as the distance from the top-left corner along
a top-left and bottom-right diagonal. Both effects can also
be seen in Figure 1, because the task is harder close to
the top-left and bottom-right diagonal (distance effect) and
because the task is harder toward the bottom-right corner (size
effect). Traditionally, distance and size effects are computed as
calculating the mean performance of the cells with the same
distance or size values. Sometimes the end effect is also observable
(Figure 2, when performance is better with the largest or smallest
numbers of the range used in the task (Scholz and Potts, 1974;
Balakrishnan and Ashby, 1991; Sathian et al., 1999; Piazza et al.,
2002).

These more detailed figures are more appropriate to explore
the performance, because (1) any effects that are slightly deviating
from the traditional distance and size effects are more visible,
and (2) due to the large number of cells systematic patterns
can be identified as reliable effects instead of being a random
noise, thus, a continuous change in the pattern might signal
a specific effect even without statistical hypothesis tests, and
random irregularities can be identified as noise.

Error Rate, Reaction Time, and Drift Rate Analysis

Error rate
In psychophysics, specific functions can be found that describe
the error rates in a comparison task based on the stimulus
intensities and theWeber ratio (Kingdom and Prins, 2010). These
functions are also used in the numerical literature (Dehaene,
2007), serving as a firm base to characterize the ANS model
prediction. The functions stem from the model summarized in
the Introduction, suggesting that error rate is proportional to
the overlap of Gaussian noisy representations. In our analysis
we used the function described in Dehaene (2007 Equation 10),
which supposes a linear scaling in the ANS,

pcorrect
(

n1,n2
)

=

+∞
∫

0

e
− 1

2

(

x−(r−1)

w
√

1+r2

)2

√
2πw

√
1+ r2

dx

where n1 and n2 are the two numbers to be compared, r is
the ratio of the larger and the smaller number, and w is the
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FIGURE 2 | Distance, size, and end effects displayed in the whole stimulus space.

Weber ratio. According to the model this function should work
with both symbolic and non-symbolic comparison, although
the Weber fraction could be different (Dehaene, 2007). In our
analysis the error rates predicted by the specified function above
were fit to the group mean of the error rates for both symbolic
and non-symbolic comparison for the whole stimulus space.

Reaction time
Current models are not straightforward about the reaction time
prediction, and former descriptions (such as used in Moyer and
Landauer, 1967) are incorrect from the viewpoint of the current
models. Still, to test whether former pieces of evidence were used
correctly to support the ANS model, we analyzed the reaction
time data.

In the last decades the diffusion model (see the Drift rate
section in the Analysis methods for details) became a successful
and an increasingly popular tool to describe the reaction time of
simple decision processes, including psychophysics comparison
tasks. However, earlier works used some simpler models to
describe the comparison tasks (Crossman, 1955; Welford, 1960;
Moyer and Landauer, 1967). From the perspective of the
diffusion models these early descriptions are incorrect, because,
for example, they did not consider the Weber ratio of the
processing system. Still, because evidence using these methods
was considered to support the ANS model, in this detailed
exploration we also investigate whether these historical tools
can support the idea that the ANS processes both symbolic and
non-symbolic numbers.

In these early models, there was no clear consensus about
the exact function that could describe the reaction time pattern.
Psychophysics was more interested in error rates close to the
threshold, and much less work investigated the reaction time
far from the threshold (Crossman, 1955). For example, the
seminal work by Moyer and Landauer (1967) used the K ×
log (large_number/distance) function5, referring to the Welford
(1960) paper, which in turn relied on Crossman (1955), however
no straightforward solution was proposed then.

Although it is not easy to specify the function that was thought
to describe correctly the reaction time pattern of comparison

5In the Moyer and Landauer (1967) paper the K log (large_number/large_number

-small_number) function can be found, without the necessary brackets around the
large-small term, butmost probably the calculation was performed with the correct
function.

tasks, we can avoid this problem. First, as all models agree that
dot comparison is handled by the ANS, dot comparison can be
considered as the empirical specification of the required function.
Second, in the early models, the specific functions could be fitted
linearly to the reaction time: the model can be multiplied by a
parameter to fit to the time scale of the comparison process, and
a parameter can be added to account for the non-decision time.
Moyer and Landauer (1967) also used this method implicitly:
they reported Pearson product-moment correlation coefficient
between the model and the data, which relies on simple linear
regression. The linear transformation between the functions and
the data means that the measured patterns should be linear
transformations of other measured patterns, too. To summarize,
according to the analysis methods of early works, the reaction
time patterns of different notations are linear transformations of
each other. To test this supposition, we fit the dot comparison
reaction time pattern to the Indo-Arabic reaction time pattern.
Because both dot and Indo-Arabic comparison data include
noise, R2 is not a suitable index to evaluate the similarity of
the patterns. However, looking at the residuals can be more
informative: if the two patterns readily fit, then only random
noise is expected in the residuals. If, on the other hand, the
two patterns differ in shape, then the residuals should show a
systematic pattern.

