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A B S T R A C T   

Circulating tumor cells (CTCs) have emerged as liquid biopsy biomarker providing non-invasive assessment of 
cancer progression and biology. We investigated whether longitudinal analysis of CTCs could monitor disease 
progression, response to chemotherapy, and survival in patients with unresectable pancreatic ductal adenocar-
cinoma (PDAC). A total of 52 patients with PDAC were prospectively enrolled in this study. Peripheral blood 
samples were serially collected at the time of diagnosis and after chemotherapy with clinical assessments. CTCs 
were isolated through a centrifugal microfluidic disc, enumerated with immunostaining against Epithelial cell 
adhesion molecule (EpCAM), Cytokeratin (CK), Plectin-1 and CD45, and identified by an automated imaging 
system. One or more CTCs were detected in 84.62% patients with unresectable PDAC at the time of diagnosis. 
CTC numbers were not statistically different across tumor sizes, location and metastatic sites. The absolute 
number of CTCs after chemotherapy was inversely related to overall survival (OS), and the decreased number of 
CTCs after chemotherapy was significantly associated with longer OS in patients with PDAC. Identifying CTCs 
and monitoring CTC changes after chemotherapy could be a useful prognostic marker for survival in patients 
with unresectable PDACs.   

Introduction 

Pancreatic ductal adenocarcinoma (PDAC) is the most common 
cancer with lethal effects, and the overwhelming majority of patients 
with PDAC have a locally advanced or distant metastatic disease 
(80–85%). Despite many efforts to improve survival, it is still a lethal 
disease with a 5-year survival rate of less than 5% and a median survival 
of less than 1 year [1]. The reasons for such poor survival are the lack of 
symptoms and effective ways to screen for pancreatic cancer, which 
result in a delayed detection of cancer [2]. Carbohydrate antigen (CA) 

19–9 is, so far, the only biomarker with somewhat clinical usefulness 
[3], and is used for therapeutic monitoring and early detection of 
recurrent disease after treatment in pancreatic cancer [4]. However, it is 
not a specific biomarker to pancreatic cancer; CA19–9 level is also 
elevated in other conditions like cholestasis, lung diseases and other 
malignancy as well. In addition, approximately 10% of patients with 
PDACs who are negative for Lewis antigen a or b cannot synthesize 
CA19–9 [5]. Still, there are clinical unmet needs for biomarker to 
monitor and to predict its prognosis in unresectable PDACs, especially. 
Several studies have reported the potential clinical utility of liquid 
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biopsy including circulating tumor cells (CTCs), circulating tumor DNA 
(ctDNA) and circulating tumor exosomes for monitoring disease pro-
gression and for detecting molecular genetic changes during the courses 
of treatment [6,7]. The concentration of CTCs, ctDNA and exosomes in 
patient-derived liquid samples reflect differences in total tumor burden, 
and diversity in cell populations [8]. Thus, technologies detecting 
minute amounts of CTCs and ctDNA with high sensitivity and selectivity 
are expected to provide real-time monitoring of tumor evolution and 
therapeutic efficacy, with the potential for improved cancer diagnosis 
and treatment [9,10]. 

In liquid biopsy, CTCs are rare, viable, motile and tumor-derived 
epithelial cells identified in the peripheral blood of patients with can-
cer [11]. Primary and metastatic tumor lesion release subsets of CTCs 
into the bloodstream, and invasive CTCs spread dependent on chemo-
kine gradients [8]. The ability to detect and analyze these CTCs in PDAC 
may give us insights into its aggressive biology [12,13]. Several studies 
have focused on identifying CTCs in the blood for diagnosis, staging and 
prognostication for various cancers [14,15]. There have been studies in 
other tumor models, such as lung, breast, and prostate cancers sug-
gesting that the presence of CTCs in the peripheral circulation of patients 
with metastatic carcinoma is associated with shorter survival [16–18]. 
Unfortunately, there are only a few studies about the detection of CTCs 
in PDAC [19,20]. 

