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Abstract: Gene therapy requires an effective and safe delivery vehicle for nucleic acids. In the case of
non-viral vehicles, including cationic liposomes, the structure of compounds composing them deter-
mines the efficiency a lot. Currently, cationic amphiphiles are the most frequently used compounds
in liposomal formulations. In their structure, which is a combination of hydrophobic and cationic
domains and includes spacer groups, each component contributes to the resulting delivery efficiency.
This review focuses on polycationic and disulfide amphiphiles as prospective cationic amphiphiles
for gene therapy and includes a discussion of the mutual influence of structural components.

Keywords: polyamines; spermine; cationic amphiphiles; cationic liposomes; disulfide groups; gemini
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1. Introduction

Gene therapy is a modern and promising method for treating severe hereditary and
acquired diseases, including COVID-19 immunization, through the delivery of therapeutic
nucleic acids (NAs) that can replace a damaged gene (pDNA), provide a new one, or block
the expression of an unwanted protein (antisense oligonucleotides, siRNA) [1,2]. The direct
administration of therapeutic NAs is an inefficient process due to multiple external and
internal limiting factors [3]. External factors lead to the instability of NAs in biological
fluids (degradation by nucleases or interaction with albumin or low-density lipoproteins,
causing the aggregation and rapid clearance of NAs) and a low degree of interaction with
target cells. Internal factors are determined by the presence of membrane barriers (plasma,
endosomal, and nuclear membranes) that present a challenge to NAs as they attempt to
reach the cytosol and nucleus [4].

Overcoming these factors requires the development of special delivery vehicles. At
present, viruses [5,6], which are highly effective but present some serious disadvantages,
primarily associated with the induction of inflammatory and immune responses in the
body, fill this role. However, alternative non-viral delivery vehicles, such as cationic
liposomes (CLs) based on cationic amphiphiles (CAs) [6-9], are being developed. The most
recent success is development of an mRNA vaccine [10] against COVID-19, where lipid
nanoparticles deliver nucleoside-modified mRNA encoding a mutated form of the spike
protein of SARS-CoV-2 [11]. Generally, CA structure is a combination of hydrophobic and
cationic domains linked together by various spacer groups [12]. The positive charge of
CAs enables the “packing” of NAs due to electrostatic interactions with the formation
of lipoplexes (complexes of NAs with liposomes) and facilitates their interaction with a
negatively charged plasma membrane.

In addition to CAs, liposomes can include helper lipids (for example, 1,2-dioleoyl-sn-
glycero-3-phosphoethanolamine, DOPE) [13-15], which promote the formation of a certain
lipid phase and favor cell transfection. Liposomes may also contain additional lipophilic
molecules that permit them to target certain cells [16] or increase their circulation time in
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the bloodstream (for example, lipophilic derivatives of polyethylene glycol, PEG) [17]. If it
is not stated below, CAs were used without additional components.

The CA structure significantly affects the efficiency of NA delivery to eukaryotic cells.
In recent years, many monocationic amphiphiles have been obtained [18-28] that form
liposomes for NA delivery. In this review, we will consider polycationic amphiphiles,
which, compared to monocationic analogs, enable the more efficient transport of NAs into
cells due to the formation of a system of distributed charges in the polyamine matrix and
their ability to facilitate NA release from endosomes. This ability is strongly affected by the
high H* buffer capacity of polyamines containing titratable amines results in endosomal
Cl~ accumulation during acidification with presumed osmotic endosome disruption and
enhanced lipoplex escape [29].

2. Cationic Amphiphiles Based on Polyamines or Amino Acids
2.1. Cationic Amphiphiles Based on Linear Polyamines

Enhancement of NA transport by polycationic amphiphiles may be related not only to
distributed charges. On the cell surface, polyamine recognition sites—for example, PAT [30],
a polyamine transporter—selectively transport both polyamines and their derivatives.
Moreover, cancer cells have more such sites on their surfaces, which means that amphiphiles
based on polyamines can transfect cancer cells more efficiently. Particularly important
factors in NA delivery are the number and distribution of positive charges in the polyamine
molecule. Transfection activity (TA) has been shown to increase as the number of amino
groups in the polyamine structure increases. Compound 1e (Figure 1) exhibited the highest
transfection efficiency among the synthesized lipopolyamines 1a—g [31], which suggests
that 1e can use PAT and compete with other polyamines, for example, spermine, for binding
to certain recognition sites on the cell surface (in particular, with the same PAT).
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Figure 1. Lipopolyamines with benzyl linker.

Another factor affecting the efficiency of transfection is the hydrophobicity of the
amphiphilic molecule. A study of compounds 2 and 3a—d, which contain sterols (cortisol
and its derivatives) as hydrophobic domains (Figure 2), revealed that TA increases with an
increase in the hydrophobicity of the molecule [32]. While liposomes with compound 3d
were shown to be incapable of delivering NAs, possibly due to the lower hydrophobicity
of the amphiphile 3d and ineffective formation of lipoplexes, compounds 3b and 3¢ had
the highest transfection efficiencies. Notably, the contribution of hydrophobicity to the
efficiency of NA delivery also depends on other parameters, primarily the CA/DOPE (the
last was a helper lipid) ratio and N /P ratio (the ratio of the number of CA amino groups to
the number of NA phosphate groups).
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3a,R'=H,R*=H
3b,R"=0H,R*=H
3¢,R'=H,R>=0OH

o 3d,R' = OH, R? = OH

Figure 2. Cationic amphiphiles (CAs) based on cortisol and its derivatives.

Subsequent studies have shown [33] that compounds 4b and 4c, which contain double
bonds in the polycyclic hydrophobic domain (Figure 3), were the most effective. Three-
component liposomes formed from compound 4d, its dimeric analog 4e, and DOPE deliv-
ered plasmid DNA (pDNA) more efficiently than two-component liposomes 4e/DOPE.
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Figure 3. CAs with different polycyclic hydrophobic domains.