It could be possible to have a more appropriate reaction time
pattern with applying the diffusion models (see the next part for
details), however, to our knowledge there is no clear consensus
among others about the functional relationship between the drift
rate and the representational overlap, consequently, the reaction
time performance could not be specified easily.

Because the reaction time analysis applied here follows the
reasoning of the early analysis, the current results cannot be
considered as a reliable test of the ANS model, but we examine
whether evidence offered formerly really support the common
mechanism for symbolic and non-symbolic number processing.

Drift rate
In the recent decades, the diffusion model and related
models became increasingly popular to describe simple decision
processes (Smith and Ratcliff, 2004; Ratcliff and McKoon, 2008).
These models can recover background parameters directing both
error rates and reaction times more sensitively. In the diffusion
model, decision is based on a gradual accumulation of evidence
offered by perceptual and other systems. Decision is made when
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appropriate amount of evidence is accumulated. Reaction time
and error rates partly depend on the quality of the information
(termed the drift rate) upon which the evidence is built. Larger
drift rate usually results in faster and less erroneous responses.
Drift rates are more informative than the error rate or reaction
time in themselves, because drift rates reveal the sensitivity of
the background mechanisms more directly (Wagenmakers et al.,
2007). Importantly for our analysis, observed reaction time and
error rate parameters can be used to recover the drift rates
(Ratcliff and Tuerlinckx, 2002; Wagenmakers et al., 2007). The
drift rates recovered from the behavioral data then can be used
to investigate whether they are in line with the prediction of the
ANS model.

In the ANS model, like in the case of the error rates, difficulty
of the comparison of two properties might depend on the overlap
of the two Gaussian random variables: larger overlap leads to
worse performance (see the detailed mathematical description in
Dehaene, 2007). In the diffusion model framework it is supposed
that in a comparison task the drift rate depends purely on
the overlap of the two random variables (Palmer et al., 2005;
Dehaene, 2007)6.

To recover the drift rates for all number pairs in the
two notations, the EZ diffusion model was applied, which
can be used when the number of trials per cells is relatively
small (Wagenmakers et al., 2007). Although this method has
several limitations compared to more complex methods (Ratcliff
and Tuerlinckx, 2002), (a) all other methods have different
limitations, (b) according to current models, the constrains
applied in the EZ-diffusion model might not influence the
recovered drift rates essentially (although many aspects of
the diffusion models are not known yet), and (c) in another
numerical task analysis it was found that other tested diffusion
models reveal the same pattern as the EZ diffusionmodel analysis
(Kamienkowski et al., 2011). For edge correction we used the
half trial solution (see the exact details about edge correction in
Wagenmakers et al., 2007). The scaling within-trials variability of
drift rate was set to 0.1 in line with the tradition of the diffusion
analysis literature.

In the analysis we investigated (a) whether the recovered drift
rates are proportional to task difficulty and whether drift rates
tend to 0 as the task difficulty increases, and (b) whether drift
rates depend purely on the supposed representational overlap, as
supposed by the ANS model. As in the case of the error rates,

6According to the current models, it is only the drift rate that is relevant in
comparison performance (Palmer et al., 2005; Dehaene, 2007). For example, non-
decision time is not relevant in the distance effect, because it is not related to
the comparison phase (Dehaene, 1996). Similarly, decision threshold is believed
to be mainly modulated by the speed-precision instruction (Smith and Ratcliff,
2004) and not by the properties of the stimuli of specific trials. Although it is rare
that other than the mean of the performance is investigated in a study, Rouder
et al. (2005) measured reaction time properties as parameters of a 3-parameter
Weibull distribution. They found that distance effect modified the scale parameter,
but not the shape or location parameters. While the relation of the diffusion
model generated performance distribution and theWeibull distribution is not fully
understood (Rouder et al., 2005), drift rate change of the diffusion model can result
in scale parameter change but not in shape or location parameter changes in the
3-parameter Weibull distribution (Rouder et al., 2005), in line with the idea that it
is the drift rate that is related to the numerical distance effect.

according to the ANS model, these properties should be present
in both symbolic and non-symbolic comparisons (Dehaene,
2007).

RESULTS AND DISCUSSION

Mean Error Rates and Mean Reaction
Times
Mean error rates and mean reaction times for correct responses
were calculated for all number pairs for all participants in the two
notations, then mean values across participants were computed
(Figure 3). In both notations distance and size effects are visible,
the patterns of the two notations seem similar, and based on first
visual inspection the patterns could be in line with both the ANS
model and the DSS model predictions.

Two Weber Ratios
The error rate results also revealed that the dot comparison is
more erroneous than the Indo-Arabic comparison (the mean of
the cells are 6.7% for dot notation and 2.0% for Indo-Arabic
notation). On one hand, this result is hardly surprising: even
common sense would suggest that the exact symbolic comparison
is more precise than an imprecise dot array estimation. On the
other hand it raises some nontrivial questions. If both types
of comparisons are supported by the same representation, how
is it possible that the two types of comparisons show radically
different error rates and reaction times?

