
viruses

Article

Bowman-Birk Inhibitor Suppresses Herpes Simplex
Virus Type 2 Infection of Human Cervical
Epithelial Cells

Yu Liu 1, Xi-Qiu Xu 1, Biao Zhang 1, Jun Gu 1, Feng-Zhen Meng 1, Hang Liu 1, Li Zhou 1,
Xu Wang 2, Wei Hou 1 and Wen-Zhe Ho 1,2,*

1 School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; liuyu2016@whu.edu.cn (Y.L.);
xiqiu0810@whu.edu.cn (X.-Q.X.); zhangb1004@whu.edu.cn (B.Z.); gujun@whu.edu.cn (J.G.);
fengzhenMeng@whu.edu.cn (F.-Z.M.); daisy_dec@whu.edu.cn (H.L.); zhouli_jerry@whu.edu.cn (L.Z.);
houwei@whu.edu.cn (W.H.)

2 Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia,
PA 19140, USA; xuwang@temple.edu

* Correspondence: wenzheho@temple.edu; Tel.: +1-215-707-8858

Received: 29 August 2018; Accepted: 10 October 2018; Published: 12 October 2018
����������
�������

Abstract: The Bowman-Birk inhibitor (BBI), a protease inhibitor derived from soybeans, has been
extensively studied in anti-tumor and anti-inflammation research. We recently reported that BBI
has an anti-HIV-1 property in primary human macrophages. Because HSV-2 infection plays a role
in facilitating HIV-1 sexual transmission, we thus examined whether BBI has the ability to inhibit
HSV-2 infection. We demonstrated that BBI could potently inhibit HSV-2 replication in human
cervical epithelial cells (End1/E6E7). This BBI-mediated HSV-2 inhibition was partially through
blocking HSV-2-mediated activation of NF-κB and p38 MAPK pathways. In addition, BBI could
activate the JAK/STAT pathway and enhance the expression of several antiviral interferon-stimulated
genes (ISGs). Furthermore, BBI treatment of End1/E6E7 cells upregulated the expression of tight
junction proteins and reduced HSV-2-mediated cellular ubiquitinated proteins’ degradation through
suppressing the ubiquitin-proteasome system. These observations indicate that BBI may have
therapeutic potential for the prevention and treatment of HSV-2 infections.

Keywords: Bowman-Birk inhibitor (BBI); herpes simplex virus type 2 (HSV-2); antiviral activity;
NF-κB; ubiquitin-proteasome system (UPS); antiviral ISGs

1. Introduction

Herpes simplex virus type 2 (HSV-2) is an enveloped double-stranded DNA virus that belongs to
the herpesviridae family. Due to its highly prevalent and contagious trait, HSV-2 has been considered
as one of the most severe pathogens for human beings. HSV-2 infection can cause genital herpes,
which plays a significant role in the spread of sexually transmitted infections (STIs). In addition,
through mother-to-child transmission, HSV-2 is the cause of neonatal herpes, responsible for high
morbidity and mortality [1]. The latest report from WHO showed that the global overall rate of
neonatal herpes was estimated to be about 14,000 cases (10,000 for HSV-2; 4000 for HSV-1) per year [2].
More importantly, there is increasing evidence that HSV-2 is a risk factor for HIV infection and sexual
transmission [3–5]. The coinfection with HSV-2 is associated with a severity of genital ulceration,
a reduced HIV-specific T cell response, and an increased systemic inflammation [6].

Human cervical epithelial cells in the female reproductive tract (FRT) are the primary barrier
for protecting the host from pathogen invasion, as they have a significant role in FRT mucosal innate
immunity against viral infections, including HSV-2 [7,8]. Studies have documented that the activated
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epithelial cells could produce specific cytokines, antiviral factors, and adhesion molecules to inhibit
viral infections [9,10]. Our early work demonstrated that human cervical epithelial cells possess
functional toll-like receptor 3 (TLR3) signaling pathway, which can be immunologically activated to
protect genital mucosa from HSV-2 infection [11], and to inhibit HIV replication in human macrophages
as well [12]. As the first layer cells in FRT, cervical epithelial cells are in direct contact with invading
viruses. Therefore, understanding the processes and mechanisms that protect cervical epithelial
surfaces from viral infections is clinically relevant and significant.

