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Abstract: Rice is highly sensitive to salinity stress during the seedling establishment phase. Salt stress
is widely occurring in cultivated areas and severely affects seed germination ability and seedling
establishment, which may result in a complete crop failure. The objective of the present study is to
identify quantitative trait loci (QTLs) related to salt tolerance of the germination and seedling stages
in a rice backcross inbred line (BIL) population that was derived from a backcross of an Africa rice
ACC9 as donor and indica cultivar Zhenshan97 (ZS97) as the recurrent parent. Under salt stress,
ACC9 exhibited a higher germination percentage, but more repressed seedling growth than ZS97.
Using the BIL population, 23 loci for germination parameters were detected at the germination stage
and 46 loci were identified for several morphological and physiological parameters at the seedling
stage. Among them, nine and 33 loci with the ACC9 alleles increased salt tolerance at the germination
and seedling stages, respectively. Moreover, several major QTLs were found to be co-localized in
the same or overlapping regions of previously reported genes for salt stress. These major loci will
facilitate improving salt-tolerance rice in genome-breeding programs.

Keywords: Africa cultivated rice; salt tolerance; seedling establishment; quantitative trait loci (QTLs);
backcross inbred lines (BIL)

1. Introduction

The world population is estimated to increase by more than two billion in the next
30 years while agricultural areas are facing a real decrease [1]. Agriculture production
is principally influenced by prevailing unfavorable environmental conditions, such as
drought and salinity, which are challenging global food security. Drought and salinity are
the most serious factors that affect rice production worldwide [2]. It is estimated that more
than 7% of arable land areas for crop cultivation are affected by salinity due to improper
irrigation and fertilizer abuse [3]. It is an emergent need to develop tolerance varieties
to combat the stresses and to sustain food production. Rice is one of the staple foods for
two-thirds of the world population [4]. Hence, the increase in food production, particularly
rice production, is urgent to meet the demand of the growing population. To increase rice
production of saline-affected areas, identification of quantitative trait loci (QTLs) associated
with salt tolerance is an essential step for the improvement in varieties of salt-tolerant rice.

Salinity is defined as the accumulation of a high concentration of salt, especially NaCl
as well as other soluble salt ions in either soil or water, which has a deleterious effect on
plant development and growth [5]. Rice is extremely susceptible to salt stress at the germi-
nation and seedling stages [6]. Salt tolerance of rice is a quantitative character controlled
by many genes and influenced by environmental factors [7]. Significant efforts and consid-
erable advancements have been made in the detection of QTLs to understand the genetic
basis of salinity tolerance of rice [7–12]. Several QTLs associated with salinity tolerance
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have been identified at the germination and seedling stages in various genetic popula-
tions [10–12]. More than 20 QTLs related to salt sensitivity, sodium (Na+) concentration, and
sodium-to-potassium (K+) ratio within roots and shoots are recorded on the GRAMENE
website (https://archive.gramene.org). The locus Saltol was first detected on chromosome
1 and explained 43% of the total phenotypic variation in the Na+/K+ ratio of the seedling in
the IR29/Pokkali recombinant inbred line population [13]. Sixteen QTLs for salt tolerance
were detected by using an F2 population developed from Cheriviruppu × Pusa Basmati
1 at both the seedling and reproductive stages [11]. Recently, genome-wide association
studies (GWAS) in natural populations of Asian cultivated rice (Oryza sativa L.) have been
conducted to map QTLs for salt tolerance [14–19]. Moreover, some genes associated with
salt tolerance were cloned in rice. For example, the SKC1 (also known as OsHKT1;5) gene
that encodes a high affinity K+ type transporter regulating K+/Na+ homeostasis has been
cloned using a map-based approach [20]. The cation-chloride cotransporter gene (OsCCC1)
associated with salt tolerance was identified with the role of maintaining K+ and Cl−

homeostasis in rice [21].
Africa rice (Oryza glaberrima Steud) carries many genes of desirable characters that can

be transferred to Asian cultivated varieties, especially those responsible for resistance to
biotic and abiotic stresses [22]. However, there are a limited number of studies using Africa
rice to identify salt-associated QTLs. For example, Meyer et al. (2016) performed GWAS
in a panel of germplasms that comprised 93 African rice varieties and found 11 regions
significantly associated with six salt-tolerance traits at the seedlings stage, highlighting
the value of this unique genetic resource [23]. To explore genetic variation of African rice
in salt tolerance, the main objective of this study is to use a genome-sequenced Africa
rice IRGC96717 (ACC9) and a genome-sequenced indica variety Zhenshan 97 (ZS97) to
discover QTLs for salinity tolerance of the germination and seedling stages for improving
rice varieties in breeding programs.