Because the ANS model suggests that the underlying
representation works according to Weber’s law, a reasonable
idea is that the two notations are supported by different Weber
ratios: for the Indo-Arabic comparison a more precise, low
value is used, while for the dot array comparison a more
imprecise, high value is applied. Dehaene (2007) also suggests
that the different Weber ratios can be implemented in different
neural cells, similar to the simulation in a connectionist model
(Verguts and Fias, 2004). In this connectionist model an ANS-
like layer represents the values, which layer works according
to Weber’s law, and after introducing symbolic notation to
the network, the nodes of the number layer become more
precise. While this explanation about the two Weber ratios
seems compelling, there are some problems that are not trivial
to solve. (1) Even if the Weber ratio is relatively small, soon
it will reach a ratio in which the noise and the error rates
will be too high to complete precise comparisons successfully.
However, humans can compare numbers with any precision,
which would require an unreasonably small Weber ratio. If
one argues that there should be a supplementary mechanism
that could help with the very small ratio number pairs, then
why is its contribution practically invisible as suggested by
the ANS model implicitly (i.e., if the Indo-Arabic comparison
performance can be predicted precisely by the ANS model, then
no other mechanism should have a major contribution to the
measured performance)? (2) Actually, as already discussed in
the Introduction, the Verguts model cannot be considered as an
ANS model, because after introducing the symbolic numbers,
the number layer cannot produce the size effect, violating the
ratio-based performance which is a defining feature of the ANS
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FIGURE 3 | Error rates (left side) and reaction time (right side) in the whole stimulus space in dots (top) and Indo-Arabic (bottom) notations.

model (Verguts and Fias, 2004), and only the addition of number
frequency could restore the size effect in the model (Verguts
et al., 2005), thus, the model cannot work according to Weber’s
law after the introduction of symbolic notation. Although none
of those problems state that the ANS is incorrect, they indicate
that some non-trivial problems should be solved to maintain its
coherence.

Although we have not been able to find convincing answers
to the questions mentioned so far, in the rest of our analysis
we still suppose that the two Weber ratios model is correct,
and investigate whether the ANS model with two ratios can
explain the Indo-Arabic and dots comparisons equally well. This
supposition is in line with the different mean error rate of the two
notations, and it reflects the views of the proposers of the ANS
model (e.g., Piazza et al., 2004; Dehaene, 2007).

ANS Predictions for the Error Rates
In the present section we investigate whether the ANS model
predicts the error rate patterns in both notations equally well.
We calculated the error rate prediction pattern in our stimulus
space for several Weber ratios. Two examples can be seen in
Figure 4. Weber ratios between 0.05 and 0.25 with a step size
of 0.02 were calculated, and fit of the models were calculated for
all Weber ratios and for both dot comparison and Indo-Arabic
comparison. Figure 5 shows the R2 values (right y axes) for the
dot comparison and the Indo-Arabic comparison as a function
of the Weber ratio (x axis).

First, it is important to clarify that the overall R2 value
difference between the two notations is not appropriate to
evaluate the ANSmodel. While the dot comparison reaches its R2

maximum at around 0.95, the Indo-Arabic comparison R2 is not
higher than 0.6. The different maximum R2 values can not only
be the result of worse overall fit of the ANS model to the Indo-
Arabic comparison, but it can also be the result of the smaller
error rate in Indo-Arabic comparison. It is reasonable to suppose
that the amount of noise is the same in both notations. However,
because of the smaller error rate in Indo-Arabic comparison, the

number pairs related variability is also smaller. Thus, the Indo-
Arabic comparison has a lower signal-to-noise ratio. R2 shows
the percentage of the variance the model can explain of the data,
but because of the lower signal-to-noise ratio, the percentage of
the variance a perfect model could explain is smaller, thus, the
maximum R2 a perfect model could reach is also lower. Although
the R2 should be lower for a less appropriate model, here the
variance of the R2 is directed more strongly by the signal-to-noise
ratio. This is another reason why the overall R2 cannot be used to
contrast the model’s prediction in the two notations, but a more
indirect analysis is required.

Several properties of the ANS model are important, which
properties can be used to assess how correct the model is for
the two notations. These properties can also show why a more
traditional model comparison method is not sufficient.

(1) Consistent predicted mean error rates and predicted

performance patterns (R2 values). Because the ANS model
predicts the mean error rate directly, a model with
appropriate Weber fraction should find the mean error
rate of the measured performance. Additionally, because
according to the ANS model the exact shape of the predicted
performance (performance pattern) depends on the Weber-
fraction of the representation7, it also means that a linear
fit of that prediction to the measured data should show
the highest goodness of fit, when the model uses the
appropriate Weber-fraction. Combining these statements,
when the appropriateWeber-fraction is found, (a) the model
should show the error rate prediction, and at the same time
(b) it should show the highest goodness of fit (e.g., highest
R2 value) reflecting that the model finds the shape of the
performance across the stimulus space.

To determine the Weber ratios for the two notations, we
looked for themean error rates ofWeber ratios that are equal

7In other words, ANS predicted performance patterns with different Weber-
fraction, e.g., the two error rates shown in Figure 4, cannot be fitted perfectly with
a linear transformation.

