
ABSTRACT

Purpose: The aim of this study was to determine the effect of insulin growth factor binding 
protein-3 (IGFBP-3) on the inhibition of glucose oxidative stress and promotion of bone 
formation near the implant site in a rat model of methylglyoxal (MGO)-induced bone loss.
Methods: An in vitro study was performed in MC3T3 E1 cells treated with chitosan gold 
nanoparticles (Ch-GNPs) conjugated with IGFBP-3 cDNA followed by MGO. An in vivo study 
was conducted in a rat model induced by MGO administration after the insertion of a dental 
implant coated with IGFBP-3.
Results: MGO treatment downregulated molecules involved in osteogenic differentiation 
and bone formation in MC3T3 E1 cells and influenced the bone mineral density and bone 
volume of the femur and alveolar bone. In contrast, IGFBP-3 inhibited oxidative stress and 
inflammation and enhanced osteogenesis in MGO-treated MC3T3 E1 cells. In addition, 
IGFBP-3 promoted bone formation by reducing inflammatory proteins in MGO-administered 
rats. The application of Ch-GNPs conjugated with IGFBP-3 as a coating of titanium implants 
enhanced osteogenesis and the osseointegration of dental implants.
Conclusions: This study demonstrated that IGFBP-3 could be applied as a therapeutic 
component in dental implants to promote the osseointegration of dental implants in patients 
with diabetes, which affects MGO levels.
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INTRODUCTION

Diabetes mellitus (DM) is a systemic disease that is the most prevalent chronic condition 
worldwide [1]. DM is associated with complications caused by micro- and macro-
angiopathies, which increase the frequency of impaired responses to infections, delayed 
wound healing, periodontitis, tooth loss, and the risk of fracture [2,3]. Similarly, DM is 
associated with impaired bone density, mineralization, and turnover [4]. Many clinical 
studies have demonstrated that DM has an unfavorable impact on implant osseointegration 
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and stability, eventually leading to implant failure [5,6]. Consequently, implant therapy 
remains a relative contraindication in DM patients unless the disease is well-controlled [7,8].

Methylglyoxal (MGO) is a highly reactive dicarbonyl compound generated as an intermediate 
of glycolysis that is considered a potent precursor of advanced glycation end products (AGEs) 
[9,10]. The process of AGE generation from MGO is also associated with the formation of 
reactive oxygen species (ROS) [11]. Many research studies have suggested that DM may lead to 
impairments of cognitive processes through a mechanism that includes both AGE formation 
and oxidative stress [12,13]. Accordingly, high levels of MGO may cause DM-related cognitive 
degeneration, and MGO toxicity may be responsible for DM-associated bone loss [14]. 
Previous studies have demonstrated that MGO treatment can be a risk factor for bone loss by 
inducing apoptosis in human osteoblasts [15]. In addition, MGO causes loss of bone mineral 
density in experimental animal models [16]. MGO was found to contribute to the delayed 
healing of bone in a diabetic rat model, and it has been suggested that detoxification of MGO 
is important for improving bone repair in patients with diabetes [17].

Titanium (Ti) dental implants are widely used for the replacement of extracted or missing 
teeth [18]. In patients with poor bone quality, various techniques, including surface 
chemistry, implant design, and surface topography, have been applied for the improvement 
of dental implant osseointegration [19]. Implant surface modification using a gene delivery 
system is a technique used for bone regeneration near implants [20]. Nanoparticles are 
considered the best carriers for desirable genes to the targeted area due to their transfection 
efficiency [21]. The delivery of genes with bioactive characteristics of biocompatibility and 
bone regeneration through dental implants has been highly recommended [22,23]. In a 
previous study, chitosan gold nanoparticles (Ch-GNPs) conjugated with PPARγ cDNA were 
introduced on Ti implant surfaces for PPARγ release in the rat mandible [24].