Multiple strategies for CTC isolation and identification have been 
reported [10,11]; however, there have been emerging problems due to 
the extreme rarity, short lifetime and heterogeneity of CTCs. For 
example, antigen-dependent capture using an epithelial marker, 
Epithelial cell adhesion molecule (EpCAM), is a common isolation 
method, which can overlook CTCs undergoing an 
epithelial-to-mesenchymal transition (EMT) [20]. Therefore, we addi-
tionally utilised a PDAC-specific marker, Plectin-1, to detect CTCs from 
patients with PDAC. Plectin is an intermediate filament and important 
crosslinking element of the cytoskeleton, and modulates protein kinase 
C (PKC) signaling and mitogen-activated protein (MAP) kinase involved 
in cellular stress responses and migration in cancer [21,22]. Plectin-1 is 
known as a novel biomarker for primary and metastatic PDAC [23,24]. It 
was identified in 100% of invasive PDAC tumor and 60% of pre-invasive 
Pancreatic intraepithelial neoplasia (PanIN) III lesions and was retained 
in metastatic deposits. Moreover, Plectin-1 distinguished PDAC from 
benign inflammatory diseases, like chronic pancreatitis [23]. Recently, 
we captured CTCs from portal vein blood and peripheral blood of pa-
tients with resectable pancreatic cancer by using Plectin-1 and EpCAM 
antibodies. A single Plectin-1+ CTC was picked and confirmed to have 
KRAS mutation [25]. Here, we examined whether Plectin-1 combined 
with EpCAM could improve CTC detection and the Plectin-1positive 
PDAC CTCs can be used as prognostic biomarkers. The aims of this 
study are (i) to enumerate CTCs using EpCAM and Plectin-1 antibodies 
in the peripheral circulation of patients with unresectable PDACs and 
(ii) to investigate the clinical significance of CTC profiles correlated with 
clinical outcomes, such as treatment response, overall survival (OS) and 
site of metastasis in PDAC. 

Materials and methods 

Study patients and blood collection 

Fifty-two patients with PDAC diagnosed between January and June 
2019 at Samsung Medical Center (SMC) were prospectively enrolled 
(ClinicalTrials.gov Identifier No. NCT02934984) and followed up until 
the end of 2020. Clinical Records Form (CRF) was prospectively 
collected and the following medical information was contained: age, 
sex, staging (The 8th edition American Joint Committee on Cancer 
(AJCC)), body mass index, Eastern Cooperative Oncology Group (ECOG) 
performance status, comorbidity, serum levels of Carcinoembryonic 
antigen (CEA), carbohydrate antigen (CA) 19–9, chemotherapy 
regimen, clinical response and survival data. This study was conducted 

under the principles of the Declaration of Helsinki. The study protocol 
was approved by the institutional review board (IRB) of SMC. All pa-
tients provided written informed consent, and all specimens were 
collected according to IRB regulations and approval (IRB No. 
2018–11–080). Blood was taken from the peripheral vein (cephalic vein) 
and collected into a Cell-Free DNA BCT® CE tube (Streck, Omaha, NE, 
USA). It was processed within 3–4 h for CTC enrichment and 
enumeration. 

Microfluidic approach to isolate and enumerate CTCs 

The CD-PRIMETM system of the CD-CTC disposable disc and CD-CTC 
Enrichment kit (Clinomics, Inc., Ulsan, Korea) was used to isolate CTCs 
efficiently from millions of other blood cells in whole blood samples. 
This CTC enrichment system called ‘Fluid-Assisted Separation Technol-
ogy (FAST) disc’ is based on centrifugal microfluidic separation [26,27] 
(https://www.youtube.com/watch?v=OgJ8eztIYQA). It is based on the 
size-selective, clog-free CTC isolation through a polyethylene membrane 
(8-μm pore size) filled with a stably-held liquid throughout the filtration 
process. Briefly, the sample-loading chamber, filter zone and fluid as-
sistant chamber were filled with a 1% bovine serum albumin (BSA) 
solution and rotated at a spin speed of 600 rpm for washing. Then, 3 ml 
of whole blood was loaded to the sample loading chamber and rotated at 
600 rpm. After washing with the 1% BSA solution 3 times, CTCs 
captured on the disc membrane were fixed with 4% paraformaldehyde 
for 15 min at room temperature for the next CTC staining and 
enumeration processes. 