Frontiers in Psychology | www.frontiersin.org 8 February 2018 | Volume 9 | Article 124

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Krajcsi et al. Different Symbolic and Non-symbolic Number Processing

FIGURE 4 | Error rate predictions of the ANS model in our full stimulus space for two Weber ratios. The Weber ratios were determined based on the mean error rates,

see Figure 5 and the text.

FIGURE 5 | Predicted mean error rates (left y axis) as a function of Weber ratio, and measured mean error rates (left y axis) of the two notations. Goodness of fit (right

y axis) as a function of Weber ratio for the dot comparison and the Indo-Arabic comparison.

with the measured mean error rates of the two notations.
Figure 5 shows the predicted mean error rate (left y axis) as
a function of Weber ratios (x axis), and the measured Indo-
Arabic and dot mean error rates (dashed horizontal lines).
Intersections of the prediction (solid line with squares) and
the measured data (dashed horizontal lines) specify the
Weber ratios of the two notations. According to this, the
Weber ratio of the dot comparison should be around 0.19,
and the Weber ratio of the Indo-Arabic comparison should
be around 0.09. The 0.19 value for non-symbolic stimuli is
indeed a typical Weber ratio according to former studies
(see for example the results of an extensive measurement in
Halberda and Odic, 2014; or the summary of Piazza, 2010
for a review about the development of the Weber ratio). One
can note that in the measured data the large ratio cells (e.g.,
2 vs. 8, or 10 vs. 45) sometimes show a larger than 0% error
rate (Figure 3), which is not in line with the prediction of
the model (Figure 4), reflecting a base error rate, which is
independent of the specific number pairs. Because the model
cannot account for this error rate which is independent
of the comparison stage, it could be more appropriate to
subtract this base error rate (around 1%) from the measured
error rate (lowering the horizontal dashed line on Figure 5).
This correction would decrease the Weber ratios by a value
around 0.02. All the following results are presented with
the 0.19 and 0.09 Weber ratio values, although the same

result patterns could be seen with the corrected 0.17 and 0.07
values, too.

After specifying the Weber ratios of the comparisons for
the two notations, one can check if those Weber ratios also
show the highest R2 values. As discussed above, because
the goodness of fit should be highest when the Weber
ratio is specified correctly (i.e., the model should produce
exactly the shape that was measured), the model predicts
that the best fit (e.g., the highest R2) can be obtained with
the Weber ratio that is in line with the mean error rate
of the notation. With all other Weber ratios the goodness
of the fit should be worse. In the dot comparison task
the R2 indeed reaches its maximum around 0.19 Weber
ratio, which Weber ratio was predicted based on the
measured mean error rate. Thus, the ANS model predicts
correctly that the Weber ratio of the best fitting pattern
and the Weber ratio based on the mean error rates are
approximately the same values. However, in the Indo-Arabic
comparison the best R2 value is around 0.2 Weber ratio,
which is much larger than the 0.09 ratio specified with
the mean error rate. This suggests that the ANS model
cannot predict correctly the shape of the error rate pattern
and the mean error rate at the same time in this symbolic
comparison.

(2) Predicted error rate patterns. Based on the specifiedWeber
ratios we can compare the predicted and the measured error
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rate patterns for the whole stimulus space, which can reveal
further details how the ANS model prediction deviates from
the measured symbolic comparison data. Figure 4 actually
shows the predictions of the model for the Weber ratios
with the identified dot and Indo-Arabic Weber ratios, thus,
these patterns can be directly compared with the measured
data (Figure 3). The difference of the measured and the
predicted data can be seen in Figure 6. Because the model
predicts directly the error rates, Figure 6 can be considered
almost as the residuals after fitting themodel to themeasured
data. Positive values show that the model underestimates
the measured error rate, while negative values show that
the model overestimates the actual error rate. In both
notations the model and the actual data show systematic
biases, however, they are qualitatively different in nature.
(2a) In the dot comparison the misfit of the model is present
because the measured data show an asymmetry related to
the order of the stimuli, and the model cannot handle this
asymmetry. In small ratio pairs large-small number pairs
are responded to with smaller error rates (and faster, see
Figure 3) than small-large number pairs. This effect can be
the temporal congruity effect, in which large-small order
pairs are handled faster than the small-large order pairs
when the instruction is to choose the larger value (Schwarz
and Stein, 1998). The effect may appear in our data if
participants process the left stimulus first, which is consistent
with the Western reading direction. The size of the temporal
congruity effect is proportional to the difference of the onset
of the two values, and disappears when the two stimuli
are presented simultaneously (Schwarz and Stein, 1998).
This latter property might explain why in our data the
effect is only visible when the processing time is slow. It
was proposed that the statistical feature of the data could
be used to produce the effect: large numbers have higher
probability to be the higher number in a pair, and according
to this property, the decision criteria may be modified
(Schwarz and Stein, 1998). Otherwise the prediction of the
ANS model is relatively correct. (2b) On the other hand,
residuals in the Indo-Arabic comparison show a completely
different misfit. The model supposes that the error rate
is very low for most of the number pairs, and error rate
increases steeply for small ratio numbers. Instead of this
pattern, measured error rates show that the small ratio
number pairs do not show such a high error rate, and error
rate starts to increase with larger distance in contrast with
the model’s prediction. These differences can be seen on
the residuals as large overestimation for small ratios, and
medium underestimation for medium ratios by the model.
(These patterns remain if one would use the base error rate
corrected 0.17 and 0.07 Weber ratios, although overall the
models would underestimate the measured errors.) These
observations suggest that while the ANS model predicts
the ratio-based comparison error rates relatively correctly
(except the order-based preference for the large-small stimuli
in low ratio pairs, which asymmetric effect could be an
additional effect), the model cannot describe appropriately
the Indo-Arabic comparison error rate pattern.