Hydrophobic substituents in the CA structure are mainly attached to primary amino
groups of the polyamine. A different approach to the synthesis of CAs was proposed by
Blagbrough et al. [34-37], who obtained N*,N°-disubstituted spermine derivatives 5a-j
with acyl or alkyl residues of various lengths and degrees of unsaturation (Figure 4). All
lipoplexes formed from acyl-substituted polyamines 5a-h exhibited high TA, excluding
amphiphiles 5b and 5f. However, only compounds 5f and 5g with stearoyl and oleoyl
residues had low toxicity toward FEK4 and HtTA cells. Notably, an increase in the degree
of unsaturation of hydrocarbon chains increased both the efficiency of transfection and
the cytotoxicity of the compounds. Alkyl derivatives of spermine 5i and 5j had compara-
ble or slightly higher transfection efficiencies but were much more toxic than their acyl
analogs [35].
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Figure 4. N4 N?-disubstituted spermine derivatives.

Asymmetric analogs 6a—f (Figure 4) were subsequently developed [38]. N*-myristoleoyl-
N%-myristoylspermine (6¢) and N*-oleoyl-N°-stearoylspermine (6d) showed the highest
efficiency of siRNA delivery into FEK4 and HtTA cells, comparable to the efficiency of the
commercial transfectant TransIT-TKO (Mirus Bio, Madison, WI, USA). Amphiphile 6f with
a lithocholoyl residue effectively delivered NAs but caused cell death. The least effective
was N*-cholesteryl-N°-oleoylspermine (6e).

When N!,N'2-substituted spermine derivatives 7a-d (Figure 5), structural isomers
of amphiphiles 5¢, 5d, 5f, 5g, were synthesized and studied [39], the efficiency of pDNA
delivery into FEK4 and HtTA cells by complexes with amphiphiles 7a—d was lower, while
the toxicity was higher than with amphiphile 5g. siRNA delivery efficiency mediated by
compounds 7a and 7c was comparable to the efficiency of delivery using amphiphile 5g.
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7b, R' = R? = C4;H35C(0) 8b, R' = (92),(122)-C47H3,C(0), R> = H 8f, R' = C3H,C(0), R2=H
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7d, R' = R? = C43H,7C(0O) 8d, R' = C45H3,C(0), R> = H

Figure 5. Spermine derivatives with acyl-substituted terminal amino groups.

Multiple monosubstituted polyamine derivatives 8a—g (Figure 5) were obtained by
modifying spermine with fatty acid residues of various lengths and degrees of unsatura-
tion [40]. Although an increase in the length of the fatty acid residue increased toxicity,
it positively affected the penetration of lipoplexes through the cell membrane in vitro.
Experiments in vivo showed that the efficiency of NA delivery with N-butanoylspermine
(8f) was higher than with N-decanoylspermine (8e).

Mono- and disubstituted polycationic amphiphiles were developed based on spermine
as a hydrophilic domain and cholesterol or 1,2-di-O-tetradecylglycerol as hydrophobic
domains (Figure 6) [41-43]. The amphiphiles had different spacer lengths and linker types.
CLs were prepared using these amphiphiles and DOPE (1:1 mol.). Among monosubsti-
tuted amphiphiles 9a—c, compound 9b showed the highest TA. While transfecting the
same percentage of cells as their monomeric analogs 9a—c, however, dimeric polycationic
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amphiphiles 10a—c provided better expression of the green fluorescent protein. The highest
transfection efficiency was exhibited by liposomes based on amphiphile 10c, which were
superior to the efficiency of the commercial transfectant Lipofectamine 2000 (Thermo Fisher
Scientific, Waltham, MA, USA) for any type of NAs transferred [42,43]. Targeted liposomes
based on CA 10c were also successfully employed in vivo [44-49].
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H H 4 HCI H i
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Figure 6. Mono- and dimeric polycationic amphiphiles based on spermine and triethylenetetramine.

Analogs 10e-g with ethoxypropylene, octamethylene, and ethoxyethoxyethylene
spacers (Figure 6) permitted a greater TA increase than using 10c in vitro [50]. In contrast,
the replacement of spermine with triethylenetetramine (TETA, 11a,b) led to a significant
decrease in TA [51].

Extensive screening of CAs [52] revealed that in the structure of compounds 12a—j
through 29a—j, both the polyamine matrix and the hydrophobic components changed
(Figure 7). Among CLs formed from these amphiphiles and DOPE (1:2 weight ratio), the
effective transfection of HEK293 cells was achieved only by liposomes with amphiphiles
12a-j through 20a—j containing an acyl substituent at the terminal amino group. Moreover,
only eight compounds (12¢, 12e, 13d, 14c, 16d, 16g, 17h, and 17j) were superior in TA to
the commercial transfectant Effectene (Qiagen, Hilton, Germany). Subsequent transfection
studies on HEK293, COLO 205, D17, HeLa, and PC3 cells showed that these compounds
mediated more effective NA transport than did the commercial transfectants Effectene,
DOTAP, and DC-Chol, while their toxicity was lower than that of commercial transfectants.
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Figure 7. CAs with asymmetric acyl hydrophobic tails.

pH-Sensitive polycationic amphiphiles 30-33 (Figure 8) were obtained by subse-
quently coupling amino acids (L-histidine and L-cysteine) and fatty acids (lauric, oleic,
and stearic) to polyamines [53,54]. The size of complexes of amphiphiles with siRNA was
160-210 nm, and the maximum TA on U87 cells was achieved using amphiphiles 30b-33b
with oleic residues. Among them, TA decreased in the series 30b > 32b > 31b > 33b. A
correlation was also established between the TA and the ability of compounds 30b-33b to
disrupt the integrity of erythrocyte membranes. Leader compound 30b based on ethylene-
diamine exhibited the highest hemolytic activity at pH 5.4, which corresponds to the onset
of endosomal acidification. Therefore, when using this amphiphile, one can expect effective
NA release inside cells due to the disruption of endosomal membranes.