2. Results
2.1. Responses of ACC9 and ZS97 to Salt Stress

At the germination stage, the seed germination parameters (GR-3d, GR-7d) of ACC9
and ZS97 were similar under control conditions (CK) (Figure 1A); however, under salt
stress (18 dS m−1 NaCl), ACC9 displayed better performance in terms of germination
percentage than ZS97 (Figure 1B,C). ACC9 showed a significantly lower germination
index (GI) than ZS97 under CK, but an opposite pattern was observed under salt stress
(Figure 1D). ACC9 had a significantly lower mean of germination time (GT) than ZS97
under salt stress (Figure 1E). The relative values of the above four traits (GR-3d, GR-7d,
GI, and GT) at the germination stage between salt stress and control were calculated and
referred to as sensitivity index. The sensitivity indices revealed that ACC9 was more
tolerant to salt stress than ZS97 at the germination stage (Figure 1F).

https://archive.gramene.org
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Figure 1. Seed germination parameters of the parental lines, ACC9 and ZS97, under control (CK) 
and salt treatment (S). Morphological differences of seed germination between ACC9 and ZS97 
under control CK (A) and salt stress (B); (C) seed germination percentage at 3d and 7d after 
imbibition, (D) germination index (GI), (E) mean germination time (MGT), (F) sensitivity index. The 
error bars represent the means and standard errors of three replications. Asterisks (*, **) indicate 
significant differences according to Student’s t-test at p < 0.05 and 0.01, respectively. Scale bar = 2 cm 
in (A,B). 

At the seedling stage, salt stress repressed plant growth of both parents (Figure 2). 
ACC9 displayed better performance in terms of seedling growth than ZS97 (Figure 2A), 
but the plant growth of ACC9 was more affected by the stress of 10 dS m−1 NaCl than ZS97 
(Figure 2B). The differences between the two parents concerning seedling height (SH), 
shoot fresh weight (SFW), shoot dry weight (SDW), fresh leaf weight (FLW) and dead leaf 
weight (DLW) as well as their sensitivity indices are investigated. As shown in Figure 2 
and Table S1, ACC9 had significantly higher SH, SFW, and SDW than ZS97 under control. 
There was no significant difference in SH between the two parents under salt stress 
(Figure 2C). Conversely, ZS97 had significantly higher SFW and SDW than ACC9 under 
salt stress (Figure 2D). ACC9 revealed significantly higher FLW than ZS97 under salt-
stress conditions, while no significant DLW was observed under control conditions 
(Figure 2E). On the other hand, ZS97 had significantly higher FLW and lower DLW than 
ACC9 under stress conditions (Figure 2E). The sensitivity indices of the above five 
seedling traits in ACC9 were significantly higher than those in ZS97 (Figure 2F), 
suggesting that ACC9 may be less tolerant to salt stress than ZS97 in terms of seedling 
growth. 

Concerning the biochemical traits, ACC9 had higher Na+ content and Na+/K+ ratio 
(NaKR) under control conditions but lower K+ content than ZS97, while ACC9 still had 

Figure 1. Seed germination parameters of the parental lines, ACC9 and ZS97, under control (CK) and salt treatment (S).
Morphological differences of seed germination between ACC9 and ZS97 under control CK (A) and salt stress (B); (C) seed
germination percentage at 3d and 7d after imbibition, (D) germination index (GI), (E) mean germination time (MGT),
(F) sensitivity index. The error bars represent the means and standard errors of three replications. Asterisks (*, **) indicate
significant differences according to Student’s t-test at p < 0.05 and 0.01, respectively. Scale bar = 2 cm in (A,B).

At the seedling stage, salt stress repressed plant growth of both parents (Figure 2).
ACC9 displayed better performance in terms of seedling growth than ZS97 (Figure 2A),
but the plant growth of ACC9 was more affected by the stress of 10 dS m−1 NaCl than
ZS97 (Figure 2B). The differences between the two parents concerning seedling height
(SH), shoot fresh weight (SFW), shoot dry weight (SDW), fresh leaf weight (FLW) and
dead leaf weight (DLW) as well as their sensitivity indices are investigated. As shown in
Figure 2 and Table S1, ACC9 had significantly higher SH, SFW, and SDW than ZS97 under
control. There was no significant difference in SH between the two parents under salt stress
(Figure 2C). Conversely, ZS97 had significantly higher SFW and SDW than ACC9 under
salt stress (Figure 2D). ACC9 revealed significantly higher FLW than ZS97 under salt-stress
conditions, while no significant DLW was observed under control conditions (Figure 2E).
On the other hand, ZS97 had significantly higher FLW and lower DLW than ACC9 under
stress conditions (Figure 2E). The sensitivity indices of the above five seedling traits in
ACC9 were significantly higher than those in ZS97 (Figure 2F), suggesting that ACC9 may
be less tolerant to salt stress than ZS97 in terms of seedling growth.
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higher Na+ content and NaKR, but lower contents of K+ under salt stress than ZS97 (Table 
S1). 