Immunostaining and enumeration of CTCs 

CTCs fixed on the membrane were immunostained using the CD-CTC 
cell enumeration kit (Clinomics Inc.) combined with Plectin-1 antibody 
to identify the number of isolated CTCs. The cells were permeabilised 
with 0.1% Triton x-100 in phosphate buffered saline (PBS) for 5 min and 
blocked with IgG (20 g/ml) or goat serum for 20 min after washing with 
PBS. Anti-Plectin-1 (1:60, Cell Signaling Technology (CST), Danvers, 
MA, USA) solution was applied at 4 ◦C overnight. The next day, cells 
were additionally stained with Alexa 647-conjugated anti-rabbit IgG 
(1:500, CST), FITC-conjugated anti-CK (CK3–6H5, 1:100), Alexa 488- 
conjugated anti-pan CK (AE1/AE3, 1:100), FITC-conjugated anti- 
EpCAM (1:400) and Alexa 594-conjugated anti-CD45 (1:100). All anti-
bodies, including pan-CK, CK, EpCAM and CD45 antibodies, were 
included in the cell enumeration kit. Considering the possibility that 
pan-CK antibodies may not detect all CKs, we mixed another CK anti-
body to detect different subsets of CTCs [28]. CTCs were identified by 
using an imaging system, consisting of staining with 4.6-diamidino-2--
pheylindole (DAPI) for DNA content, fluorochrome-conjugated 
anti-CD45 for haematologic cells and anti-Plectin-1 or anti-EpCAM/CK 
for PDAC CTC cells. Then number of CTCs/ml was determined via 
comprehensive image analysis, scanning the entire membrane (Bioview 
CCBS system, BioView, Ltd., Nes Ziona, Israel) and identifying CTCs 
based on cell size, morphology and immunofluorescence staining. Total 
number of cells was counted by DAPI staining; white blood cells (WBCs) 
were identified by CD45 staining and capture of PDAC CTCs was 
confirmed by immunofluorescence staining profiles: CD45 (WBC 
marker) negative and EpCAM/CK (epithelial marker) or Plectin-1 
(PDAC-specific marker) positive cells. PDAC CTCs were defined as 
EpCAM/CK+CD45− DAPI+ cells, Plectin-1+CD45− DAPI+ cells and 
EpCAM/CK+Plectin-1+CD45− DAPI+ cells. Thirty blood samples (3 ml 
each) of healthy volunteers were analysed on the CTC discs to validate 
the specificity and sensitivity. A count of one or more CTCs per ml of 
blood was defined as positive [25–27]. We defined true positive (TP), 
true negative (TN), false positive (FP) and false negative (FN) as follows; 
TP= PDAC Patients with one or more CTC detection/total PDAC pa-
tients, TN= Healthy volunteer without CTC detection/total healthy 
volunteer, FN= PDAC Patients without CTC detection/total PDAC 
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patients, FP= Healthy volunteer with one or more CTC detection/total 
healthy volunteer. Sensitivity and specificity for CTC detection were 
defined as follows; Sensitivity=TP/(TP+FN), Specificity=TN/(TN+FP), 
PPV=TP/(TP+FP), NPV=TN/(TN+FN). 

Confirmation of KRAS mutation in captured CTCs 

Other ten patients diagnosed with PDAC were randomly selected to 
screen KRAS mutation in PDAC CTCs. After CTC enrichment from the 
blood of PDAC patients, DNA was recovered from the captured CTCs on 
the FAST disc membrane with QIAamp DNA Micro Kit (Qiagen, Ger-
mantown, MD, USA). Mutant KRAS was detected by Droplet Digital 
polymerase chain reaction (ddPCR) to identify three somatic mutations 
located in codons 12 (p.Gly12Asp (G12D), p.Gly12Arg (G12R), p. 
Gly12Val (G12V). ddPCR was performed using 2X ddPCR Supermix 
(Bio-Rad, Hercules, CA, USA) for KRAS probes (KRAS wild-type (WT) 5′- 
HEX-AGTTGGAGCTGGTGGCGTA-BHQ1–3′; KRAS mutant G12D 5′- 
FAM-AGTTGGAGCTGATGGCGTAG-BHQ1–3′; KRAS mutant G12V 5′- 
FAM-AGTTGGAGCTGTTGGCGTAG-BHQ1–3′; KRAS mutant G12R 5′- 
FAM-AGTTGGAGCTCGTGGCGTAG-BHQ1–3′) by QX200 Droplet Digital 
PCR System (Bio-Rad, Hercules, CA, USA). Data analyses were per-
formed as recommended by the manufacturer using the QuantaSoft 
Software version 1.7.4. (Bio-Rad). 