)
N NH
HN 30a—c, R'="" "2
H
R? A~ N~ ~_NH,
31a—c, R'= N
? N{'l_}'}N e HN_<O " H NH
0 J SH 32b, R'= SN T ISR
RN H H
N N NH
\—>7 OO0 SH 33a,b, R1 = SN \/\”/\/ \/\”/\/ 2
NH HN O
© NH HN_<R2 a, R? = CqqHag
b, R? = (92)-C47Hg3
HN\¢N C, R2 = C17H35

Figure 8. First generation of pH-sensitive polycationic amphiphiles.

The second generation of pH-sensitive amphiphiles 34a—h based on spermine was
subsequently obtained (Figure 9). In biological tests conducted on HeLa and U87 cells, the
presence of an L-histidine in the amphiphile structure did not improve TA. In addition, no
relationship was found between the efficiency of CAs and the distance between hydropho-
bic domains. Compound 34e exhibited the highest activity in the delivery of pDNA [55],
while amphiphile 34f exhibited the highest activity in the delivery of siRNA [56,57]. The
authors also noted that they did not utilize helper lipids in complex formation since the
synthesized compounds were able to initiate a pH-dependent phase transition, which led
to the destabilization of the complexes and the release of NAs.



Pharmaceutics 2021, 13, 920 7 of 27

N HS
HS | NH
NH N NH SH HN HN )R
0. HN R2 0. HN 0 N 0 0O
0O 00 HN—/< NH
R R! R2 R2 O  HN 00
00 0 0 HN— O O HN R?
2 R NH
34 HN >R ap N H © 34
a NH I4N NH SH 2‘ \ ¢ Hs
HS HN- N
H
HS HS
NH
HS NH
NH HNj\zi )_RZ HN )—Rz
HN 0. HN )—R? 00 ‘<_/ o0
. 0 0 0. HN Q. HN
N NH o R>_§_\O_\ 2
R! 0 Q R
0 HN M—R2 00 0 Q HN—(
34d NH 34e HN M—r2 34 HN o
HS HN—/
HS HS
NH NH
HN J—R?

NH \
HS B HS
H
R'= ~ ,~o -~y o~ N~ NHy R2 = _

Figure 9. Second generation of pH-sensitive polycationic amphiphiles.

Multiple phosphamide derivatives containing long-chain alkyl substituents (dodecyl,
tetradecyl, and hexadecyl) were obtained as hydrophobic fragments [58]. The transfec-
tion of COS-1 cells with lipoplexes formed by pDNA and micelles or liposomes based
on amphiphiles 35a—d (Figure 10) showed that complexes based on micelles were only
half as effective as complexes based on CA liposomes/lipid helper/Chol (1:1:1 mol.).
DOPE and dipalmitoyl phosphatidylcholine (DPPC) have been used as helper lipids, but
DPPC-containing liposomes have proven to be an ineffective delivery vehicle. TA on
LLC and B16BL6 cells increased with an increase in the length of the alkyl chains and the
number of amino groups in the polyamine. For LLC cells, the best compound was 35f
based on spermine, and for B16BL6 cells, the best compound was amphiphile 35¢ based
on spermidine.

An analog of compounds 35c and 35f was obtained based on a synthetic polyamine—
tetraethylenepentamine (35g, Figure 10) [59]. Liposomes 35g/DOPE/DPPC/Chol
(0.25:1:0.75:1 mol) efficiently delivered antisense oligonucleotides to eukaryotic cells. Here,
the introduction of lipophilic derivatives of polyethylene glycol (PEG) and a cyclic analog
of the peptide RGD ensured active targeting of liposomes to target cells and increased the
efficiency of NA delivery [60,61].
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Figure 10. Phosphamide derivatives of polyamines.

Cationic nucleoside amphiphiles may also be used for gene delivery. Thus, low-toxic
uridine derivatives of various polyamines (36a—c, Figure 11) were synthesized and used for
siRNA delivery. Their TA on HeLa cells is almost equal to that of Lipofectamine 2000 but
was not affected by polyamine residue [62]. Notably, replacement of polyamine residue
with L-arginine gave the same results, while L-lysine decreased TA [63].

o) R =
NH Ha Ha . .
R\H/O | o a: WNWNWH;\ANH3 4c1”
o] %0# Hy H,
0. .0 O__0 b: %N\/\/N\/\/\NH;; 3Cl~
Hy
©2)9CraHas™ " NN©02)-Coghas € NN 001

36a-c

Figure 11. Cationic nucleoside amphiphiles.

Amphiphiles 37a-d (Figure 12), in which the polyamine was bound to the hydrophobic
domain via carbamoyl or amide linkers, formed liposomes with DOPE or compound 35h
(Figure 11) and were used to deliver pDNA [64]. Protonation of the imidazolium residue
of amphiphile 35h during endosomal acidification can induce rupture of the endosomal
membrane and favors NA release [65,66]. Transfection of OVCAR-3, IGROV-1, and HelLa
cells with complexes formed at different N/P ratios (4:1-12:1) showed that 37c/DOPE
liposomes provided efficient pDNA delivery exceeding that of the commercial transfectant
Lipofectamine 2000. Relative TA decreased in the series 37¢ > 37b > 37a >> 37d. It should
also be noted that the use of amphiphile 36 as a helper lipid did not increase TA but did
increase the cytotoxicity of lipoplexes.

In vivo delivery of pDNA by sterically stabilized liposomes 37c¢/DOPE /PEG4600-
Chol (43:43:14 mol.) in a 4:1 (wt) ratio with pDNA led to a 33-fold increase in protein
expression relative to unprotected DNA [67].
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Figure 12. Amphiphiles based on polyamines

and cholesterol.

New CAs 38a—c (Figure 13), in which the cationic domain was linked to the cholesterol
residue via an ether bond [68], formed liposomes with DOPE and were used for transfection
of AGS and Huh-7 cells. The 38a/DOPE liposomes more efficiently delivered pDNA into
AGS cells, while the 38b/DOPE liposomes provided effective transfection of Huh-7 cells.
In both cases, their TA exceeded that of commercial transfectants [69]. Liposomes with
dimeric gemini-amphiphile 38c also outperformed commercial agents in the transfection

of COS-7 and Huh-7 cells [70].