(3) Linear regression parameters of the model. The found
parameters of the fitting procedure shed additional light on
how the ANS model fails to explain symbolic comparison
data. The ANS error function predicts the error rate directly,
therefore, with the appropriate Weber ratio the equation of
the fit should be measured_error = 1 × predicted_error +
0. How do the parameters change across different Weber
values? In the dot comparison task, for example for an
incorrectly small 0.07 Weber ratio the fitted function is 2.83
× model + 0.04. This high slope is reasonable, because the
small Weber ratio predicts too small error rates that should
be increased to fit the measured data. For larger Weber ratio
the slope gradually decreases, and with the 0.19 Weber ratio
(that was specified with the mean error rate) the function
is 0.91 × model + 0.01, in which the slope is rather close
to the expected 1 value that the ANS predicts. In the Indo-
Arabic comparison for a 0.07 Weber ratio the estimated
function is 0.56 × model + 0.01, which is decreasing further
as theWeber increases, and for 0.09Weber ratio the function
is 0.37 × model + 0.01. These much lower than 1 slopes
reflect that the model predicts too sudden increase with
small ratios (as observed in the direct comparison of the
measured data and the model), and the fit is better when the
model is flattened. Again, linear fit of the different Weber
ratio models shows that while the ANS predicts correctly
the dot comparison error rates, the model cannot predict the
Indo-Arabic comparison.

To summarize, in amore extensive analysis, we found that on one
hand the ANSmodel’s prediction is coherent in the dot condition:
a 0.19 Weber ratio correctly predicts the mean error rate, the
relative shape of the error rates and the specific error rates for the
number pairs. On the other hand, in the Indo-Arabic comparison
the ANS model predicts a too steeply increasing error rate
for small ratios, reflected in incoherent fit results. Again, the
ANS model proposes that beyond the Weber fraction differences
between the two notations, the same error function should hold
for both notations (Dehaene, 2007), therefore, the lack of the
precise ANSmodel description of the symbolic comparison is not
the consequence of the notations specific processes. Thus, these
results contradict the ANSmodel in its current form that suggests
that both symbolic and non-symbolic comparisons are handled
by the same type of representations.

Linear Similarity of the Reaction Time
Patterns
Groupmean of dot comparison time for the whole stimulus space
was fit to the group mean of Indo-Arabic comparison time for
the whole stimulus space (right of Figure 3) According to the
result, Indo-Arabic_RT = 0.17 × dot_RT + 474.8, R2 = 0.684.
Residuals of the fit (Figure 7) show an observable systematic
pattern. The fitted dot data underestimate Indo-Arabic reaction
time for small distance pairs, and overestimates it for large
distance pairs. Additionally, the fitted dot data overestimate the
cells with 1 and 9 values, similar to an end effect (see Figure 2).
To test the presence of these effects in the residuals, multiple
linear regression was used with linear distance effect and end
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FIGURE 6 | Difference of the measured and predicted error rates for dot comparison (left) and Indo-Arabic comparison (right). Positive values show underestimation of

the error rates by the model, negative values show overestimation.

FIGURE 7 | Residuals after fitting dot comparison reaction time to the

Indo-Arabic reaction time. Positive values denote higher fitted dot reaction

time, negative values denote higher Indo-Arabic reaction time.

effect regressors (see Figure 2), and the residual pattern was used
as the dependent variable. Only the end effect regressor was
significant (slope is 22.3, p = 0.002), while the distance effect
was not (slope is 1.3, p = 0.452). The statistical lack of the
distance effect contradicts the observable pattern, although visual
inspection could be unreliable. One source of this contradiction
could be the insufficient signal-to-noise ratio, and outliers might
decrease the statistical power. After excluding two outlier cells
(4-3 and 5-6) the correlation between the linear distance effect
and the residuals when both numbers are in the 2–8 range (i.e.,
without the end effect cells) becomes significant, r(38) = 0.28,
p = 0.015.8 Thus, because of the observed systematic patterns
in the residuals, the reaction time pattern of the dot and Indo-
Arabic comparisons cannot be transformed to the other linearly,
contrary to the former descriptions.