Statistics 

Non-parametric tests were used throughout the study. The difference 
of CTC numbers was analysed by an unpaired/paired t-test or one-way 
Analysis of variance (ANOVA) test. OS was analysed by the 
Kaplan–Meier method with the use of one-sided log-rank statistics. P 

values < 0.05 were considered statistically significant. Statistical anal-
ysis was carried out using SPSS for Windows (version 17.0, SPSS Inc. 
Chicago, IL, USA) and GraphPad Prism 8.0 (GraphPad Software Inc., La 
Jolla, San Jose, CA, USA). 

Results 

Enrichment and identification of CTCs in patients with PDAC 

The expression of EpCAM, CK and Plectin-1 was first confirmed in 
PDAC cell lines to determine if these antigens would be suitable for 
enumeration of PDAC CTCs. EpCAM, CK and Plectin-1 were expressed in 
most PDAC cells but not in WBCs (Supplementary Figs. 1–3). PDAC 
CTCs were enriched using ‘FAST disc’, a centrifugal microfluidic 
tangential flow filtration device, which allowed rapid, label-free isola-
tion of CTCs from whole blood without sample pre-treatment [26]. First, 
the membrane of FAST disc was examined by Hematoxylin and Eosin 
(H&E) staining after running the blood samples of five PDAC patients 
(Fig. 1A). We found CTCs captured on the membrane, which was further 
confirmed as cancer cells by specialized pathologists. In addition, PDAC 
CTCs were identified by immunofluorescence staining with 
anti-EpCAM/CK, anti-CD45 and anti-Plectin-1 antibodies (Fig. 1B). 
Among DAPI+ and CD45− cells, we could find three kinds of CTCs: 
EpCAM/CK positive (ranged from 0 to 631 cells/3 ml), Plectin-1 positive 
(ranged from 0 to 123 cells/3 ml), and both EpCAM/CK and Plectin-1 
positive (ranged from 0 to 127 cells/3 ml) cells. We decided to 
consider all three cases (ranged from 0 to 641 cells/3 ml) as PDAC CTCs 
(Fig. 1C). 

Next, we performed molecular characterization of the cells captured 
on the membrane of the FAST disc. KRAS mutation is the most 

Fig. 1. Identification of CTCs in patients with PDAC. From blood samples from pancreatic ductal adenocarcinoma (PDAC) patients, CTCs were enriched with FAST 
disc and examined. (A) Captured CTCs on the membrane of FAST disc were pathologically identified by H&E staining. Red arrows indicate captured CTCs. Membrane 
pore size is 8 μm. (B) Three representative images of PDAC CTCs. All nucleated cells were stained by DAPI (Blue), WBCs were identified by CD45 (Red) staining, and 
CTCs were identified by EpCAM/CK (Green) and Plectin-1 (Gold) staining. Scale bar, 5 μm. (C) PDAC CTCs were defined as the sum of EpCAM/CK+, Plectin-1+, and 
EpCAM/CK/Plectin-1+ cells among DAPI+ and CD45− cells. Illustration was created with Biorender.com. (D) Digital droplet PCR for KRAS mutants (G12D, G12R, 
G12V) were performed to confirm PDAC CTCs captured on the membrane of the FAST disc. AsPC-1, a PDAC cell line, was used as a positive control for KRAS G12D 
mutant (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.). 
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frequently detected somatic alteration in PDACs (nearly 100%) [29] and 
thus the detection of KRAS mutants can be a proof to confirm that the 
captured cells are CTCs of PDACs. After the enrichment of CTCs from the 
blood samples of other 10 patients with PDAC, DNAs were extracted 
from the cells captured on the membrane and followed by ddPCR. Three 
types of KRAS mutant (G12D, G12V, G12R) were detected in CTCs from 
patients with PDAC (Supplementary Fig. 4). KRAS mutation was 
detected in 9 out of 10 samples (90%). AsPC-1 was used as a positive 
control for PDAC, which had KRAS G12D mutant (Fig. 1D). 