Clinically, several nucleoside analogs, such as acyclovir (ACV) and penciclovir (PCV), have
been used to treat HSV infection as they can inhibit HSV DNA replication and reduce the frequency
of ulcerations [13,14]. However, the emergence of drug resistance has become a problem for the
treatment of HSV-2, especially in immunocompromised subjects [15–17]. Therefore, the search
for new anti-HSV compounds, particularly those derived from natural products, remains if great
interest in the field. It has been reported that elafin (E), human serine protease inhibitor, and its
precursor, trappin-2 (Tr), can directly act on epithelial cells to reduce viral attachment and decrease
NF-κB nuclear translocation, resulting in inhibition of HSV-2 infection in female genital mucosa [7].
BBI is a natural serine protease inhibitor extracted from soy, which is a monomeric protein with
the inhibitory activity of trypsin and chymotrypsin [18]. BBI is present in many commercial soy
foods, including soymilk, tofu, and soybean-based infant formula. BBI has been reported to possess
anti-tumor [19,20], anti-inflammation [21–23], and antiviral activities [24]. We recently documented
that BBI has the ability to induce intracellular antiviral factors that inhibit HIV-1 replication in human
macrophages [25,26]. Because HSV-2 infection is a cofactor promoting HIV-1 sexual transmission,
we examined whether BBI has an inhibitory effect on HSV-2 infection of human cervical epithelial cells.
In addition, we investigated the mechanisms for the effect of BBI on HSV-2 infection.

2. Materials and Methods

2.1. Cell Lines and Virus

Human End1/E6E7 cell line is derived from normal human cervical epithelium, which is
immortalized by human papillomavirus type 16 (HPV 16) E6/E7 [27]. The cells were cultured in
keratinocyte growth medium (Gibco, Grand Island, NY, USA) containing bovine pituitary extract
(50 µg/mL) and recombinant epidermal growth factor (0.1 ng/mL). African green monkey kidney
epithelial cells (Vero) were cultured in Dulbecco’s modified Eagle’s culture medium (DMEM, Gibco,
Gran Island, NY, USA) supplemented with 10% fetal bovine serum (FBS, Gibco) at 37 ◦C in a humidified
atmosphere of 5% CO2. HSV-2 G strain was kindly provided by Dr. Qinxue Hu (State Key Laboratory
of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, China). The HSV-2 G strain
was propagated at a low multiplicity of infection (MOI) in Vero cells.

2.2. BBI

Bowman-Birk inhibitor (BBI) was purchased from Sigma-Aldrich (St. Louis, MO, USA) (CAS #:
37330-34-0). BBI powder was dissolved in sterile double distilled water (10 mg/mL) and stored at
−80 ◦C.

2.3. Reagents

Antibodies against NF-κB p65, phospho-NF-κB p65 (Ser536), p38 MAPK, phospho-p38 MAPK
(Thr180/Tyr182), STAT3, phospho-STAT3 (Tyr705), STAT1, phospho-STAT1 (Tyr701), IRF3, IRF7, MxA,
ISG56, OAS1, ubiquitin, and ZO-1 were obtained from Cell Signaling Technology (Danvers, MA, USA).
Antibodies against p53, ISGF-3γp48, Occludin, and Claudin-5 were purchased from Santa Cruz (Dallas,
TX, USA). Antibodies against HSV1+HSV2 gD, and OAS2 were purchased from Abcam (Cambridge,
UK). Antibody against GAPDH was purchased from Proteintech (Chicago, IL, USA).
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2.4. Cell Viability Assay

The cytotoxic effect of BBI was evaluated by the MTT assay according to the manufacturer’s
instructions (Sigma-Aldrich). End1/E6E7 cells (104 cells/well) were placed in 96-well plates and
treated with different concentrations (100, 200, 400, 600 µg/mL) of BBI for 96 h. Cells were exposed to
MTT (100 µL/well) and incubated for 4 h at 37 ◦C in darkness. Absorbance at 490 nm was measured
by a plate reader (SpectraMax i3, Molecular Devices, Sunnyvale, CA, USA).