Although, as we have discussed, this analysis cannot be
considered as a sufficiently precise method, it can be used to
judge whether this type of reasoning has been cited correctly

8One might suggest that the apparent distance effect in the residuals could be the
artifact of fitting the dot data to the Indo-Arabic data with the end effect in the
Indo-Arabic notation, and with the lack of the effect in the dot notation: because
there is a stepwise change at the edge of the Indo-Arabic stimulus space, the “outer
end” of the fitted distance effect will be lowered, creating a higher slope in the
fitted line and a gradually increasing effect in the residuals (a distance like effect).
However, such an artifact should underestimate large distance cells, while our
data show an overestimation for those cells. Therefore, the distance effect in the
residuals cannot be the artifact of the end effect in the Indo-Arabic notation.

to support the common mechanism behind symbolic and non-
symbolic number processing. Our results suggest again that this
test cannot confirm that non-symbolic and symbolic numbers are
processed by the same system.

Diffusion Model Analysis
The diffusion model analysis can be more sensitive than the
error rate analysis, and more appropriate than the reaction time
analysis by present-day standards. Drift rates for all number pairs
and participants were calculated in both notations. The mean
drift rates of the participants for the full stimulus space in the two
notations are displayed in Figure 8. At first sight it is observable
that drift rates show the distance and the size effects in both
notations, and the dot comparison is harder than the Indo-Arabic
comparison (dot drift rates are smaller), in line with the error rate
and the reaction time data.

Drift Rate and Task Difficulty
The values shown in Figure 8 are displayed in a different way
in Figure 9. In Figure 9 drift rates are displayed as the function
of the difficulty of the task for the two notations. According to
the current theories, the observable function in Figure 9 could
be proportional, drift_rate = k × task_difficulty (Palmer et al.,
2005; Dehaene, 2007), or it could also include a power term as
a generalization, drift_rate = k × task_difficultyβ , although the
exponent is often close to 1, thus the first, proportional model
approximates the second, power model. In the ANS model, task
difficulty is measured as stimulus strength, which is calculated
with the distance/large_number function as suggested by Palmer
et al. (2005) for psychophysics comparison.9 There are different
properties that should be seen on this figure for any tasks or for

9Dehaene (2007) suggests that the difficulty of the task could be expressed as the
logarithm of the ratios of the numbers, although that description is not entirely
explicit how this function was found. One possibility is that this function was the
one that could offer a linear relation between the difficulty of the task and the drift
rates presented in that description. We also tested our data with the log(ratio) task
difficulty scale, and the results could not be described neither with the proportional
model (the curve is clearly non-linear), nor with the power model (the model
strongly overestimates the drift rates for the easy tasks). However, Dehaene (2007)
(a) used a more restricted diffusion model parameter recovery method, than the
EZ diffusion model (although in the same paper EZ diffusion model was also used,
its detailed results were not reported), and (b) he analyzed multi-digit number
comparison. These differences can explain why a different expression was found
as the measure of the task difficulty.
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FIGURE 8 | Drift rates in the full stimulus space in dot comparison (left) and in Indo-Arabic comparison (right). Smaller values mean more difficult task.

FIGURE 9 | Drift rates of the number pairs as a function of the task difficulty in

the two notations.

tasks solved by an analog system. (1) Easier tasks should show
higher drift rates, i.e., in Figure 9 larger values on the x axis
should go with larger values on the y axis, showing a positive
slope for the curves. This is the case in both notations. However,
while in the dot comparison the task difficulty and the drift rate
are related more strictly (showing relatively small variance or
error around a presumed regression curve), the same relation in
the Indo-Arabic notation is muchmore noisy. (This is not caused
by the cells involved in the end effect in Indo-Arabic comparison:
after removing those cells, the difference is still visible.) This
result is in line with a former study, finding that reaction time
is better explained by the ratio in dot comparison task than in
Indo-Arabic comparison task (Lyons et al., 2015b p. 1027). This
might reflect that while the distance/large_number expression
suggested by the ANS model might describe the difficulty of the
dot comparison relatively well, it might not be applied readily for
the Indo-Arabic notation. (2) In an analog representation when
the two signals almost completely overlap (i.e., two almost equal
properties are shown) the system is hardly able to compare the
two properties, which should result in a close to 0 drift rate in
the diffusion model (i.e., no evidence is offered for the decision).
On Figure 9 the difficulty is measured as distance/large_number,
and an indistinguishable pair has a 0/large_number value, which
is 0. Thus, when difficulty tends to zero, drift rate should tend
to zero, too, therefore, the intercept of the curves should be
zero (Palmer et al., 2005; Dehaene, 2007). This is the case in the
dot comparison condition, but Indo-Arabic comparison clearly
shows a much higher intercept, somewhere around the 0.2 drift

rate. This 0.2 intercept is in line with another single digit Indo-
Arabic comparison task (Krajcsi et al., 2016), and with the non-
zero intercept in multi-digit Indo-Arabic comparison (Dehaene,
2007). Again, these results show that while the dot comparison
works according to the ANS model, the Indo-Arabic comparison
follows other rules.

The 0 intercept of the dot comparison task also confirms that
the use of the EZ diffusion model is at least partly appropriate,
because its result correctly reflects an important property of an
analog mechanism, therefore validating the EZ method.