 

Figure 2. Seedling growth and biomass at 14 d after salt treatment with 10 dS m−1. Morphological 
differences of seedlings between ACC9 and ZS97 under control CK (A) and salt stress (B); (C) 
seedling height (SH); (D) shoot fresh (SFW) and dry weight (SDW); (E) fresh leaf weight (FLW) and 
dead leaf weight (DLW); (F), sensitivity index for SH, SFW, SDW, FLW, and DLW under stress. 
Values are the means and standard errors of two replications. Asterisks (**) represent significant 
differences according to Student’s t-test at p < 0.01, respectively. Scale bar = 10 cm in (A,B). 

2.2. Phenotype Variation in BIL Population under Salt Stress 
The backcross inbred line (BIL) population exhibited wide variations in germination 

parameters (GR-3d, GR-7d, GI, GT) and its sensitivity indices, which showed nearly 
normal distributions (Figure S1). At the seedling stage, SH, SFW, SDW, DLW, Na+ content, 
and K+ content also showed normal distributions (Figure S2). This indicates the assayed 
traits as quantitative traits are governed by multiple genes. In addition, the frequency 
distribution of the SH sensitivity index (SHI) was continuous but with 2 peaks. 

Significant correlations were observed among many assayed traits at the germination 
and seedling stages: positive correlations among GR-3d, GR-7d, and GI under 18 dS m−1 
NaCl; negative correlation between GT and GR-3d, and between GT and GI (Figure S3). 
In addition, there were positive and significant correlations between SH, SFW, and SDW 
under salt stress (Figure S3). SFW was negatively correlated with DLW and DLSFR under 
salt stress. Concerning the correlation between physiological and morphological traits, 
Na+ content and NaKR had significantly positive correlations with DLW and DLSFR, but 
revealed significantly negative correlations with SFW (Figure S3). Notably, the seedling 
traits were not significantly correlated with the germination traits under salt stress. 

2.3. QTLs Identified for Germination Traits 

Figure 2. Seedling growth and biomass at 14 d after salt treatment with 10 dS m−1. Morphological
differences of seedlings between ACC9 and ZS97 under control CK (A) and salt stress (B); (C) seedling
height (SH); (D) shoot fresh (SFW) and dry weight (SDW); (E) fresh leaf weight (FLW) and dead
leaf weight (DLW); (F), sensitivity index for SH, SFW, SDW, FLW, and DLW under stress. Values are
the means and standard errors of two replications. Asterisks (**) represent significant differences
according to Student’s t-test at p < 0.01, respectively. Scale bar = 10 cm in (A,B).

Concerning the biochemical traits, ACC9 had higher Na+ content and Na+/K+ ratio
(NaKR) under control conditions but lower K+ content than ZS97, while ACC9 still had
higher Na+ content and NaKR, but lower contents of K+ under salt stress than ZS97
(Table S1).

2.2. Phenotype Variation in BIL Population under Salt Stress

The backcross inbred line (BIL) population exhibited wide variations in germination
parameters (GR-3d, GR-7d, GI, GT) and its sensitivity indices, which showed nearly normal
distributions (Figure S1). At the seedling stage, SH, SFW, SDW, DLW, Na+ content, and K+

content also showed normal distributions (Figure S2). This indicates the assayed traits as
quantitative traits are governed by multiple genes. In addition, the frequency distribution
of the SH sensitivity index (SHI) was continuous but with 2 peaks.

Significant correlations were observed among many assayed traits at the germination
and seedling stages: positive correlations among GR-3d, GR-7d, and GI under 18 dS m−1

NaCl; negative correlation between GT and GR-3d, and between GT and GI (Figure S3).
In addition, there were positive and significant correlations between SH, SFW, and SDW
under salt stress (Figure S3). SFW was negatively correlated with DLW and DLSFR under
salt stress. Concerning the correlation between physiological and morphological traits,
Na+ content and NaKR had significantly positive correlations with DLW and DLSFR, but
revealed significantly negative correlations with SFW (Figure S3). Notably, the seedling
traits were not significantly correlated with the germination traits under salt stress.
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2.3. QTLs Identified for Germination Traits

A total of 23 QTLs were identified for four germination traits, which distributed on
9 chromosomes (Table 1). For GR-3d, three QTLs—qGR-3d2, qGR-3d7, and qGR-3d12—
were identified under control conditions, and qGR-3d12 explained the highest phenotypic
variation (PVE) (9.5%) of germination percentage at 3d after seed imbibition (Table 1).
For GR-7d, seven QTLs were identified, of which six loci had ACC9 alleles increasing
germination percentage. Under salt stress, two QTLs were detected for the germination
parameters; of them, qGR-3d12 explained the largest phenotypic variation (24.5%).

Table 1. Putative QTLs identified for salinity tolerance in the BIL population at the germination stage.