Baseline characteristics of study patients 

A total of 52 patients were enrolled in this study, and their baseline 
characteristics are described in Table 1. There were 26 male and 26 
female patients aged 46–85 years (median 67 years). The clinical stage 
(8th AJCC) was as follows: 21 were stage III (40.4%) and 31 were stage 
IV (59.6%). Twenty patients (38.5%) had metastasis to the liver, and 11 
patients (21.1%) showed metastasis to bone, peritoneum and supra-
clavicular lymph node (SCN) without liver. The 46 (88.5%) patients 
received chemotherapy and 6 (11.5%) did not receive chemotherapy 
due to patient preference, old age or poor performance status. Median 
(range) of initial CA19–9 and CEA were 203.5 IU/ml (3.75–140,000) 
and 2.9 ng/mL (0.5–51.39), respectively. 

Evaluation of CTCs from the study patients 

We previously reported that healthy subjects had negligible CTC 
counts (mean, 0 CTCs/7.5 mL; median, 0 CTCs/7.5 ml; range, 0 − 5 
CTCs/7.5 ml of blood) when EpCAM and CK antibodies were used to 
detect CTCs [26,27]. Recently, we have also shown the specificity of 
Plectin-1 to capture CTCs in PDAC [25]. CTC counts in 30 healthy vol-
unteers were less than one (Mean±SD, 0.19±0.26 CTCs/ml; Median 
0.00 CTCs/ml). We defined counts of one or more CTCs per ml of blood 
as positive, like in the previous reports [25–27]. Fifty-two blood samples 

from patients with PDAC were analysed at baseline. The median number 
of CTCs was 8.5 in one ml of blood (range 0–641 cells/3 ml), and one or 
more CTCs per one ml of blood were detected in 44 patients with PDAC 
(44/52, 84.62%) at baseline. For CTC counting, sensitivity was 84.62%, 
and specificity was 96.67%. The positive predictive value (PPV) was 
96.21% and the negative predictive value (NPV) was 86.27% (Fig. 2A). 
We evaluated the tumor size, stage and metastatic sites based on the 
number of CTCs to demonstrate the unique clinical potential of CTCs. 
We calculated the sum of the unidimensional size in centimetres of all 
significant and measurable tumor sites through the computed tomog-
raphy (CT) scan of each patient. The absolute number of captured CTCs 
did not necessarily correspond with tumor size (tumor median size, 36 
mm; p = 0.5139, Fig. 2B) and tumor location (p = 0.6886, Fig. 2C). In 
addition, CTC counts were higher in stage III than stage IV (*p = 0.0237, 
Fig. 2D). The most common site of metastasis is the liver in PDAC due to 
the fact that the first venous drainage of pancreatic cancer is the portal 
circulation. There was no significant difference in the number of CTCs 
across the metastatic sites (p = 0.077) by ANOVA test. Patients with liver 
metastasis combined with other metastatic sites such as the peritoneum, 
lung, bone, and SCN showed increased CTC counts compared to patients 
with liver metastasis only (*p = 0.0290, Fig. 2E). 