2.5. In Vitro Antiviral Assay

End1/E6E7 cells were pretreated with BBI for 24 h and then infected with HSV-2 (MOI of 0.001)
for 2 h. The cells were washed three times with PBS to remove unattached viruses and cultured
with or without BBI for 48 h. HSV-2 genome DNA from HSV-2-infected cells or culture supernatant
was extracted with DNA lysis buffer as previously described [11]. HSV-2 gD copies were used to
measure the degree of HSV-2 replication, which was quantified by the real-time PCR using the HSV-2
gD-specific primers (Table 1). HSV-2 gD standards with known copy numbers were used to quantify
HSV-2 gD copies in the culture supernatant. In addition, the antiviral effect of BBI under different
treatment conditions (before, simultaneously, after, and all) was evaluated. Briefly, End1/E6E7 cells
were pretreated with BBI (200 µg/mL) for 24 h, then washed with PBS, infected with HSV-2 and then
cultured without BBI (before); End1/E6E7 cells were simultaneously (simul) treated with BBI and
infected with HSV-2 for 2 h, then washed to remove unattached viruses and cultured without BBI; cells
were first infected with HSV-2 for 2 h, then washed and cultured with BBI (after). BBI was maintained
throughout the culture time period (all). At 48 h post-infection (PI), both HSV-2 genomic DNA and
total proteins were extracted from End1/E6E7 cells and subjected to the real-time PCR or Western
blot assay.

Table 1. Primer pairs.

Gene Name
Sequence

Forward (5′-3′) Reverse (5′-3′)

GAPDH GGTGGTCTCCTCTGACTTCAACA GTTGCTGTAGCCAAATTCGTTGT
IFN-α TTTCTCCTGCCTGAAGAACAG GCTCATGATTTCTGCTCTGACA
IFN-β GCCGCATTGACCATCTATGAGA GAGATCTTCAGTTTCGGAGGTAAC
IFN-λ1 CTTCCAAGCCCACCCCAACT GGCCTCCAGGACCTTCAGC

IFN-λ2/3 TTTAAGAGGGCCAAAGATGC TGGGCTGAGGCTGGATACAG
IRF3 ACCAGCCGTGGACCAAGAG TACCAAGGCCCTGAGGCAC
IRF7 TGGTCCTGGTGAAGCTGGAA GATGTCGTCATAGAGGCTGTTGG

HSV-2 ICP0 GTGCATGAAGACCTGGATTCC GGTCACGCCCACTATCAGGTA
HSV-2 ICP27 TTCTGCGATCCATATCCGAGC AAACGGCATCCCGCCAAA
HSV-2 ICP8 AGGACATAGAGACCATCGCGTTCA TGGCCAGTTCGCTCACGTTATT
HSV-2 gC AAATCCGATGCCGGTTTCCCAA TTACCATCACCTCCTCTAAGCTAGGC
HSV-2 gD ATCCGAACGCAGCCCCGC TCTCCGTCCAGTCGTTTAT

HSV-2 DNA polymerase GCTCGAGTGCGAAAAAACGTTC CGGGGCGCTCGGCTAAC

2.6. RNA Extraction and Real-Time PCR

Cellular RNA was extracted from End1/E6E7 cells with Tri-reagent (Molecular Research Center,
Cincinnati, OH). Complementary DNA was generated from total RNA using random priming and
MMLV reverse transcriptase (Promega Co., Madison, WI, USA). Real-time PCR was performed using
SYBR green PCR master mix (Bio-Rad Laboratories, Hercules, CA, USA). All values were normalized
to GAPDH mRNA. The oligonucleotide primer sequences are listed in Table 1.