R/\/\O

38a, R=HN~ " “NH,

Figure 13. Ether-linked cationic amphiphiles.

CAs 39a,b with different dicationic domains (Figure 14) formed liposomes, which

facilitated the transport of siRNA into M
superior in TA to amphiphile 39b [71].

H
\H/N (92)-C17Ha3

H
(92)'C17H33\”/N\)

]

(92)-C47H33

(92)-C47H33

39a

Figure 14. Branched cationic amphiphiles.

B49 and K562 cells, while amphiphile 39a was

H NH
\ﬂ/ 2
(0]
H NH
2
hid
(0]

39b

Comparing the TA of CAs that contained various polyamines in their structure
(Figure 15) revealed that CLs composed of both phosphatidylcholine (Phospholipon 90G)
and compounds 40d-g containing spermine (5:1 mol.) could deliver pPDNA to HeLa cells,
while other CLs showed no transfection [72]. Moreover, CAs with a shorter chain length of

acyl substituents exhibited lower TA.
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Figure 15. CAs based on various polyamines.

Analogs of compounds 40d—f based on spermine (compounds 41a—c, 42a—c, 43a—c)
were obtained to study the influence of the structure core on TA (Figure 16) [73]. The
efficiency of pDNA delivery mediated by liposomes based on DOPE and amphiphiles
42b,c, and 43a (1:1, weight ratio) was higher or comparable to that of Lipofectamine 2000.
Moreover, unlike the other formulations, liposomes based on 43a with a core of 2-amino-
1,3-propanediol retained their efficiency in the presence of serum. Investigation of the
effect of hydrophobic domains on transfection revealed that myristoyl residues provided
more effective TA.

R!
(0] F|<1
\ Rlo o) o
H H H \J\
1 2
R\o/\/N\n/N\RZ R1O\)\/N\H/N\R2 e N)J\N,R
H H
41a-c O 42a-c (0] 43a-c

a, R1 = C11H23C(O) R2 = \/\/N\/\/\N/\/\NH
b, R" = C43H7C(O) H 2
¢, R" = Cy5H31C(0)

Figure 16. Spermine-based CAs with different cores.

A library of CAs (more than 1200 compounds) was developed using combinatorial
chemistry methodology, in which both the hydrophobic (the length of the alkyl chain,
the type of linker, and the presence of additional functional groups) and the cationic (the
number of amino groups, the presence of cycles, and other functional groups) domains
varied [74]. The results of in vitro experiments on HeLa cells revealed the following
relationships: (1) TA increased in the presence of either two long-chain or several shorter
alkyl substituents linked by an amide bond to the cationic domain (the optimal length was
8-12 carbon atoms); (2) high TA was achieved by compounds with two or more amino
groups in the cationic domain, with TETA offering the best option; (3) the presence of a
secondary amino group in the cationic domain positively affected TA (Figure 17).

Based on these findings, multiple CAs were selected for extended biological studies,
which showed that the efficiency of NA delivery to primary macrophages exceeded that
of commercial transfectants. In contrast, the transfection of HeLa or HepG2 cells by the
selected amphiphiles was poor.
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Figure 17. A combinatorial library of CAs.

According to the results of in vitro tests, the 17 most effective compounds for in vivo
siRNA delivery (siFVII and siApoB, which suppress the expression of blood coagulation
factor VII and apolipoprotein B, respectively), were selected. For this, liposomes containing
CA/PEG-lipid (mPEG2000-palmitoylceramide or mPEG2000-dimyristoylglycerol)/Chol
(42:10:48 mol.) were formed. These CAs commonly contained various diamines or TETA.
The most effective formulation (achieving more than 90% suppression of target gene
expression) was based on compound 44 with TETA (Figure 17). The delivery of siRNAs
in the lungs and macrophages of mice and macaque liver cells using these liposomes also
significantly suppressed the target genes [74].

Subsequently, the library of compounds was expanded by synthesizing amphiphiles
45a—d and 46a—d with various hydrophobic domains (TETA and propylenediamine were
chosen as cationic domains). Of these, the most effective were amphiphiles with a hydroxyl
group in the hydrophobic domain, while the domain itself was bound to the polyamine
with an ether or amide linker [75]. The hydrophobic domains based on oligoethylene glycol
or octadecyl substituents led to an absence of TA. It should be noted that CAs 45c, 46a,
and 46d were more effective than amphiphile 44 in vitro; however, they were inferior to
amphiphile 44 in siRNA delivery in vivo.

In vitro screening of amphiphilic derivatives of spermine, spermidine, putrescine, and
cadaverine showed that spermine derivative 47e facilitated the more efficient delivery of
siRNA into human hepatocellular carcinoma Huh-7 cells [76]. Furthermore, liposomes
47e/Chol/DSPC/mPEG2000-palmitoylceramide/galactosylceramide delivered siRNA
in vivo, which led to a significant decrease in hepatitis C virus replication in the hepatocyte
cells of mice [76].

2.2. Cationic Amphiphiles Based on Cyclic Polyamines

Lipophilic derivatives of macrocyclic polyamines can be used as liposomal compo-
nents. Such compounds are less prone to self-packing, which improves binding to NAs.
Two new cyclen-based amphiphiles 48a,b (Figure 18), which differed in the type of hy-
drophobic domain (cholesterol or diosgenin), were synthesized [77]. The results of in vitro
biological studies showed that liposomes formed by amphiphiles 48a,b and DOPE had a
low cytotoxicity but, because they bound easily to serum proteins, were inferior to Lipo-
fectamine 2000 in delivering NAs to cells. The introduction of the quaternary ammonium
group into the structure of the amphiphile (amphiphiles 49a,b) did not increase the TA; the
liposomes remained inferior to Lipofectamine 2000 [78]. However, amphiphile 49b, which
contained diosgenin as a hydrophobic domain, was more effective but also more toxic than
amphiphile 49a, which contained cholesterol.
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Figure 18. Cyclen-based amphiphiles.