Treat Traits a QTL Chr Bin b
Left

Marker
(Mb)

Right
Marker

(Mb)

Bin Size
(Mb) Add c LOD d PVE (%) e

Control GR-3d qGR-3d2 2 B02C46 4.26 5.43 1.17 −0.13 5.6 6.4
qGR-3d7 7 B07C21 16.27 22.84 6.56 −0.05 2.7 1.9
qGR-3d12 12 B12C7 2.98 6.62 3.65 −0.14 12.9 9.5

GR-7d qGR-7d4.1 4 B04C67 10.72 11.07 0.34 −0.09 3.6 5.8
qGR-7d4.2 4 B04C134 16.33 16.41 0.08 −0.10 4.1 5.6
qGR-7d4.3 4 B04C254 17.14 17.17 0.03 −0.09 4.3 5.7
qGR-7d4.4 4 B04C348 18.73 18.83 0.10 −0.07 9.1 5.1
qGR-7d10 10 B10C43 0.61 13.89 13.28 −0.10 7.3 5.8
qGR-7d11 11 B11C9 2.29 7.39 5.10 −0.09 2.8 5.2
qGR-7d12 12 B12C45 19.54 20.38 0.83 0.05 5.2 2.6

GT qGT1.1 1 B01C105 11.93 11.96 0.03 0.21 5.4 18.8
qGT1.2 1 B01C236 33.47 33.59 0.12 0.21 3.0 13.1

Stress GR-3d qGR-3d4 4 B04C372 24.68 27.20 2.51 0.09 2.7 6.0
qGR-3d12 12 B12C6 2.98 6.62 3.65 0.20 7.3 24.5

GR-7d qGR-7d4.5 4 B04C302 18.27 18.67 0.40 −0.22 3.3 5.1
qGR-7d6 6 B06C46 4.62 5.20 0.58 −0.25 7.5 5.1

qGR-7d10 10 B10C43 0.61 13.89 13.28 −0.22 3.3 5.1
GI qGI11 11 B11C55 19.02 19.10 0.08 −1.95 2.6 11.5
GT qGT4 4 B04C353 19.46 19.97 0.51 −0.34 6.1 15.5

qGT9 9 B09C180 8.11 8.13 0.02 −0.24 4.1 10.8
Index GRI-3d qGRI-3d12 12 B12C6 2.98 6.62 3.65 −12.28 3.3 11.5

GRI-7d qGRI-7d10 10 B10C43 0.61 13.89 13.28 7.09 3.8 4.9
GTI qGTI4 4 B04C183 16.41 16.72 0.31 −19.00 3.3 9.0

Putative QTLs at germination stage: a, GR-3d and GR-7d, germinated seed percentage at 3rd and 7th day after imbibition, respectively; GI
germination index; GT mean germination time; GRI-3d, GRI-7d, GII and GTI represent the sensitivity index of GR-3d, GR-7d, GI, and GT,
respectively; b, location of quantitative trait loci (QTLs) on chromosome; c, additive effect of the ACC9 allele; the negative value indicating
the ACC9 allele decreased the trait; d, logarithm of odds; and e, the phenotypic variance explained by each QTL.

Regarding germination index (GI), no QTL was identified under control conditions.
One QTL, qGI11, was identified under salt stress (Table 1), explaining 11.5% of PVE. The
additive effect of ZS97 allele increased GI. For GT, two QTLs, qGT1.1 and qGT1.2, were
detected under control, and two QTLs, qGT4 and qGT9, were identified under salt stress
(Table 1). The QTL qGT1.1 explained 18.8% of PVE under control conditions, followed by
qGT4 (15.5%) under salt stress. The additive effect of the ACC9 alleles decreased GT at
both loci. For the sensitivity index, three QTLs, qGRI-3d12, qGRI-7d10, and qGTI4, were
identified, with the decreased effects from the ACC9 alleles at qGRI-3d12 and qMGTI4
(Table 1).

2.4. QTLs Identified for Morphological Traits at the Seedling Stages

QTLs detected for SH, SFW, SDW, DLW, DLSFR, and their sensitivity indices are
shown in Table 2. One QTL, qSH1, was identified as a major locus for seedling height under
both control and salt-stress conditions, explaining 61.9% of PVE under control and 57.1%
of PVE under salt-stress conditions. Concerning the sensitivity index, two QTLs, qSHI1
and qSHI7, were mapped on chromosome 1 and 7, respectively. The additive effect of the
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ACC9 alleles increased seedling height under control and stress conditions, and decreased
its sensitivity index (Table 2).

Table 2. Putative QTLs identified for salinity tolerance in the BIL population at the seedling stage.