Assessment of CTC numbers before and after chemotherapy 

CTCs were evaluated in thirty-nine patients who underwent 
chemotherapy (CTx). Blood samples were collected at baseline (pre- 
CTx) and during subsequent clinic visits for treatment (post-CTx). The 
study patients underwent either of the following regimens; Gemcitabine 
+ Abraxane or FOLRIFINOX. Among 52 patients, 39 patients underwent 
at least more than #3 Gemcitabine +Abraxane (#1: D1, D8, D15 every 4 
weeks) and #4 FOLFIRINOX (#1: D1, D2 every 2 weeks) of chemo-
therapy. Unfortunately, 7 patients could not draw the blood sampling 
after the chemotherapy (post-CTx) because they transfered to other 
hospital or could not continue the chemotherapy with deteriorating 
general conditions. The exact follow-up schedule varied between pa-
tients. CT scan and serum CA19–9 measurement were performed at 
baseline and at regular intervals according to standard clinical practice 
(Fig. 3A). Upon comparing CTC counts in pre- and post-CTx blood 
samples of patients with PDAC, paired t-test showed no difference in the 
number of CTCs (p = 0.5474, Fig. 3B). In addition, we separated good 
responders with partial response (PR) and stable response (SD) from 
poor responders with progressive disease (PD) according to RECIST 
(Response Evaluation Criteria in Solid Tumors, version 1.1) [30]. The 
number of CTCs at baseline was not correlated with treatment response 
(p = 0.3953, Fig. 3C). A higher CTC count at post-CTx was more evident 
in patients who poorly responded to the treatment than in patients who 
favourably responded to the treatment, although there was no statistical 
significance (p = 0.0687, Fig. 3D). Also, the relative number of CTCs 
changed after treatment compared to before treatment was not related 
to the treatment response as well (p = 0.5117, Fig. 3E). 

Clinical significance of CTC changes after chemotherapy in overall survival 

Kaplan-Meier analysis was performed to evaluate the absolute and 
relative number of CTCs with the survival of patients with PDAC. Unlike 
before treatment (p = 0.3088, Fig. 4A), higher CTC counts after treat-
ment (*p = 0.0471, Fig. 4B) was significantly associated with shorter 
OS. Considering the relative change of CTCs after chemotherapy 
compared to before chemotherapy (ΔCTC=(Post-Pre)/Pre), OS was 
longer when ΔCTC were negative. Patients with an increase of CTCs 
after chemotherapy showed shorter survival (median OS, 16.97 vs. 
10.02 months; **p = 0.0095, Fig. 4C). The association of CA19–9 
change (ΔCA19–9) with patient survival was also examined as CA19–9 
is the most commonly used biomarker for diagnosis and management of 
patients with pancreatic cancer [31]. The increase or decrease of 
CA19–9 level with chemotherapy could not prognose the survival of 

Table 1 
Patient characteristics (n = 52).  

Characteristics n = 52 

Age, median (range) 67 (46–85) 
Sex, n (%)  

Male 26 (50.0) 
Female 26 (50.0) 

BMI (kg/m2), median (range) 23.6 (19.0–29.6) 
Performance status (ECOG), n (%)  

0: fully active 28 (53.9) 
1: light house work 22 (42.3) 
2: ambulatory 1 (1.9) 
3: limited self-care 1 (1.9) 

Stage (AJCC 8th), n (%)  
III 21 (40.4) 
IV 31 (59.6) 

Metastasis, n (%)  
No metastasis 21 (40.4) 
Liver metastasis 20 (38.5) 
Other site metastasis, not including liver 11 (21.1) 

Location (proximal), n (%)  
Uncinate/head/Neck 23 (44.2) 
Body 17 (32.7) 
Tail 12 (23.1) 

Pancreas mass (mm), median (range) 35 (14.0–130.0) 
Treatment  

Best supportive care only 6 (11.5) 
Gemcitabine based 24 (46.2) 
FOLFIRINOX 21 (40.4) 
TS-1 1 (1.9) 

CA19–9 (IU/mL), median (range) 203.5 (3.75–140,000) 
CEA (ng/mL), median (range) 2.9 (0.5–51.39) 

BMI, Body mass index; ECOG, Eastern Cooperative Oncology Group; AJCC, 
American Joint Committee on Cancer; CA19–9, carbohydrate antigen 19–9; 
CEA, Carcinoembryonic antigen._ 
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Fig. 2. CTC enumeration in patients with PDAC. CTCs were enumerated in blood samples from 52 patients with PDAC. (A) The sensitivity, specificity, positive 
predictive value (PPV), and negative predictive value (NPV) was calculated with CTC counts. Also, the number of CTCs was analysed depending on (B) Tumor size 
(median 36 mm, p = 0.5139), (C) Tumor location (p = 0.6886), (D) Clinical stages (*p = 0.0237) and (E) Metastatic sites (p = 0.077). Other sites include lung, bone, 
supraclavicular lymph node (SCN) and peritoneum. Each bar in the graph represents the median. 