2.7. Western Blot Analysis

End1/E6E7 cells treated with or without BBI were harvested by using RIPA lysis buffer (Beyotime
Institute of Biotechnology, Shanghai, China) supplemented with 1% protease inhibitor cocktail
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(Sigma, MO, USA) and 1% phosphatase inhibitors mixture (Applygen, Beijing, China). The cell
lysates were centrifuged at 12,000 × g for 15 min, and then the supernatant was collected and
quantified by a BCA protein assay kit (Beyotime Institute of Biotechnology). The soluble proteins were
separated by SDS-PAGE. After being transferred to a PVDF membrane (BioRad, Hercules, CA, USA),
the membrane was blocked by 5% nonfat milk at room temperature for 2 h, followed by incubation
with primary antibodies overnight at 4 ◦C. The PVDF membrane was then washed with TBST and
further incubated with horseradish peroxidase-conjugated second antibody. The membranes were
washed with TBST, and the immunoblots were developed with enhanced chemiluminescence detection
(ECL, Amersham, UK).

2.8. Statistical Analysis

Data were shown as the mean± standard deviation (mean± SD) and analyzed by Student’s t-test
using GraphPad Prism for Windows version 5.0 (GraphPad Software, La Jolla, CA, USA), and * p < 0.05
was considered as statistically significant results.

3. Results

3.1. BBI Inhibits HSV-2 Infection of End1/E6E7 Cells

To determine the anti-HSV-2 effect of BBI, End1/E6E7 cells were pretreated with BBI for 24 h
and followed by HSV-2 infection. As shown in Figure 1 A,B, BBI-treated cells had lower levels of
intracellular and extracellular HSV-2 gD DNA than untreated cells. To further determine the anti-HSV-2
effect of BBI, End1/E6E7 cells were treated with BBI under different treatment conditions (before,
simul, after, and all). As shown in Figure 1C–F, although BBI treatment of End1/E6E7 cells during
HSV-2 infection (simul) showed little effect on HSV-2 infection, pretreatment of End1/E6E7 cells with
BBI (before) or treatment of the cells with BBI after HSV-2 infection (after) significantly inhibited HSV-2
infection at both DNA and protein levels. Treatment of the cells with BBI under all three conditions
(all) was the most effective in HSV-2 inhibition (Figure 1C–F). In addition, a dose-dependent antiviral
effect was observed in the cells treated with BBI after HSV-2 infection (Figure 1G,H). To determine
whether the anti-HSV-2 effect of BBI was due to cytotoxicity, we examined the effect of BBI on the
viability of End1/E6E7 cells. As shown in Figure S1, BBI at a concentration as high as 600 µg/mL had
little cytotoxicity to End1/E6E7 cells.
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Figure 1. BBI inhibits HSV-2 infection. (A,B) End1/E6E7 cells were pretreated with BBI at indicated 
concentrations for 24 h, and then infected with HSV-2 (MOI of 0.001) for 2 h, cells were washed with 
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supernatant was measured by the real-time PCR using specific HSV-2 gD primers for HSV-2 gD 
quantification. (C–E) End1/E6E7 cells were pretreated with BBI (200 μg/mL) for 24 h, then washed 
with PBS and infected with HSV-2, and then cultured without BBI (before); End1/E6E7 cells were 
treated with BBI and infected with HSV-2 simultaneously for 2 h, then washed with PBS and cultured 
without BBI (simul); End1/E6E7 cells were infected with HSV-2 for 2 h, then washed with PBS, 
cultured with BBI (after); BBI was maintained throughout the cell culture time period (all). At 48 h PI, 
(C) intracellular DNA, (D) extracellular DNA, and (E) total proteins were collected and analyzed by 
the real-time PCR or Western blot for HSV-2 gD gene expression. (G) End1/E6E7 cells were infected 
with HSV-2 for 2 h and then treated with BBI at the indicated concentrations, total cellular proteins 
were collected and subjected to Western blot. (F,H) Densitometry analysis of the blots shown in E and 
G was performed with ImageJ 1.44 software. Data shown were obtained as mean ± SD from three 
independent experiments (* p < 0.05, ** p < 0.01). 
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To investigate the effect of BBI on HSV-2 genes expression, we examined several viral genes, 
including two immediate early genes (IE, ICP0 and ICP27), two early genes (E, ICP8 and DNA 
polymerase) and two late genes (L, HSV-2 gC and gD). As shown in Figure 2, BBI could inhibit the 
expression of HSV-2 IE, E and L genes in the infected End1/E6E7 cells. 