In order to increase the TA of liposomes, compounds 50a—c were synthesized (Figure 18),
in which the cyclene and the hydrophobic domain were arranged by a peptide-nucleoside
spacer [79]. Amphiphile 50b with a diosgenin residue (in liposomal composition with
DOPE) demonstrated the highest efficiency, exceeding that of Lipofectamine 2000.

In the structure of CAs 51a—e, hydrophobic domains were linked to the cyclen using
the L-histidine residue (Figure 19), as well as additional linkers (amide, ether, carbamoyl,
and ester) [80]. All lipoplexes formed by amphiphiles 51a—e, DOPE and NAs were less toxic
than Lipofectamine 2000, and amphiphile 51a with hexadecyl substituents demonstrated
the lowest toxicity. The results of transfection studies revealed that only amphiphiles
51c-e, containing a tocopherol residue as a hydrophobic domain, were more effective than
Lipofectamine 2000. Compound 51e with an ester linker exhibited the highest TA.

H 5 CF,COOH
NH HN
T
(0]
A ON 1N
\ / aR= )J\N/C16H33 bR = /\O
Sla-e CygHas3

Figure 19. Cyclen-based amphiphiles with L-histidine backbone.

Cyclen derivatives containing oleoyl residues as a hydrophobic domain and amino
acids (L-phenylalanine, L-tyrosine, L-serine, or glycine) as a backbone (Figure 20) were
developed [81]. Transfection of HEK293 cells showed that liposomes based on DOPE
and compounds 52a—d with one fatty acid residue (1:1 mol.) exhibited no TA. Among
amphiphiles with two long-chain substituents, the compounds with phenyl (53) or pheny-
lalanyl (55a) spacers demonstrated the highest activity (which was nevertheless lower than
that of Lipofectamine 2000). Moreover, analogs with saturated hydrocarbon residues of
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various lengths were obtained based on amphiphile 53 (structures not shown). Among
them, an amphiphile with tetradecyl substituents was the most effective, comparable to
Lipofectamine 2000.
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4 CF;COOH
3 [ j (92)'017H330(O)\N

H R j’\/

N ~ N HN
92)-C417H33C(0)” N
(92)-C47H33C(0O) \([)]/\H __/

52a-d

5 CF;COOH [NH HNj
. <> N HN
53

4 CF3;COOH NH HN

H N
(92)'017H330(0)\NJ/
H

4 CF3COOH NH HN

N Cy7H3sC(0)~
C17H33gj(zo)) N R O j (92)-C17H33C(0)~ 4 L RO [ j
N A AN BN N A AN HN
©2-~ © (92)-Ci7H5C0)~ A O
C47H33C(0) [ 54a,b H 55a,b

a,R=/\© b,R=/\©\ ¢,R=CH,OH d R=H
OH

Figure 20. Cyclen-based amphiphiles with different amino acid backbones.

2.3. Cationic Amphiphiles Based on Amino Acids

Amino acids are often employed as the hydrophilic domains of CAs, as they are natural
compounds and convenient building blocks for creating a positive charge in molecules. To
identify new compounds for CL formulation, a number of amphiphiles 56-58 (Figure 21)
based on L-lysine, L-histidine, and L-arginine was synthesized and further used with DOPE
(1:1 mol.) for liposomal preparations. Their efficiency of NA delivery in the presence of
serum was studied [82].

2CF5;C00~ 2CF,C00
57 58

Figure 21. CAs based on amino acids and cholesterol containing no spacers.

TA is known to decrease in the presence of serum due to the interaction of negatively
charged proteins with CAs, which inhibits NA delivery. The average size of lipoplexes
formed by amphiphiles 56-58 increased in the presence of serum from 180 nm to 828 nm
for amphiphile 56, up to 1710 nm for amphiphile 57, and up to 2345 nm for amphiphile 58.
Amphiphile 56 was able to transfect eukaryotic cells at serum concentrations up to 40%.
The TA of lipoplexes containing amphiphiles 56-58 was 2.8-3.5-fold higher than that of the
commercial transfectant DOTAP (Roche Life Technologies, Switzerland), while amphiphile
57, with an L-histidine residue, exhibited the lowest activity.

In the structure of CAs 59a,b and 60a,b (Figure 22), cholesterol was bound to L-lysine
or L-histidine by various linker groups [83]. The best transfection of COS-7 cells was
provided by amphiphiles 59b and 60b with L-lysine, which, however, demonstrated greater
cytotoxicity than amphiphiles 59a and 60a containing L-histidine. The authors proposed
that this greater toxicity was induced by the damaging electrostatic interaction of L-lysine
amino groups with the negatively charged plasma membrane. Replacing the ester linker
with an amide one (amphiphiles 61a,b) reduced the toxicity of the compounds. The L-lysine
derivative 61b was still more effective than amphiphile 61a based on L-histidine [84].
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Figure 22. CAs based on amino acids and cholesterol with various linkers.

Amphiphiles 62a-d are based on L-arginine and certain sterols linked by amide and
ester bonds (Figure 23) [85]. Cholesterol-based compound 62a exhibited the highest TA,
forming lipoplexes with a particle size of approximately 100 nm. The size of lipoplexes
formed by amphiphiles 62¢,d was 200-300 nm, and they poorly penetrated cells. It should
be noted that none of the amphiphiles 62a—d was able to outperform Lipofectamine 2000
in the presence of serum.

a,R= \O/C
b,R=\O/C d,R=\O/C

Figure 23. CAs based on L-arginine and various sterols.

CAs 63a—c and 63e—j (Figure 24) were synthesized based on L-arginine, L-lysine, and
L-histidine [86]. The efficiency of cell transfection decreased with an increase in the length
of the alkyl chains, while the maximum efficiency was provided by amphiphiles 63a and
63e with tetradecyl substituents. The type of the cationic group insignificantly affected TA
in the absence of serum. However, amphiphiles 63a—c based on L-arginine demonstrated
the most efficient NA delivery in the presence of serum.