Treats Traits a QTL Chr Bin b Left
Marker

Right
Marker Bin Size Add c LOD d PVE (%) e

Control SH qSH1 1 B01C254 36.09 36.28 0.19 7.78 21.4 61.9
SFW qSFW1.1 1 B01C254 36.09 36.28 0.19 0.17 11.7 34.8

qSFW4 4 B04C322 18.73 8.83 0.10 0.09 3.0 7.2
DLW qDLW1 1 B01C254 36.09 36.28 0.19 0.01 6.5 11.5

qDLW8.1 8 B08C30 1.94 2.20 0.26 −0.01 8.8 16.4
qDLW8.2 8 B08C40 6.17 6.54 0.37 0.01 4.2 7.0

Na+ qNa 1 1 B01C273 38.50 38.71 0.21 0.40 3.1 3.6
K+ qK1 1 B01C73 7.73 8.26 0.53 1.34 3.1 10.3

qK10 10 B10C43 0.61 13.89 13.28 1.61 3.8 13.1
Na+/K+ qNaKR1 1 B01C269 37.81 37.95 0.13 −0.02 3.1 9.8

qNaKR11 11 B11C92 25.75 25.86 0.11 −0.02 5.8 19.1
Stress SH qSH1 1 B0C254 36.09 36.28 0.19 5.08 18.4 57.1

SFW qSFW1.2 1 B01C236 34.49 35.50 1.01 0.06 3.2 15.2
SDW qSDW1 1 B01C254 36.09 36.28 0.19 0.02 7.3 28.6
DLW qDLW2 2 B02C61 4.26 5.43 1.17 0.02 3.5 10.0

qDLW6 6 B06C161 25.32 27.64 2.32 0.02 4.4 10.2
qDLW9 9 B09C28 0.66 0.68 0.01 0.01 2.6 2.0

DLSFR qDLSFR2 2 B02C61 4.26 5.43 1.17 0.08 6.3 4.3
qDLSFR4.1 4 B04C175 16.41 16.72 0.31 0.09 3.3 4.1
qDLSFR4.2 4 B04C302 18.27 18.67 0.40 0.09 4.0 4.0
qDLSFR6.1 6 B06C49 4.62 5.20 0.58 0.09 3.5 3.3
qDLSFR6.2 6 B06C138 25.32 27.64 2.32 0.09 5.7 4.2
qDLSFR9 9 B09C90 2.40 2.53 0.13 0.03 2.7 0.8

qDLSFR10 10 B10C43 0.61 13.89 13.28 0.09 5.0 4.2
Na+ qNa2.1 2 B02C22 4.15 4.26 0.11 −4.37 3.2 5.3

qNa2.2 2 B02C61 4.26 5.43 1.17 −6.80 3.2 17.8
K+ qK2 2 B02C180 19.80 20.15 0.35 1.95 8.0 26.1

qK6 6 B06C0 0.11 0.15 0.04 1.15 3.4 9.3
qK11 11 B11C92 25.75 2.59 0.11 1.23 3.4 9.6

Na+/K+ qNaKR2.1 2 B02C20 2.82 3.27 0.44 −0.23 4.2 10.4
qNaKR2.2 2 B02C110 5.43 5.56 0.13 −0.23 6.4 17.4

Index SHI qSHI1 1 B01C254 36.09 36.28 0.19 −3.42 6.1 16.4
qSHI7 7 B07C3 2.48 8.21 5.73 −3.10 3.0 8.0

DLWI qDLWI2 2 B02C61 4.26 5.43 1.17 −0.94 5.4 2.8
qDLWI4.1 4 B04C175 16.41 16.72 0.31 −0.94 4.9 2.7
qDLWI4.2 4 B04C302 18.27 18.67 0.40 −0.96 6.7 4.0
qDLWI6.1 6 B06C48 4.62 5.20 0.58 −0.99 2.8 2.6
qDLWI6.2 6 B06C143 25.32 27.64 2.32 −0.95 5.1 2.7
qDLWI9 9 B09C105 3.25 3.30 0.05 −0.37 3.2 0.6

qDLWI10 10 B10C43 0.61 13.89 13.28 −0.95 5.4 2.8
DLSFRI qDLSFRI2 2 B02C61 4.26 5.43 1.17 −2.44 6.0 5.3

qDLSFRI4.1 4 B04C175 16.41 16.72 0.31 −2.44 3.9 5.2
qDLSFRI4.2 4 B04C302 18.27 18.67 0.40 −2.48 7.3 5.1
qDLSFRI6 6 B06C140 25.32 27.64 2.32 −2.48 5.1 5.3
qDLSFRI9 9 B09C100 2.71 2.97 0.26 −1.03 3.2 1.2

qDLSFRI10 10 B10C43 0.61 13.89 13.28 −2.47 4.3 5.2

Putative QTLs at seedling stage: a, SH, seedling height; SFW, shoot fresh weight; SDW, shoot dry weight; DLW, dead leaf weight; DLSFR,
dead leaf to shoot fresh weight ratio; Na+, Na+ content in shoot; K+, K+ content in shoot; SHI, DLWI, and DLSFRI represent the sensitivity
index of SH, DLW, and DLSFR, respectively; b, location of QTLs on chromosome; c, additive effect of the ACC9 allele; d, logarithm of odds;
and e, the phenotypic variance explained by each QTL.