Figure 1. BBI inhibits HSV-2 infection. (A,B) End1/E6E7 cells were pretreated with BBI at indicated
concentrations for 24 h, and then infected with HSV-2 (MOI of 0.001) for 2 h, cells were washed
with PBS and maintained with or without BBI for 48 h. Total DNA extracted from (A) cells and
(B) culture supernatant was measured by the real-time PCR using specific HSV-2 gD primers for
HSV-2 gD quantification. (C–E) End1/E6E7 cells were pretreated with BBI (200 µg/mL) for 24 h, then
washed with PBS and infected with HSV-2, and then cultured without BBI (before); End1/E6E7 cells
were treated with BBI and infected with HSV-2 simultaneously for 2 h, then washed with PBS and
cultured without BBI (simul); End1/E6E7 cells were infected with HSV-2 for 2 h, then washed with
PBS, cultured with BBI (after); BBI was maintained throughout the cell culture time period (all). At 48 h
PI, (C) intracellular DNA, (D) extracellular DNA, and (E) total proteins were collected and analyzed by
the real-time PCR or Western blot for HSV-2 gD gene expression. (G) End1/E6E7 cells were infected
with HSV-2 for 2 h and then treated with BBI at the indicated concentrations, total cellular proteins
were collected and subjected to Western blot. (F,H) Densitometry analysis of the blots shown in E and
G was performed with ImageJ 1.44 software. Data shown were obtained as mean ± SD from three
independent experiments (* p < 0.05, ** p < 0.01).

3.2. BBI Suppresses HSV-2 Gene Expression

To investigate the effect of BBI on HSV-2 genes expression, we examined several viral genes,
including two immediate early genes (IE, ICP0 and ICP27), two early genes (E, ICP8 and DNA
polymerase) and two late genes (L, HSV-2 gC and gD). As shown in Figure 2, BBI could inhibit the
expression of HSV-2 IE, E and L genes in the infected End1/E6E7 cells.
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Figure 2. Effect of BBI on HSV-2 gene expression. End1/E6E7 cells were infected with HSV-2 (MOI of
0.002), and then cultured in the presence or absence of BBI (200 µg/mL). Cellular RNAs were extracted
from the virus-infected cells at 12 h or 24 h PI, and the expression of HSV-2 IE, E and L genes were
analyzed by the real-time PCR. All results were mean ± SD of triplicate cultures, representative of
three independent experiments (* p < 0.05, ** p < 0.01).

3.3. BBI Activates the JAK/STAT Signaling Pathway

To further study the mechanisms by which BBI inhibits HSV-2 infection (Figure 1C–F),
we examined whether BBI could activate IFN-based immunity in End1/E6E7 cells. As shown in
Figure 3A, BBI pretreatment of the cells induced IFN-α, IFN-λ1, and IFN-λ2/3 expression, but showed
little effect on IFN-β expression. In addition, BBI induced the expression of IRF3 and IRF7 at the protein
level (Figure 3B–D). To determine whether the induction of IFNs is responsible for the activation of
JAK/STAT signaling pathway, we analyzed the impact of BBI on the phosphorylation of STAT1 and
STAT3. As shown in Figure 4A,B, BBI treatment of the cells induced the expression of p-STAT1,
p-STAT3, and ISGF-3γp48 (IRF9). In addition, BBI treatment of End1/E6E7 cells also enhanced the
expression of several key antiviral ISGs, including OAS2, MxA, ISG56, and OAS1 (Figure 4C–F).
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3.4. BBI Inhibits the Cellular UPS 

The cellular functional ubiquitination plays a significant role in HSV-1 and HSV-2 replication, 
and the inhibition of cellular ubiquitin‒proteasome system (UPS) could impair HSV infection [28]. 
As a natural protease inhibitor, it is likely that BBI has an inhibitory effect on cellular ubiquitination. 
We thus examined whether BBI can inhibit the cellular proteasome-dependent proteolysis. As shown 
in Figure 5A,B, BBI treatment of End1/E6E7 cells resulted in the accumulation of the cellular 
ubiquitinated proteins. Further experiments showed that HSV-2 infection facilitated the degradation 
of ubiquitinated proteins (Figure 5C,D). The treatment of End1/E6E7 cells with BBI resulted in the 
accumulation of p53 protein. In addition, BBI could reduce HSV-2-mediated downregulation of p53 
and loss of ubiquitinated proteins (Figure 5E,F). 