An increase in the number of positively charged groups in amphiphiles 63k,1 provided
an increase in the efficiency of pDNA delivery to HepG2 cells. Moreover, the resulting TA
was superior to that of both Lipofectamine 2000 and polyethyleneimine [87]. For HEK293T
cells, amphiphile 63k based on L-arginine was comparable to commercial transfectants,
while the L-lysine derivative 631 demonstrated inferior efficiency. The results of pPDNA
delivery in vivo showed that CA 631 was 2.5-fold more effective than polyethyleneimine,
while 63k was almost 10-fold more effective.

Low-toxicity lysine-containing CAs 63d, 64a—h (Figure 24) were synthesized to study
the effect of spacer length and the type of counterion on TA [88]. CLs formed by DOPE and
trifluoroacetates 64g and 64h delivered NAs more efficiently than other CAs, while CLs
containing uncharged amphiphiles 64a,b demonstrated the lowest activity. An increase in
the spacer length in CAs from 0 to 7 methylene units increased TA in both the presence
and absence of serum, and all amphiphiles studied were more effective than Lipofectamine
2000 under both conditions.
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Figure 24. CAs based on L-arginine, L-lysine, and L-histidine.
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A similar effect of spacer length on TA was observed in the amphiphile series 63f,
64k-m, and 65 based on L-lysine (Figure 24) [89]. Lipoplexes with amphiphile 63f, the struc-
ture of which lacks a spacer, were unable to deliver NA, but as the spacer length increased
from 3 to 7 methylene units, TA increased. Notably, amphiphiles 64k-m with a hydropho-
bic oligomethylene spacer functioned as more active transfectants than amphiphiles 65
containing a hydrophilic oxyethylene spacer.

Amphiphiles 64d,g and 64i,j based on L-lysine and L-arginine (Figure 24) were studied
to evaluate TA in PC-12, HeLa, and neuronal cells [90]. Lipoplexes containing amphiphiles
64i,j were more effective than both lipoplexes containing amphiphiles 64d,g and the com-
mercial transfectant Lipofectamine 2000.

Cholesterol-containing CAs 66a,b (Figure 25) were recently developed based on
L-lysine and diamines [91]. When transfecting HEK293, HeLa, PC-3, and HC-04 cells,
the efficacy of liposomes 66b/DOPE (1:1, mol.) was comparable to that of Lipofectamine
2000, even in the presence of serum. Moreover, the toxicity of 66b/DOPE was significantly
lower than that of Lipofectamine 2000.

o CFsCOO j)\
.
HaN,
e SNV N 0
H H
66a,n=0
NH> 66b, n = 1

Figure 25. CAs based on L-lysine and diamines.

Polycationic amphiphiles 67a,b (Figure 26) consisting of the dipeptides glycylhistidine
and glycyllysine as well as a tocopherol residue were synthesized [92]. While the TA of
67b/DOPE liposomes containing a lysine residue was higher on HEK293 and HeLa cells
than that of 67a/DOPE liposomes containing a histidine residue, the 67b/DOPE liposomes
did not achieve the results of Lipofectamine 2000. However, the complexes were more
resistant to serum activity than was the commercial transfectant.

o}

H o]
fe) PN N N )H/\/\/NH:«I
‘R= N~ Q :R= N
MH a:R N Y mR N,

NH; NH NH;
2CF5C00~ 2CF5;C00

67a,b

Figure 26. CAs based on dipeptides.

Polycationic amphiphiles 68a—d and 69d (Figure 27) were synthesized based on
L-ornithine [93,94]. Liposomes CA/DOPC and complexes with pPDNA were formed using
different component ratios. The resulting efficiency of cell transfection, which was higher
than for the commercial transfectant DOTAP (Avanti Polar Lipids, Alabaster, AL, USA),
depended on the ratio of lipids used in the complex. Amphiphile 68d with three aminoethy]
substituents exhibited the highest activity and was also used to deliver siRNA, which led
to the specific suppression of the target gene [95].

Amino acids are used to develop not only classical head-to-tail amphiphiles but also
symmetric gemini-amphiphiles, as seen in the L -histidine derivatives 70a—d (Figure 28),
which contain two alkyl substituents 10 to 16 carbon atoms in length [96,97]. CLs were
formed with derivatives obtained and DOPE. With the exception of 70a with decyl residues,
all CLs bound pDNA well. However, their TA was comparable to or lower than that of
Lipofectamine 2000 [96].
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Figure 27. CAs based on L-ornithine.

/<N _NA

—N_Jcl cl | N—
“On N N Y
(0] (0]

70a-d:n =10, 12, 14, 16
Figure 28. Gemini-amphiphiles based on L-histidine.

2.4. Disulfide Cationic Amphiphiles

Several special cell proteins and peptides (for example, glutathione and reductases)
can reduce the disulfide bond [98]. Disruption of the disulfide bond in the CA molecule,
in turn, can increase the degree of NA release from the lipoplex in the cell and thereby
increase TA.

Disulfide amphiphile 71, based on L-lysine and L-arginine (Figure 29), formed CLs
capable of transfecting HeLa and B16 cells in the absence or presence of serum, and its
efficiency exceeded that of its analog lacking a disulfide bond [99]. In vivo studies on the
delivery of the luciferase gene to xenograft mice showed a high expression of the reporter
protein in isolated tumors in the case of CA 71, which exceeded that of the amphiphile
without a disulfide bond (structure not shown) or polyethyleneimine.

0
R N~ S~ A~ N, Rr'= HZNJJ\N/\/\‘)J\
H/\/\/\n/ S N - RZ H

1
RonH o)

o} HN.

NH

NH,

R? = (92)-C17H33C(O)
Figure 29. Disulfide amphiphiles based on L-lysine and L-arginine.