Bone healing can be improved by various growth factors, such as platelet-derived growth 
factor, bone morphogenetic proteins (BMPs), transforming growth factor β isoforms, and 
insulin-like growth factors (IGFs) [25]. Among the IGF binding protein (IGFBP) family, 
IGFBP-3, which binds circulating IGF-I/II, is the most abundant IGFBP in bone tissue [26,27]. 
Some studies have suggested that IGFBP-3 plays a positive role in bone formation by binding 
with type I collagen and that IGFs are stored in the skeletal matrix [28]. IGFBP-3 also acts on 
the growth plate and supports bone formation [29]. Some evidence suggests that IGFBP-3 
promotes human tooth development in the late stages [30]. IGFBP-3 is also involved in the 
tumor suppressor functions of cancer cells [31,32].

Our previous study also demonstrated the delivery of the IGFBP-3 gene by Ch-GNPs and the 
potential role of IGFBP-3 in bone formation in the rat mandible [27]. However, the role of 
IGFBP-3 in bone deterioration due to MGO has not been elucidated. Considering the benefits of 
IGFBP-3 gene delivery for bone formation, this study demonstrated the anti-inflammatory effects 
of IGFBP-3 in MGO-induced cells and explored the osseointegration and bone improvement in 
response to Ch-GNP/IGFBP-3-coated Ti implants in an MGO-induced rat model.
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MATERIALS AND METHODS

MC3T3 E1 cell culture and MGO treatment
MC3T3 E1 cells (DCRL-2593; American Tissue Type Collection, Manassas, VA, USA) were 
cultured in α-MEM (Gibco BRL, Grand Island, NY, USA) supplemented with 2 mM glutamine, 
100 U/mL penicillin, 100 μg/mL streptomycin, and 10% fetal bovine serum in a humidified 
5% CO2 atmosphere at 37°C and sub-cultured at a 1:4 ratio. The mineralization experiments 
for Alizarin red staining and alkaline phosphatase (ALP) activity were performed with 
MC3T3 E1 cells cultured in 50 μg/mL ascorbic acid, 10 mM β-glycerophosphate, and 100 
nM dexamethasone, as previously described [33]. To confirm the response of MGO-treated 
MC3T3 E1 cells, 80% confluent cells were exposed to MGO (400 μM); fresh medium was 
replaced 2 hours later, and the cells were cultured for 15 days.

Preparation of Ch-GNPs
Ch-GNPs were prepared by a simple graft-on technique as previously described [27]. Briefly, 
2 mL of 0.33% chitosan solution and 0.1 M hydrochloric acid (HCl) was mixed with 1 mL of 
a 10 mM freshly prepared chloroauric acid (HAuCl4) solution and stirred for 1 hour. Later, 
the prepared solution was constantly mixed with 0.1 M ice-cold, freshly prepared sodium 
borohydrate. A rapid change to a red wine color indicated the formation of Ch-GNPs. The 
Ch-GNPs were collected by ultracentrifugation at 35,000 × g at 4°C for 30 minutes. The Ch-
GNP stock solution was used in triple-distilled water for further experimentation.

Preparation of DNA complexes
Complexes of Ch-GNPs and plasmid DNA (pcDNA3.1 IGFBP-3 and LacZ) were prepared as 
previously described [23]. In brief, the Ch-GNPs and plasmid DNA (pcDNA3.1 IGFBP-3, 
pcDNA3.1 LacZ, Invitrogen, Carlsbad, CA, USA) were used to prepare the complexes in water, 
and the Ch-GNP solution (40 μg) from the stock solution (50 mg/mL) of nanoparticles was 
mixed with 20 μg of DNA.

Loading of Ch-GNP/DNA complexes on Ti surfaces and mini-screws
The cDNA of LacZ and IGFBP-3 was cloned in plasmid DNA. The Ch-GNP/DNA complexes 
were deposited on cleaned Ti surfaces (6×6×0.1 cm for a 100-mm cell dish), using the dipping 
technique at room temperature. The Ch-GNP/DNA solution was mixed with 500 μL of serum 
and antibiotic-free medium, and the surface was coated with it, followed by drying at room 
temperature. The Ti surface coated with Ch-GNPs/IGFBP-3 was placed in a 100-mm-diameter 
cell culture plate, the same number of cells (5×105) were seeded on the plate, and 1 mL of cell 
culture medium was added. After 3 hours, the cell culture medium was replaced with a fresh 
medium. For in vivo analysis, dental implants were prepared as previously described [22]. 
Briefly, commercially available pure, cylindrically shaped Ti square thread screws (4.5 mm in 
length and 0.85 mm in diameter) were used as dental implants. For coating with Ch-GNPs/
IGFBP-3 and LacZ, the implants were immersed 10 times in a nanoparticle DNA solution and 
frozen at −40°C. The total coating amount of the DNA was 20 μg each. Ch-GNP/LacZ-coated 
implants were used as a control.