Dehaene (2007) analyzed a similar data of an Indo-Arabic
multi-digit comparison task, and he also found that the intercept
of the drift rate function is larger than zero. We note that a multi-
digit symbolic comparison might be a multi-step processing
(Hinrichs et al., 1982; Poltrock and Schwartz, 1984; Krajcsi
and Szabó, 2012), while diffusion model analysis is appropriate
only for short, one cycle processing tasks (Wagenmakers et al.,
2007), thus, the diffusion model analysis of multi-digit symbolic
numbers should be handled cautiously. Still, independent of
this problem, it is important to see how these results, which
seemingly contradict the ANS model, could be interpreted to
support the classic view. To explain the results in the ANS
framework, Dehaene (2007) suggested that there could be two
subsystems with two different Weber ratios working in a parallel
way, and the interaction of these two subsystems could form the
higher than zero intercept and the low slope for the Indo-Arabic
number comparison. No further explanation was offered how the
two subsystems could form this curve. We think that this two
subsystems explanation raises some critical issues. First, it is hard
to find why the interaction of two systems will produce high drift
rate (and high intercept), when both systems can offer only low
drift rates, if the stimuli are almost the same. One reasonable
combination of the two drift rates could be the addition of the
two values, but adding two small values, that are close to zero
(as supposed by the ANS model), cannot result in a relatively
high 0.2 value. As a more conceptual phrasing, if none of the
two subsystems can differentiate between very small differences,
why should any combinations of those analog systems perform
much better? Another reasonable combination of the two drift
rates is that the higher drift rate should be applied, because
the less precise subsystem cannot add any extra information to
the already more precise subsystem. Again, it is still not clear
how the intercept could increase radically. Another problem with
this ANS explanation comes from the low slope of the Indo-
Arabic drift rate curve. Dehaene (2007) suggests that in the linear
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model (drift_rate = k × task_difficulty) k is related to the Weber
ratio: smallerWeber ratio (higher sensitivity) causes higher slope.
Indeed, in the linear model the Weber ratio can be present only
in that parameter. Now if we have a kdot slope observed in the
dot comparison task, the kIndo−Arabic slope in the more sensitive
Indo-Arabic subsystem should be higher. If those parameters
are combined, then again one option is to add the slopes, or
another option is to use the larger slope. Both options predict
a slope that is larger than the kdot , however, the result shows a
smaller value. In a more conceptual rephrase of this problem,
the lower slope of the Indo-Arabic comparison suggests a higher
(less sensitive) Weber ratio, which contradict the idea that the
Indo-Arabic comparison must be more sensitive than the dot
comparison. Overall, we cannot see how the ANS model could
explain a drift rate curve with high intercept and low slope, and
we propose that the analysis of the Indo-Arabic comparison drift
rate data as a function of task difficulty is not in line with the ANS
or any other representation working according to Weber’s law.

Drift Rate and Representational Overlap
While in the previous analysis the task difficulty was expressed
by the relation of the two numbers, one can also incorporate
the Weber ratio. The overlap of the representations of the two
numbers can be calculated, that depends on the two values and
the Weber ratio. The ANS model has another prediction that
can be tested here: according to the model, the representational
overlap predicts the drift rates in a comparison task. In contrast
with the previous task difficulty vs. drift rate analysis, this relation
of the drift rates and representational overlap is independent
of the notation, because the different Weber ratios of the two
notations are already incorporated in the overlap values.

To test whether drift rates depend purely on the
representational overlap we calculated the representational
overlap for all number pairs in our stimulus space for the two
Weber ratios specified earlier. To calculate the overlap of two
numbers, two Gaussian distributions were created on a linear
scale, with the mean of the two numbers to be compared,
and standard deviation was the product of the numbers and
the Weber ratio (Halberda and Odic, 2014). Representational
overlap values can be seen in Figure 10.

Left side of Figure 11 shows the drift rates as a function of
representational overlap in the two notations. In the data for
small overlaps the signs of the two notations largely overlap, and
to show the potentially hidden dot data, dot data are shifted to
the right by 0.01. Also, because the data are hard to explore for
small overlap values, the same plot is displayed on a log overlap
scale on the right of Figure 11. The dot data are not shifted on
the latter plot.

According to the ANS model same representational overlap
values should result in same drift rate values, independent of
the Weber ratio. While for small overlap values the drift rates
of the two notations vary in the same range in line with the
ANS prediction, for large overlap values Indo-Arabic drift rates
are higher than the appropriate dot drift rates, contradicting
the ANS model. (This is not caused by the end effect in Indo-
Arabic notation: most of the high drift rate values in the large
overlap range are not involved in the end effect. Additionally,

the same pattern can be seen with the 0.17 and 0.07 Weber rates
which are based on the corrected base error rate.) These data,
again, show that the ANS model cannot describe the appropriate
representations for both notations.

We also note that while there could be uncertainties whether
EZ-diffusion model works correctly, in the current analysis all
predictions of the ANS model in the dot comparison task proved
to be correct, validating the EZ-diffusion model at the same
time. This validation confirms that this simple to use diffusion
parameter recovery method can be applied appropriately in the
current comparison task.