Figure 4. Effect of BBI on the JAK/STAT pathway and ISGs expression. End1/E6E7 cells were treated
with or without 200 µg/mL BBI for indicated times. (A) Proteins were collected and analyzed with
the antibodies against STAT1, p-STAT1, STAT3, p-STAT3, ISGF-3γp48, and GAPDH. (C) Proteins
were collected and analyzed with the antibodies against OAS2, MxA, ISG56, OAS1, and GAPDH.
(E) End1/E6E7 cells were treated with BBI at indicated concentrations for 48 h, total proteins were
subjected to Western blot. Representative data from three independent experiments were shown.
(B,D,F) Densitometry analysis of the blots shown in A, C and E were performed with ImageJ 1.44
software. Data shown were obtained as mean ± SD from three independent experiments (* p < 0.05,
** p < 0.01).

3.4. BBI Inhibits the Cellular UPS

The cellular functional ubiquitination plays a significant role in HSV-1 and HSV-2 replication,
and the inhibition of cellular ubiquitin-proteasome system (UPS) could impair HSV infection [28]. As a
natural protease inhibitor, it is likely that BBI has an inhibitory effect on cellular ubiquitination. We
thus examined whether BBI can inhibit the cellular proteasome-dependent proteolysis. As shown in
Figure 5A,B, BBI treatment of End1/E6E7 cells resulted in the accumulation of the cellular ubiquitinated
proteins. Further experiments showed that HSV-2 infection facilitated the degradation of ubiquitinated
proteins (Figure 5C,D). The treatment of End1/E6E7 cells with BBI resulted in the accumulation
of p53 protein. In addition, BBI could reduce HSV-2-mediated downregulation of p53 and loss of
ubiquitinated proteins (Figure 5E,F).
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Figure 5. Effect of BBI on HSV-2-induced degradation of ubiquitinated proteins. (A) End1/E6E7
cells were treated with BBI for indicated times. (C) End1/E6E7 cells were infected with HSV-2 at the
indicated MOI, and proteins were collected from the infected cells at 24 h or 48 h PI. (E) End1/E6E7
cells were pretreated with or without BBI for 24 h, then infected with HSV-2 (MOI of 0.001) for 2 h,
and then cultured with or without BBI. Proteins were subjected to Western blot with the antibodies
against ubiquitin, p53, HSV gD or GAPDH. Representative data from three independent experiments
were shown. (B,D,F) Densitometry analysis of the blots shown in A, C, and E was performed with
ImageJ 1.44 software. Data shown were obtained as mean ± SD from three independent experiments
(* p < 0.05, ** p < 0.01).
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3.5. BBI Inhibits HSV-2-Induced Activation of NF-κB and MAPK

HSV infection can activate NF-κB and MAPK signaling pathways, which induces inflammation
and cell apoptosis, a condition favorable for HSV-2 replication [29,30]. We thus investigated the
effect of BBI on the HSV-2-induced NF-κB or MAPK signal activation. The results showed that BBI
treatment of uninfected End1/E6E7 cells suppressed p-p65 and p-p38 expression in a time-dependent
manner (Figure 6A,B). Further experiments indicated that HSV-2 infection enhanced the expression
of p-p65 and p-p38 in End1/E6E7 cells, while the treatment of the cells with BBI effectively blocked
HSV-2-induced p-p65 and p-p38 expression (Figure 6C,D).
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Figure 6. Effect of BBI on HSV-2-induced NF-κB and MAPK activation. (A) End1/E6E7 cells were
treated with BBI (200 µg/mL) for indicated times. (C) End1/E6E7 cells were infected with HSV-2 (MOI
of 0.001) for 2 h, then cultured with BBI at indicated concentrations. Cellular proteins were extracted
and subjected to Western blot assay. Representative data from three independent experiments were
shown. (B,D) Densitometry analysis of the blots shown in A and C was performed with ImageJ 1.44
software. Data shown were obtained as mean ± SD from three independent experiments (* p < 0.05,
** p < 0.01).