One QTL, qSDW1, was detected for SDW and explained 28.6% of PVE under salt
stress (Table 2). Three QTLs, qDLW1, qDLW8.1 and qDLW8.2, were detected for DLW under
control conditions. Moreover, three QTLs, qDLW2, qDLW6 and qDLW9, were identified
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for DLW under salt stress. Of these, the alleles from ACC9 at all loci increased dead leaf
weight. Seven QTLs, qDLWI2, qDLWI4.1, qDLWI4.2, qDLWI6.1, qDLWI6.2, qDLWI9, and
qDLWI10, were detected for DLW sensitivity index (Table 2). The ACC9 alleles reduced
dead leaf weight index at all detected QTLs.

Concerning QTLs for Na+ content, one QTL, qNa1, was mapped on chromosome
1 under control (Table 2). Under salt stress, two QTLs, qNa2.1 and qNa2.2, were detected on
chromosome 2, respectively with 5.3% and 17.8% of PVE. The additive effect of the ACC9
alleles decreased Na+ contents under both control and stress conditions. For K+ content,
qK1 and qK10 were identified under control conditions, contributing 10.3% and 13.1% of
PVE, respectively. Under salt stress, three QTLs, qK2, qK6 and qK11, were detected with a
range of 9.3% to 26.1% of PVE. The ACC9 alleles increased the K+ concentration of shoots.
For Na+/K+ ratio, two QTLs (qNaKR1 and qNaKR11) under control conditions and two
QTLs (qNaKR2.1 and qNaKR2.2) were detected under salt stress. The largest phenotypic
variance (PVE = 19.1%) was explained by qNaKR11 under control, followed by qNaKR2.2
(17.8%) under salt stress conditions. The ACC9 alleles at these four detected loci decreased
the Na+/K+ ratio.

2.5. Common QTLs Identified under Salt Stress

Several QTLs were identified with PVE ≥10% for the assayed traits under salt stress
and colocated in the same or overlapping regions (Figure 3). For example, six QTLs, such
as qSH1, qSDW1, and qSHI1, were located in a small bin (B01C254, 190 kb) on chromosome
1. Five QTLs, qDLW2, qDLSFR2, qNa+2.2, qDLWI2, and qDLSFRI2, were overlapped on
the bin B02C61 in chromosome 2. Two common QTLs, qGR-3d12 and qGRI-3d12, were
located on B12C6 on chromosome 12. In addition, three QTLs—each with minor effect—
qDLSFR4.1, qDLWI4.1, and qDLSFRI4.1, were colocalized in B04C175, whose size is 300 kb;
and four QTLs, qGR-7d4.5, qDLWI4.2, qDLSFR4.2, and qDLSFRI4.2, were mapped on the
same bin B04C302 (400 kb) (Tables 1 and 2). There are two common QTL clusters located
on chromosome 6. One cluster includes three QTLs, qGR-7d6, qDLSFR6.1, and qDLWI6.1;
another cluster includes four QTLs, qDLW6, qDLSFR6.2, qDLWI6.2, and qDLSFRI6. Four
QTLs, qGR-7d10, qGRI-7d10, qDLSFR10, and qDLWI10 were overlapped on B10C43 on
chromosome 10 (Tables 1 and 2). These QTLs may be the genetic bases of significant
correlations between GR, GI and GT at the germination stage, and among SH, SFW, SDW,
DLW, DLSFR, Na+ content, K+ content and Na+/K+ ratio at the seedling stage.
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3. Discussion

Previous studies have reported that the sensitivity of rice to salinity varies depending
on different growth stages. Salt stress hinders germination rate, leading to inferior plant
growth and reduced yield production [24]. Therefore, salinity tolerance of rice at the
germination and seedling stages is an extremely important parameter in the improvement
of rice productivity under salt stress, particularly in the regions where the cultivation mainly
depends on direct-seeding systems [25]. Developing rice varieties of salinity tolerance at
early growth stages is the utmost important step in rice breeding programs.

Our results showed that germination parameters were extremely affected by salt stress
(18 dS m−1 NaCl) (Figure 1). They are consistent with previous reports [26]. Importantly,
ACC9 was more tolerant to salt stress than ZS97 at the germination stage. The present
results are in agreement with a previous study that salinity reduced the germination rate of
ZS97. The reduction of germination rate was found to be due to a decrease in α-Amylase
gene activity, which affects the bioactive GA in the germinating seeds [27]. Five major
QTLs were identified, each explaining 10% and more of PVE in the germination characters
in the BIL population. On the other hand, ZS97 showed salinity tolerance compared with
ACC9 at the seedling stage (Figure 2). Eight major QTLs were identified for seedling
growth and biomass. It is unexpected that there are no significant correlations between the
germination parameters and the seedling biomass under salt-stress conditions (Figure S3).
In line with this, the common loci for the germination and seedling traits were hardly
identified with the BIL population under the stress conditions (Figure 3). This insignificant
correlation between the germination parameters and seedling biomass under salt stress is
consistent with the previous study [18]. Therefore, ZS97 would be used as an elite tolerance
germplasm for the improvement in rice salt tolerance at the seedling stage and ACC9 as a
tolerance source for germination ability.