GENERAL DISCUSSION

The present work investigated whether symbolic Indo-Arabic
number comparison and non-symbolic dot comparison can be
described by the same model, as predicted by the widely accepted
ANS model, or whether the two notations show systematic
differences as suggested by the increasing body of evidence
and some alternative accounts of symbolic number processing.
Although formerly the ANS description for different notation
comparisons has been tested, and the fit was found to be
satisfactory, the similarity between the ANS and the recently
proposed DSS model predictions required a more rigorous and
extensive test.

Our results investigating several properties of the ANS model
consistently showed that while the ANS model describe several
behavioral aspects of the non-symbolic dot comparison relatively
well, the symbolic Indo-Arabic comparison deviated from the
ANS description at several points. More specifically, (1) while
the ANS model predicts the error rate pattern correctly and
consistently for non-symbolic dot comparison, it predicts too
high error rates in Indo-Arabic comparison for the small ratio
pairs, and too low error rates for medium ratio pairs. (2) The
reaction time patterns of the two notations have different shapes
which cannot be fitted linearly without systematic residuals,
although early description of the comparison task reaction time
would suggest a stricter similarity between the two patterns. (3a)
In the diffusion model framework, while the dot drift rates are
more clearly proportional to the difficulty of the task as defined
in the ANS model, the relation between the Indo-Arabic drift
rates and the ANS derived task difficulty is noisier. (3b) While
the dot drift rates tend to zero when the number pairs become
indistinguishable, the Indo-Arabic drift rates remain relatively
high, contradicting the supposed functioning of a noisy analog
representation. (3c) Across the notations, the drift rates do not
show the same values depending on the representational overlap
as suggested by the ANS model, showing that the two notation
comparisons cannot be described by the same mechanism. All
of these results show that (a) non-symbolic dot comparison and
symbolic Indo-Arabic comparison do not rely purely on the same
type ofmechanism, and (b) while the ANSmodel can describe the
non-symbolic dot comparison, it cannot describe the symbolic
Indo-Arabic notation.

One might wonder whether alternative forms of the ANS
model could give an account for our findings, either bymodifying
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FIGURE 10 | Representational overlap in our stimulus space predicted by the ANS model for Weber ratios 0.19 and 0.9.

FIGURE 11 | Drift rates as a function of representational overlap in the ANS model in the two notations. Overlap is displayed on linear (left) and logarithmic (right)

scale. On the left plot, dot data are shifted by 0.01 to the right not to be covered by the Indo-Arabic data.

the specific functions utilized in the present analyses or by
conceptually modifying the model. At least one aspect of our
results questions whether this is possible. In Indo-Arabic number
comparison the drift rate does not tend to zero when the
stimuli become almost indistinguishable, which result cannot
be explained by any analog representation working according
to the Weber’s law. This is an analogous form of the problem
that it is difficult to explain how the imprecise ANS could be
responsible for precise number processing. If the EZ diffusion
model recovered appropriately the drift rates (we indeed found
that many properties of the non-symbolic drift rates are in line
with the psychophysics model, which validates the EZ model),
then the symbolic number comparison cannot be processed by
any analog representation working according to the Weber’s law,
which is a defining feature of the ANSmodel. Thus, we argue that
the ANS model cannot be modified to account for the present
findings.

One might also wonder whether shorter presentation of
the dot stimuli could modify the results, because that could
ensure that the diffusion model analysis handles a single step
decision process instead of a multi-step counting process.
However, the relatively precise prediction of the ANS model in
dot comparison reflects that the current stimuli are successful
enough to show the appropriateness of the ANS model, and
further refinements can only improve this appropriateness.
More generally, because the current design and stimuli were
already appropriate to show that the ANS model describes
non-symbolic comparison correctly, there is no need to

further improve the current methods using the non-symbolic
stimuli.

Beyond the current empirical results, suggesting that only
non-symbolic comparison seems to be supported by an
analog representation, but not symbolic comparison, we briefly
summarize some non-trivial key problems of the ANS model
explaining symbolic number processing. (1) As we have
mentioned, how could an imprecise system, as the ANS, solve
precise symbolic comparison? Even a smaller Weber ratio (more
sensitive system) is inappropriate to solve this issue. (2) If a
supplementary precise system helps to solve precise symbolic
comparison, why is this system invisible in a sense that dominant
part of the variance in the comparison performance is purely
influenced by the ANS? Additionally, why is the ANS thought to
dominantly influence performance in cases when it cannot solve
the problem at all? (3) If the supplementary precise system has
an effect on the performance, how do we know by looking at
the performance that the ANS is also activated in a comparison
task? If performance is partly comprised of a hypothetical precise
system, then without specifying that precise component, one can
not find the rest of the performance that could support the ANS
processing either.

To summarize, all of our results show that symbolic and
non-symbolic comparisons show several critical differences,
and while the ANS model can successfully describe the non-
symbolic dot comparison, it cannot account for many features
of the symbolic Indo-Arabic comparison. Therefore, we argue
that while non-symbolic comparison is supported by the ANS,
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symbolic comparison and number processing is supported by
an alternative system. Further research can confirm whether
the increasing amount of data suggest correctly that symbolic
and non-symbolic numbers are processed by different types of
systems, and if so, what representation is utilized to process
symbolic numbers.
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