3.6. BBI Suppresses HSV-2-Induced Downregulation of Tight Junction Proteins

The epithelial cells in female cervical mucosa are crucial in maintaining the junctional integrity
and barrier permeability [31]. We thus examined the impact of BBI on the expression of several tight
junction proteins (ZO-1, Occludin, and Claudin-5) in End1/E6E7 cells. As demonstrated in Figure 7A,B,
BBI treatment of End1/E6E7 cells increased the expression of these tight junction proteins. Further
experiments indicated that HSV-2 infection of End1/E6E7 cells selectively decreased ZO-1 expression.
BBI, however, could reduce HSV-2-mediated ZO-1 reduction (Figure 7C,D).
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Figure 7. Effect of BBI on HSV-2-induced tight junction protein downregulation. (A) End1/E6E7 cells
were treated with BBI at indicated concentrations for 48 h. (C) End1/E6E7 cells were infected with
HSV-2 (MOI of 0.001) for 2 h, then cultured with or without BBI for 48 h. Proteins were collected
and subjected to Western blot. Representative data from three independent experiments are shown.
(B,D) Densitometry analysis of the blots shown in A and C was performed with ImageJ 1.44 software.
Data shown were obtained as mean ± SD from three independent experiments (* p < 0.05, ** p < 0.01).

4. Discussion

Epithelial cells form the first protective barrier in the female reproductive tract, which is vital
in preventing viral infections. We [11,32,33] and others [34] have demonstrated that epithelial cells
from different organs and regions possess functional TLR3/RIG-I signaling systems, which could
be immunologically activated by Poly I:C to trigger the immune responses against viral infections,
including HSV-2. In the present study, we demonstrated that BBI could potently inhibit HSV-2 infection
of human cervical epithelial cells. The inhibitory effect of BBI was observed under different treatment
conditions (before and after HSV-2 infection, Figure 1C–F) and on several viral genes expression
(Figure 2). It is known that HSV-2 immediate early (IE) genes (ICP0 and ICP27) expression are vital for
viral early (E) and late (L) gene expression, which is a key step in the viral replication [35,36]. HSV
DNA polymerase and ICP8 facilitate HSV L genes transcription, enhancing viral DNA synthesis and
replication [37,38]. HSV gC and gD genes encode viral envelope proteins, the major players in the
formation and release of virus particles, as well as promote viral entry [39]. We demonstrated that
BBI could inhibit the expression of all these viral genes in End1/E6E7 cells. To inhibit the expression
of multiple HSV-2 genes by BBI is highly significant, as it would be difficult for the virus to become
resistant or mutant to the BBI-mediated treatment.

Mechanistically, we found that BBI could induce the expression of IFN-α, IFN-λ1 and IFN-λ2/3
expression in End1/E6E7 cells (Figure 3A). Type I IFNs are known to be effective in suppressing HSV
infection [40]. Our early study showed that endogenous IFN-λ in TLR3/RIG-I-activated epithelial
cells could inhibit HSV-2 infection [11]. The induction of IFNs may be due to the effect of BBI on
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IFN regulatory factors. We found that BBI treatment significantly enhanced the translational levels of
IRF3 and IRF7 (Figure 3B–D), which have key roles in regulating IFNs expression [41,42]. Because the
activation of the JAK/STAT signaling pathway plays a crucial role in IFN-mediated innate immune
response, we also examined the role of BBI in the activation of the JAK/STAT signaling pathway.
In Figure 4A,B, we observed that BBI treatment of End1/E6E7 cells enhanced the expression of p-STAT1,
p-STAT3, and ISGF-3γp48. More importantly, BBI induced the expression of several antiviral ISGs,
including OAS2, MxA, ISG56 and OAS1 (Figure 4C–F). Some of these ISGs have been shown to have
the ability to inhibit HSV-2 infection. For example, the OAS1 protein could directly inhibit HSV-2
proliferation in an RNase L-independent pathway [43]. In addition to HSV-2 infection, the ISGs have
been reported to restrict HIV-1 infection as well [44]. However, HSV has evolved multiple strategies
to evade host cell-mediated immunity [45–47]. Therefore, to induce the ISGs by BBI is beneficial for
protecting cervical epithelial cells from HSV-2 infection.