Mapping of QTLs associated with salt tolerance is considered the basic step in marker-
assisted breeding of salt-tolerance varieties. In the current study, the BIL population
derived from the Africa rice ACC9 and indica cultivar ZS97 was used to identify the QTLs
associated with salt tolerance at early growth stages. Among 23 QTLs identified at the
germination stage, nine loci with ACC9 alleles increased salt tolerance; among 46 QTLs
detected at the seedling stage, 33 loci with ACC9 alleles enhanced salt tolerance. Africa
rice ACC9 was reported to be a suitable donor for many desirable traits such as drought
tolerance and early vigor characteristics [28,29]. Moreover, several major QTLs (with PVE
≥ 10%) for different traits were found to be colocalized in the same or overlapping regions
(Figure 3), indicating there is the same gene or linked genes having a pleiotropic effect
on these multiple traits. For example, three loci (qSH1, qSDW1 and qSHI1) colocalized
in B01C254; five loci (qDLW2, qNa+2.2, qDLSFR2, qDLWI2, and qDLSFRI2) overlapped
in B02C61. These colocalized QTLs for various traits could be very beneficial for a rice
breeding program via marker-assisted selection to improve salt tolerance.

Some loci in the current study were identified in small bins (or regions) in the BIL
population and localized within or near previously reported genes or loci associated with
salt tolerance in rice (Figure 3; Tables 1 and 2), which allowed naming of candidate genes
at the given bin using the available gene annotation database (http://rice.plantbiology.
msu.edu/). For example, six major loci colocalized in B01C254 within a 190-kb size
encompassing two known genes: the green revolution gene sd1 [30] and SNAC6 [31]. As
qSH1 explained the highest phenotypic variation in seedling height under salt stresses, the
gene sd1 may be the most likely candidate for qSH1. qNaKR2.1 was found near OsPgk2
(Figure 3), which was extremely induced by salt stress in a salt-tolerance variety Pokkali [32];
qGT4 was found in proximity to OsBADH1, which could enhance rice adaptability to
salt stress [33]. In addition, qDLW6 for dead leaf weight was located within the same
region of previously identified qDSW6.2 [34]. The qDLW6 region harbors a candidate
gene OsSIDP366, which was reported to be a positive regulator responding to drought
and salt stress in rice [35]. qGR-3d12 and GRI-3d12 are located in B12C6 (Figure 3), where
CYP94C2b (LOC_Os12g05440) was reported to enhance salt tolerance of rice [36]. Thus it

http://rice.plantbiology.msu.edu/
http://rice.plantbiology.msu.edu/


Plants 2021, 10, 428 9 of 12

may be a possible candidate gene. Among these loci of interest, three loci (qSHI1, qGT4 and
qGRI-3d12) with salt tolerance alleles from ACC9 could be interpreted as promising ones
for the improvement in salt tolerance of Asian cultivated rice. These data indicate that the
identified QTLs with possible candidate genes could be useful for developing varieties of
salinity tolerance at early seedling stages in rice breeding programs.

4. Materials and Methods
4.1. Plant Materials

The population used at the present study is a backcross inbred line (BIL) produced
by single-seed descend method from a backcross between an Africa landrace IRGC96717
(ACC9) as donor and an indica cultivar Zhenshan 97 (ZS97) as recurrent parent. The first
backcross (BC1F1) had been self-crossed for 11 generations (BC1F11) (Figure S4). The BIL
population was grown at the experimental field of Huazhong Agricultural University in
2018 from May to September at Wuhan (30.48◦ N, 114.2◦ E), China. The seeds of each line
were harvested at 35 days after heading and equilibrated in a storage chamber with low
relative humidity (18% RH) for further analyses.

4.2. Germination Evaluation of the Parents and BIL Population

Germination tests under salt conditions were conducted using 50 healthy seeds per
sample in a petri plate containing three layers of filter paper moistened with 15 mL of
18 dS m−1 NaCl solutions [26,37]. As a control, a germination test was carried out using
15 mL distilled water instead of the saline solution. Germination tests under both the saline
and control conditions were kept in a growth chamber with 12 h light/12 h dark circle,
25 ± 2 ◦C, and 60% RH. The germinated seeds were recorded every 24 h for seven days.
The germination experiment was repeated three times for each sample of the parents and
BILs. Germination rate (GR), germination index (GI) and mean germination time (GT)
were calculated as described previously [34].