Fig. 3. Evaluation of CTC counts in PDAC pa-
tients with chemotherapy. (A) CTCs were 
enumerated from paired blood samples of 39 
patients with PDAC before (Pre-CTx) and after 
chemotherapy (post-CTx), which was accom-
panied with measurement of serum CA19–9 
level and CT scanning. Illustration was created 
with BioRender.com. (B) The absolute number 
of CTCs at the pre-CTx and post-CTx was 
compared (p = 0.5474). Depending on RECIST 
criteria (version1.1), PR and SD was included in 
good response, and PD was involved in poor 
response. The number of CTCs (C) before 
treatment (p = 0.3953) and (D) after treatment 
(p = 0.0687) was evaluated. (E) The relative 
change of CTC counts was also assessed upon 
treatment response (p = 0.5117). Each bar 
represents the median. CT, computed tomog-
raphy; CA19–9, carbohydrate antigen 19–9. 
RECIST, Response Evaluation Criteria in Solid 
Tumors; PR, partial response; SD, stable dis-
ease; PD, progressive disease.   
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patients with PDAC (p = 0.8210, Fig. 4D). 

Discussion 

Investigation into CTCs may give us insights into the biology of 
tumor cell dissemination in patients with cancer. Little is known about 
the biology and pathology of CTCs in PDAC due to difficulty in collecting 
them in the peripheral circulation. Here, we efficiently collected CTCs 
from blood samples of patients with PDAC by using size-based centrif-
ugal microfluidic disc and by using EpCAM, CK, and Plectin-1 identifi-
cation antibodies to estimate their prognostic potential for responses to 
treatment and survival. 

Tumor cells in the peripheral blood are substantially heterogeneous, 
which offers a unique opportunity to understand how CTCs participate 
in the tumor dissemination process and tumor heterogeneity [13]. 
However, these heterogeneous properties of rare CTCs make it harder to 
detect their variable phenotypes in circulation. The only system 
currently approved by the Food and Drug Administration (FDA) as an 
aid in monitoring patients with metastatic breast, colorectal or prostate 
cancer is CELLSEARCH® (Janssen Diagnostics, Raritan, NJ, UA), which 
uses antibodies specific to EpCAM and CK of epithelial CTCs [10]. 
However, CTCs exhibit dynamic changes in epithelial and mesenchymal 
compositions, and show both epithelial and mesenchymal features [32]. 
They can show no or low expression of EpCAM during EMT, resulting in 
missed detection [33]. Furthermore, EpCAM is down-regulated in 
pancreatic cancer [34,35]. To make up for this, we decided to use a 
PDAC-specific antibody in addition to EpCAM and CK. The ideal 
biomarker for PDAC should not only differentiate benign conditions 
from malignancy but also be able to detect small cancers, ideally at the 
pre-invasive PanIN III phase. Plectin-1 expression is immunohis-
tochemically positive in all PDAC tissues but negative in all benign tis-
sues, including the normal pancreas and chronic pancreatitis [23]. 
Moreover, it could detect pre-invasive PanIN III lesions [23]. Therefore, 
we additionally utilized a PDAC biomarker, Plectin-1, to identify CTCs in 
the peripheral blood samples of patients with PDAC. As a result, we were 

able to successfully detect cells positive to only Plectin-1 but not 
EpCAM/CK in the bloodstream (Fig. 1B). Moreover, KRAS mutant was 
detected in CTCs captured on the membrane, indicating the identity of 
the captured cells as PDAC tumor cells (Fig. 1D). CTC enumeration with 
an additional Plectin-1 antibody showed lower p-value than CTC 
enumeration with only EpCAM/CK antibodies to predict OS of patients 
with PDAC (**p = 0.0095 vs. *p = 0.0152, HR=2.971 vs. HR=2.689, 
Fig. 4C and Supplementary Fig. 5). 