Western blot analysis
A previously described method was used for western blot analysis [27]. In brief, total proteins 
were extracted from the MC3T3 E1 cells with a lysis buffer containing 150 mM NaCl, 5 mM 
EDTA, 50 mM Tri-HCl (pH 8.0), 1% NP 40, 1 mM pepstatin, 1 mM aprotinin, and 0.1 mM 
leupeptin. Proteins in the cells were quantified by the Bradford dye-binding procedure 
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(Bio-Rad, Hercules, CA, USA). The samples were separated by sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (8% to 15%) under denaturing conditions and transferred 
to a Hybond-P membrane (Amersham, Arlington, IL, USA). Specific primary antibodies were 
used at a ratio of 1:1,000 to 1:2,000 and incubated at 4°C overnight, and then incubated with 
a horseradish peroxidase-IgG-conjugated secondary antibody at room temperature for 1 
hour. A chemiluminescence detection reagent was used to detect the signals according to the 
manufacturer's protocol (Amersham Pharmacia Biotech, London, UK) with a LAS-4000 CCD 
imaging system (Fujifilm, Tokyo, Japan).

Alizarin red staining and ALP activity
Alizarin red staining was performed in the MC3T3 E1 cells after 3, 6, 9, 12, and 15 days of 
differentiation induction culture. After the indicated times of cell culture, the cells were 
washed with phosphate-buffered saline (PBS), air-dried, and fixed in 95% ice-cold ethanol at 
−20°C for 30 minutes. After fixation, the cells were stained with 40 mM of Alizarin red stain 
(pH 4.2) at room temperature for 1 hour. The plates were washed with deionized water 5 
times and then rinsed with PBS (without magnesium and calcium) for 15 minutes.

ALP activity was measured in MC3T3 E1 cells collected in cold PBS at 3, 6, 9, 12, and 15 days and 
sonicated with a cell disruptor (Heat System-Ultrasonics, Plainview, NJ, USA) in an ice bath. 
ALP activity in the supernatant was measured using the SensoLyte pNPP Alkaline Phosphatase 
Assay Kit (AnaSpec, Inc., Fremont, CA, USA) according to the manufacturer's protocol [34].

Determination of ROS generation
ROS generation of MC3T3 E1 cells was measured by the Muse Oxidative stress kit using the 
Muse cell analyzer (Merck Millipore, KGaA, Darmstadt, Germany) as a fluorescent-based 
analytical technique. The manufacturer-specific protocol was followed for the assay. In brief, 
MC3T3 E1 cells were treated with LacZ and IGFBP-3 for 1 hour prior to MGO (400 μM) treatment 
and incubated for 24 or 48 hours. Samples of 1×107 cells/mL were prepared in 1× assay buffer 
and treated with an oxidative stress reagent based on dihydroethidium; this reagent is used to 
detect ROS that are oxidized with superoxide anion to produce the DNA-binding fluorophore 
ethidium bromide, which intercalates with DNA, resulting in red fluorescence.