During the oxidation of thiol groups to disulfide groups, lipophilic thio compounds
72a-d (Figure 30) based on L-ornithine or spermine compacted pPDNA molecules into small
micellar complexes [100]. Their TA in 3T3 cells increased with increasing alkyl substituents.
Spermine-based CA 72d was less effective than its ornithine-based analog 72b.

Disulfide amphiphiles 73a,b (Figure 31) containing an L-histidine or L-lysine residue
were obtained based on tocopherol [101]. Liposomes CA/DOPC (1:1 mol) formed com-
plexes with pDNA at various N/P ratios (from 1 to 8) with sizes ranging from 150 to
190 nm. The TA of liposomes 73b was lower than that of liposomes based on L-histidine
derivative 73a and the commercial transfectant Lipofectamine 2000.
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Figure 30. Disulfide amphiphiles based on L-ornithine or spermine.

?

c:R'=

R” 0
73a,b
N s i N N s j\/\/\/NH
aR=" > s \/\NJ\/\E\> b:R= ~ > 87TNTONT Y :
2cF,c00” B *NH, WnH 2CF,C00° 1 "NH,

Figure 31. Disulfide amphiphiles based on tocopherol.

The introduction of a disulfide bond into the amphiphile structure also makes it
possible to significantly reduce CAs toxicity while maintaining a comparable level of TA.
CA/DOPC liposomes, based on biodegradable CAs 74a—d (Figure 32) with a disulfide
bond, differed in the number of amino groups in the polyamine matrix had significantly
lower toxicity (except for amphiphile 74a) than their analogs 68a—-d, which did not contain
a disulfide bond [102]. Moreover, compounds 74c and 74d demonstrated comparable
or superior TA to amphiphile 68d. Thus, an increase in the number of amino groups in
CAs increased TA, while the introduction of a disulfide group decreased the toxicity of
lipoplexes, allowing for the use of higher CA dosages.
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Figure 32. Disulfide amphiphiles based on different polyamines.

Biological testing on COS-7 cells of disulfide amphiphiles 75a,b (Figure 33), based on
polyamines and amino acids [103], revealed low toxicity and rather high TA comparable
to monocationic analogs 75¢,d. Moreover, only amphiphile 75a retained its activity in the
presence of serum.
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Figure 33. Disulfide amphiphiles based on polyamines, amino acids, and cholesterol.

Synthesized gemini-amphiphiles 76a—c (Figure 34), which contained disulfide groups
between the cationic and hydrophobic domains, differed in the spacer connecting the
quaternary ammonium groups [104]. Liposomes 76a/DOPE and 76¢/DOPE efficiently
transfected HeLa and HT1080 cells. For PC3AR cells, liposomes 76b/DOPE proved to
be the most efficient and were also capable of delivering NAs to difficult-to-transfect
HaCaT cells.

76a: X = -(CH2)3-

S
IJ/ S g’ 76b: X =~ 07
~N
N
L 2B

r 76¢c: X = 4@7

X
kJ{l/\/s\s

Figure 34. Disulfide gemini-amphiphiles with different spacers.

Disulfide polycationic amphiphiles 77a,b (Figure 35) were based on spermine and
cholesterol. The disulfide group was located either in the spacer structure or as a linker
connecting the cationic and hydrophobic domains [105,106]. CLs were formed with these
amphiphiles and DOPE. The position of the disulfide group in the CA molecule affected
both the sensitivity of the obtained liposomes to the action of reducing agents and their TA.
Thus, introducing a disulfide group into the spacer structure (77a) led to a higher liposome
sensitivity and more efficient siRNA delivery than that achieved by CA 10c (Figure 6),
which was not sensitive to reduction. CA 77b with a disulfide group as a linker was less
sensitive to reduction and delivered pDNA more efficiently than did its analogs [107].

A library of disulfide CAs 78-89 (Figure 36) with various cationic domains was
created. The first series of compounds, 79a-84a, contained a hydrophobic hexadecyl chain,
including sulfur atoms [108]. CLs composed of disulfide CAs, cholesterol, DOPE and
1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000]
(16:4:1:1, weight ratio) were used to deliver ribonucleoprotein complexes to GFP-HEK cells.
Compounds 80a, 81a, 83a, 84a had the highest efficacy, comparable to or exceeding that of
Lipofectamine 2000. An increase in the number of hydrophobic domains to three (78b-81b)
increased the delivery efficiency of ribonucleoprotein complexes to GFP-HEK cells [109]
and human mesenchymal stem cells [110]. Notably, liposomes based on compound 79a
with two hydrophobic domains had practically no TA, while the use of an analog (79b)
with three hydrophobic domains made it possible to transfect stem cells more efficiently



Pharmaceutics 2021, 13, 920 20 of 27

than was possible with the commercial transfectant Lipofectamine 2000. An increase in the
number of hydrophobic domains to four negatively affected TA regardless of the cationic
domain. A study of the effect of the length of the hydrophobic domain demonstrated
that shortening the chain length to 12 atoms significantly impaired TA, while including
14-18 atoms in the chain provided no efficiency difference [110].

R=%

Figure 35. Disulfide polycationic amphiphiles based on spermine and cholesterol.
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Figure 36. A library of disulfide CAs with various cationic domains.