4.3. Evaluation of Seedling Performance of the Parents and BIL Population

Thirty uniformly germinated seeds were transferred to planting plates filled with
moist soil. The seedlings at 14d after seed sowing were then transplanted into hydroponics
solution [38] and grown in a greenhouse, where room temperature ranged from 28 to 30 ◦C
during the day and 18 to 23 ◦C during the night. Relative humidity was set at 85%, and
light set at 671 µmol·m−2·S−1 with a minimum of 100 and a maximum 1400 µmol·m−2·s−1

during the day [25].
For evaluation of salt tolerance, 14 day-old seedlings were treated two weeks with

salinized nutrient solution with the level of NaCl (10 dS m−1) for BIL lines. The nutrient
solutions were replenished every 3d. The pH range was fixed from 5.00 to 5.50. Seedling
performances were recorded after 14d of NaCl application. Five traits, seedling height (SH),
shoot fresh weight (SFW), shoot dry weight (SDW), dead leaf weight (DLW) and dead leaf
to shoot fresh weight ratio (DLSFR), were determined as described previously [34]. All
collected samples were dried immediately at 70 ◦C for 72 h using a forced-air oven [25]. The
relative values of the aforementioned traits (the sensitivity index) assayed at the seedling
stage between the salt stress and control were calculated according to the formula [39]
(Equation (1)):

SI = (control value − treatment)/ control value × 100 (1)

Na+ and K+ contents in dry shoot samples were measured according to the method
reported previously [40]. Approximately 1 g of each sample was put into a 50 mL centrifuge
tube with 20 mL of 1N HCL for digestion and kept the sample in a water bath at 85 ◦C for
30 min with shaking manually each 10 m interval. The homogenized samples were filtered
using Whatman papers and kept at room temperature overnight. Na+ and K+ contents
were measured using a FP6431 flame photometer (Shanghai Instrument, China) as reported
previously [40].
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4.4. Linkage Map Construction and QTL Analysis

The CTAB method was applied to extract DNA from young seedling leaves [41]. A
genotyping-by-sequencing strategy was used to analyze the genotypes of BIL population
with a minor modification [42]. Briefly, two restriction enzymes, EcoRI and MspI, were
used to digest the genome DNA into fragments. Single-nucleotide polymorphism (SNP)
calling and real site frequency spectrum (realSFS) were performed based on estimation of
site frequency. A Practical Extraction and Report Language (PERL) was used for filtration
SNPs as well as indels taking into consideration of the following criteria: the missing data
greater than 50% and allele frequency less than 5% in the population. According to SNP
genotyping, 714 bin markers covered the rice genome were used for constructing molecular
linkage map. Bin name and order on different chromosomes of ACC9/ZS97 population
are presented in the Supplemental Table S2. IciMapping software with inclusive composite
interval mapping method was used for QTL analysis [43]. The existence of a QTL with an
additive effect was declared by the logarithm of odds (LOD) threshold of 2.5. Correlations
of traits, mean and standard error were implemented using the software SPSS version 23
(SPSS Inc., Chicago, IL, USA).

5. Conclusions

Salinity is one of the most important abiotic stresses that influence the global produc-
tion of rice. Salt tolerance is a quantitative character that depends upon the cumulative
action of many genes. In this study, germination parameters and seedling growth were
used to evaluate salt tolerance of the BILs derived from the Africa rice ACC9 and indica
cultivar ZS97. A total of 23 and 46 QTLs were identified for the assayed traits associated
with salt tolerance at the germination and seedling stages, respectively. At the germination
stage, three major QTLs, qGT4, qGR-3d12, and qGRI-3d12, explained more than 15% of the
phenotypic variance on corresponding traits with ACC9 alleles enhancing germination
parameters under salt stress. At the seedling stage, major common QTL regions (e.g., qSH1,
qSDW1, and qSHI1) were identified for multiple traits, with the ACC9 alleles showing
increased seedling growth under salt stress. In addition, at least three loci were identified
in small bins (or regions) and localized in or nearby previously reported genes associated
with salt stress. These data of the promising loci with a possible candidate gene will be
useful for improving rice with salt tolerance through the genomic breeding approaches.

Supplementary Materials: The following are available online at https://www.mdpi.com/2223-774
7/10/3/428/s1, Figure S1: Frequency distribution of germination parameters in the BIL population
derived from ACC9 x ZS97 under salt stress with 18 dS m−1 NaCl. Figure S2: Frequency distribution
of seedling traits in the BIL population derived from ACC9 x ZS97 under 10 dS m−1 NaCl salt stress.
Figure S3: Correlation of morpho–physiological traits examined in the BIL population derived from
ACC9 x ZS97 under salt stress at the germination and seedling stages. Figure S4: Construction
procedure of the ACC9/ZS97 BIL population. Table S1: Morphological and physiological traits of
ACC9 and ZS97 and BILs under control and salt stress conditions. Table S2: Bin information of
ACC9/ZS97 BIL population.
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