Studies with different cell systems [28,48,49] have shown that Pyrrolidine Dithiocarbamate
(PDTC), an antioxidant and an NF-κB inhibitor, could potently inhibit viral infections, including HSV-2,
through inhibiting the cellular ubiquitin-proteasome system (UPS). The UPS is a key mechanism
for intracellular proteins catabolism, such as degradation of the IκBs and regulation of the NF-κB
pathway [50]. We observed that BBI treatment of End1/E6E7 cells increased the expression of cellular
ubiquitinated proteins as well as p53, an intracellular tumor suppressor degraded through UPS [51].
The inhibition of UPS by PDTC could suppress the HSV-2-induced IκB-α degradation, may result in
inhibition of p65 phosphorylation [28]. Interestingly, studies have reported that p53 is a target of type
I IFNs [52] and that p53 could regulate TLR3 expression and function in human epithelial cells [53].
Therefore, it is possible that BBI-mediated induction of IFNs is responsible for the upregulation of
p53 protein. In addition to the direct effect of BBI on UPS, we found that BBI treatment of End1/E6E7
cells could block HSV-2 infection-mediated degradation of ubiquitinated proteins and inhibition of
p53 (Figure 5E,F). While the precise mechanisms of the BBI action remain to be determined, it is likely
that BBI blocks the effect of HSV-2 on ubiquitinated proteins through its unique protease inhibitory
function. Studies from different laboratories have shown that NF-κB or MAPK activation contribute to
HSV infection in host cells [54,55]. Therefore, to suppress NF-κB or MAPK activation is a therapeutic
strategy to inhibit HSV infection [56,57]. We found that while HSV-2 infection activated NF-κB and
p38 MAPK signaling pathway, BBI treatment of End1/E6E7 cells suppressed HSV-2-induced NF-κB
and p38 MAPK activation (Figure 6). However, the direct effect of BBI on the inhibition of NF-κB
activation (p65 phosphorylation) remains to be determined. These observations provide additional
mechanisms (blocking the cellular proteasome activity and inhibiting NF-κB and p38 MAPK signaling
pathways) for the BBI action on HSV-2 inhibition.

Functional tight junctions are primarily responsible for the integrity and permeability of the
epithelial barrier. Disruption of epithelial tight junctions increases the probability of HSV binding
to nectin-1, a cellular receptor for HSV entry [58]. HSV infection could damage cervical epithelial
cells in human cervical organ culture, and result in the mucosal inflammation, which enhances the
susceptibility to HIV-1 infection [59]. We observed that BBI treatment could not only enhance the
expression of the tight junction proteins (Figure 7A,B), but also block HSV-2-infection-mediated
inhibition of ZO-1 expression (Figure 7C,D).

5. Conclusions

Taken together, our study for the first time demonstrates that BBI, a protease inhibitor extracted
from soybean, could effectively inhibit HSV-2 infection of human cervical epithelial cells through the
following mechanisms: 1, induction of the expression of intracellular antiviral factors; 2, suppression of
the cellular UPS; 3, inhibition of the HSV-2-induced NF-κB and p38 MAPK activation (Figure 8).
In addition, BBI could upregulate the expression of tight junction proteins and block HSV-2
infection-mediated reduction of the ZO-1 protein. These observations, in conjunction with our early
studies [25,26], indicate that BBI may have therapeutic potential as a natural and cost-effective agent for
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the prevention and treatment of HSV-2 and other STIs. However, future in vivo studies with suitable
animal models are needed in order to validate these in vitro findings and determine the protective
effect of BBI on HSV-2 sexual infection.
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