Subsequently, the library of disulfide derivatives was expanded using a cholesterol
residue in the structure of the hydrophobic domain, which reduced cytotoxicity relative to
that of long-chain analogs 79a—84a [111]. Compounds 85c, 87c, 88c were highly efficient
in delivering mRNA to all four investigated cell lines (B16F10, HEK, HeLa, NIH 3T3).
Compound 86¢ was effective on all cells except NIH 3T3. The results of all four compounds
were comparable or slightly inferior to that of Lipofectamine 2000. Compounds 84c and
89c demonstrated extremely low aggregation stability and delivery efficiency.
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2.5. Influence of Structural Components of Cationic Amphiphiles on the Efficiency of Nucleic
Acid Delivery

Each element of the CA structure performs a specific function and influences the TA.
Hydrophobic domains are involved in the protection of NAs and promote the fusion of
lipoplexes with cell membranes. Aliphatic hydrocarbon substituents usually represent
these domains with a length of 10 to 18 carbon atoms, tocopherol, or sterols. The type
of hydrophobic domain determines both the structure of the vesicles that a CA forms in
the aqueous phase and its subsequent interaction with biological membranes. Liposomal
formulations promote more efficient NA delivery than that accomplished by micelles or
other types of nanoparticles [58]. Mostly, CAs used for transfection of eukaryotic cells are
classic head-to-tail amphiphiles. Based on polyamines and amino acids, CAs synthesized
with two hydrophobic domains (gemini-amphiphiles) can deliver NAs more efficiently
than can their monosubstituted analogs [39,42,94,95].

An increase in the length of aliphatic hydrocarbon chains usually increases
TA [32,35,40,53,58,88,89]. Notably, however, it may also increase the toxicity of com-
pounds [40]. In contrast, for some spermine-based CAs, TA decreased with an increase
in the length of aliphatic substituents [70,84]. Analysis of published data reveals that the
optimal length of aliphatic substituents is 14-18 carbon atoms, while high TA is most
often noted for CAs with myristoyl or tetradecyl substituents [71,79,84]. The degree of
unsaturation of substituents also affects the efficiency of NA delivery: with an increase
in unsaturation, TA increases but so does toxicity [20]. Thus, it is necessary to search
for an optimal CA variant that effectively delivers NAs, while its toxicity remains within
acceptable limits.

When sterol derivatives are used as hydrophobic domains, one should prefer natural
compounds, which do not cause significant toxicity. In this case, it is optimal to use a
common and widely available sterol such as cholesterol [38,78,85], although diosgenin
derivatives are also capable of efficient NA delivery [75-77,83]. Tocopherol is also employed
as a hydrophobic domain [80,92,101].

The positively charged CA domain is responsible for the electrostatic interactions
of amphiphiles and/or liposomes with NAs, the formation of stable lipoplexes, and the
interaction of complexes with cell membranes. An increase in the number of amino groups
in the structure of the cationic domain leads to an increase in the TA [31,56,60,81,82,85]. The
most effective are CAs with domains based on polyamines, with the number (more than
two [74]) and distribution of amino groups in the polyamine chain [31,53,93,102] playing
important roles. Many studies reveal that the most effective are polyamines with four
amino groups, primarily a natural polyamine—spermine [58,72,76]. However, CAs based
on synthetic polyamines (TETA, triethylenepentamine, tributylenepentamine) can be more
efficient in delivering NAs than their natural counterparts [31,59,74]. The cationic domain
can also be designed based on cyclen [77-81] or amino acids. In this case, it is advisable to
use the residues of L-arginine or L-lysine [82-84,86,90,92] but not L-histidine, the presence
of which in the CA structure did not improve the NA delivery [84].

Linkers, connecting hydrophobic and cationic domains, determine the stability and
biocompatibility of the CAs and play a key role in the efficiency of NA delivery. The
most commonly used are ether, ester, carbamate, amide, and disulfide linkers. Among
the most effective linkers imparting low toxicity to CAs are carbamoyl ones [42,43,52,87].
Efficient delivery of NAs is also observed with the presence of ether bonds in the CA
structure [68,82]. The introduction of a disulfide linker into a CA molecule makes it
sensitive to the action of intracellular reducing agents, which can increase the efficiency of
NA delivery and/or reduce the toxicity of compounds [101,102,104].

Multiple studies have proven that a close arrangement of the hydrophobic and cationic
domains complicates both domain’s functioning and interferes with the formation of
liposomes. The introduction of a spacer into the CA structure and an increase in its length
increase NA delivery efficiency [42,50,88,89,91].
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Low cytotoxicity is an important feature of CLs. First generation of CAs containing
quaternary ammonium head was rather toxic, but numerous recently developed poly-
cationic amphiphiles provided non-toxic transfection [8]. As mentioned above, toxicity
may be increased with the length and degree of unsaturation of hydrophobic tails. In
sterol derivatives use of diosgenin may cause toxicity [77,85] probably due to the inhibition
of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. Linkers may also
affect toxicity. Thus, the replacement of the ester linker with an amide one reduced the
toxicity of the L-lysine based CAs [84]. Also, it should be noted that direct binding of both
hydrophobic and cationic domains leads to a significant increase in toxicity of the CAs [35].

3. Conclusions and Perspectives

In this review, we focused on the cationic amphiphiles, which are the major but not
sole component of CLs. Development of additional components, such as targeting [16] or
stealth [17] lipids, is an actual trend in non-viral gene delivery.

Positive charge of CLs provides an effective binding and protection of NAs during
transfection but also attracts serum proteins and other components during in vivo admin-
istration. Interaction with serum components may cause fast blood clearance of lipoplexes.
Therefore, searching for possibilities to mask excessive CLs positive charge is required.
One of such ways may be a use of PEG-lipids, which, however, decrease both lipoplex
and NAs internalization into the cell. Alternatively, a coating of CLs or lipoplexes with
additional lipid (polymer) shell may be also considered.

Sophistication of liposomal formulations turns its manufacturing procedure into novel
challenges including scale-up and quality control stages. A possible solution to overcome
existing difficulties might be a shift from the single large-scale to the multiple parallel
small-scale production. For this purpose, microfluidic technologies become very attractive
due to their ability to provide continuous and reproducible liposome preparation. Recent
progress in microfluidics allows to use this technique for production of rather complex
nanoparticles containing biopolymers and even whole cells [112].

In conclusion, the development of effective and safe CLs for the delivery of therapeutic
NAs requires employment of the right combination of structural elements in the CA molecule
to promote the formation of both the liposomes and their complexes with NAs while avoiding
interference and overcoming biological barriers. Once within the target cell, the complexes
must release NAs with a high efficiency to provide biological/therapeutic effect.
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