The enumeration of CTCs was not statistically different in relation to 
tumor size, location and metastatic sites (Fig. 2B, C and E). Patients 
with stage III PDAC showed more CTCs than patients with stage IV PDAC 
(Fig. 2D). In pancreatic cancer, more CTCs were reported in stage IV 
patients than in stage III patients [36]. However, higher number of CTCs 
were detected in patients with stage III in compared to patients with 
stage IV in non-small cell lung cancer [37, 38]. CTCs can be expected to 
include the subpopulations responsible for disease progression [13]. 
During the aggressive cancer progression, several CTCs could be also 
detected in blood of patients with stage III. The absolute number of 
initial CTCs did not relate to the survival of patients with PDAC. Our 
study was designed such that CTCs were identified both before and after 
chemotherapy with the clinical assessment of the CT scan and serum 
CA19–9 measurement (Fig. 3A). The number of CTCs was not signifi-
cantly decreased by chemotherapy across all patients with PDAC 
(Fig. 3B). The detection and existence of CTCs can be a key model of 
haematogenous spread in the development of metastatic disease. The 
existence of CTCs expressing the cell surface EpCAM and intracellular 
CKs is related to poor outcome in patients with both non-metastatic and 
metastatic disease [39,40]. PDAC patients with a high number of CTCs 
after chemotherapy may have the potential for worse prognosis 
(Fig. 3D) and poor survival (Fig. 4B), which was not evident with the 
number of CTC before chemotherapy (Figs. 3C and 4A). Furthermore, 
the relative change between pre-CTx and post-CTx indicated more 
critical prognostic significance to predict the probability of survival. 
Patients with decreased CTCs after chemotherapy indicated a signifi-
cantly better survival, whereas patients with increased CTCs showed 

Fig. 4. Kaplan-Meier analysis of CTCs with overall survival in patients with PDAC. Kaplan–Meier curves of overall survival (OS) and log-rank tests for patients with 
PDAC depending on the number of CTCs (A) before chemotherapy (pre-CTx, p = 0.3088) and (B) after chemotherapy (post-CTx, *p = 0.0471). The relative change of 
(C) CTC numbers (ΔCTC) and (D) blood CA19–9 level (ΔCA19–9) after chemotherapy (post-CTx) relative to before chemotherapy (pre-CTx) was evaluated with OS of 
patients with PDAC. Kaplan–Meier survival curve was stratified by the comparative changes of CTC counts (**p = 0.0095), and serum CA19–9 levels (P = 0.8210) 
after chemotherapy. 
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worse survival (Fig. 4C). There is a need for further study to reveal the 
association of CTC counts with poor or good responses to chemotherapy. 

In our study, the sensitivity and specificity of PDAC CTC capture and 
identification was 84.62% and 96.67%, respectively (Fig. 2A), which is 
comparable to other reports. Sefrioui et al. reported 67% sensitivity and 
80% specificity of CTC in solid pancreatic tumor [41], Ankeny et al. 
reported 75% sensitivity and 96% specificity of peripheral CTC in 
pancreatic cancer [36]. The sensitivity of CA19–9, the only marker 
approved by the United States FDA, for use in the routine management 
of pancreatic cancer is 63.6%, and changes in serum levels are unrelated 
to disease progression [34]. It coincided with our result where the 
ΔCA19–9 with chemotherapy was not related to survival (Fig. 4D). In 
contrast to CA19–9, ΔCTC after chemotherapy was significantly corre-
lated with survival of PDAC patients (Fig. 4C). 

The direction of systemic cancer treatment based on the primary 
tumor characteristics has limitations due to the tumor heterogeneity and 
frequent discrepancy between primary and metastatic sites. However, 
because of both inaccessibility of metastatic sites and procedure 
morbidity, metastatic biopsies are rarely undertaken [42]. In this sense, 
the prognostic role of CTC enumeration is the true promise to provide a 
real-time view of cancer progression just using peripheral blood sam-
ples, avoiding the need for repeat invasive biopsies. Understanding the 
biology of CTCs or cancer cells in transit may give us unique insights into 
the mechanisms behind metastasis. In addition, further genomic analysis 
of CTCs needs to be performed. 
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