Animals and surgical procedures
The Animal Ethical Committee of Jeonbuk National University (CBNU-2019-00299) approved 
the protocol for the use of animals in the study. Six-week-old Sprague-Dawley male rats 
were used in the experiment. The animals were randomly assigned to 4 groups: no MGO 
administration (control; n = 12), MGO administration (MGO; n = 12), MGO administration with 
Ch-GNPs/LacZ (MGO-LacZ; n = 12), and MGO administration with Ch-GNPs/IGFBP-3 (MGO-
IGFBP-3; n = 12). The dosage of MGO was determined according to previous studies [35]. First, 
to observe changes in bone quality by MGO in vivo, PBS was injected into the control group 
and 75 mg/kg of MGO was injected into the MGO group twice a week for a total of 6 weeks. All 
surgical procedures were performed under general anesthesia induced with zolazepam (Zoletil 
50; Virbac Carros, France) and xylazine hydrochloride (Rompun; Bayer Korea, Seoul, Korea). 
The lower first molar was extracted carefully to avoid damage to the extraction socket. The 
animals were given intramuscular injections of amikacin for up to 3 days. At 1 week after tooth 
extraction, 75 mg/kg of MGO was intraperitoneally injected into both groups twice a week for 
a total of 10 weeks. At 4 weeks after tooth extraction, the specified implants were inserted into 
the indicated groups. After 3 and 6 weeks, the rats were euthanatized by cervical dislocation 
under general anesthesia, and samples were collected for examination.
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Micro-computed tomography analysis
Micro-computed tomography (μCT) was performed with an anode electrical current of 100 
kV at a resolution of 18 μm using a model 1076 apparatus (Skyscan, Kontich, Belgium). After 
anesthesia, the femur and mandibles were scanned with μCT to detect dynamic changes 
in the tissues and peri-implant tissue at 3 and 6 weeks. The regions of interest (ROIs) that 
included the trabecular compartment around the femur were selected. The ROI of the 
alveolar bone was manually established in the interradicular septum bone of the right 
mandibular first molar (M1) without an implant. The coronal and horizontal planes of M1 
were confirmed by 2-dimensional images, which were generated by DataViewer (Skyscan). 
First, in the coronal plane passing through the center of the buccal and lingual roots, 2 
horizontal surfaces were selected that individually passed through the alveolar ridge crest and 
apex of the buccal root. Second, on the horizontal plane of the M1 tooth, the interalveolar 
septum was selected by drawing a contour from the center of one root canal to another root 
canal by avoiding the roots and other structures. After scanning, 3-dimensional (3D) models 
were generated by CTVol (Skyscan), and the bone volume and density around the implants 
were analyzed using CTAn (Skyscan), which was also used to examine the μCT datasets for 
new bone growth. The collective sum of all ROI layers over a continuous set of cross-sectional 
image slices represented the volume of interest in the regenerated bone. Furthermore, new 
bone around the hole and bone mineral density (BMD) were calculated by phantom and 
Hounsfield units (HU) (low phantom [0.25] 1157.7907 HU and high phantom in μCT HU 
[0.75] 3233.3492 HU). Binary thresholds (gray-scale index, implant area: 160 mm × 255 mm; 
new bone area: 100 mm × 143 mm; and total bone area: 70 mm × 120 mm) were used to 
create the 3D images.

Histology and immunohistochemical staining
The mandibles were isolated and fixed in 10% neutral-buffered formalin solution. After 
fixation, the tissues were decalcified in 15% EDTA and 0.1 M Tris (pH 7.0). After decalcification, 
the implant was removed. The tissues were dehydrated with different percentage of alcohol, 
cleared in xylene, and embedded in paraffin. Tissue sections of 8 μm were mounted on glass 
slides and stained with hematoxylin and eosin (H&E) and immunohistochemical (IHC) 
stains. IHC staining was performed to detect the expression of IGFBP-3, BMP-2, BMP-7, 
osteoprotegerin (OPG), receptor activator of nuclear factor-κB ligand (RANKL), and receptor 
for advanced glycation end products (RAGE) using an immunohistochemistry accessory kit 
(Bethyl Laboratories, Montgomery, TX, USA). The primary antibodies were used at 1:200 
dilutions according to the protocol. The slides were visualized microscopically (Carl Zeiss, 
Ostalbkreis, Germany). The levels of antibody expression were measured with ImageJ (National 
Institutes of Health, Bethesda, MD, USA) software.

Statistical analysis
All results were analyzed independently. All values are presented as the mean±standard 
deviation of 3 independent experiments. Statistical significance was assessed by the unpaired 
t-test. P values <0.05 were considered to indicate statistical significance. This in vivo study 
was conducted in groups containing 6 rats each.
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RESULTS

MGO impairs bone formation in MC3T3 E1 cells
MC3T3 E1 cells were treated with MGO (400 μM) in osteogenic medium for up to 15 days for 
the detection of osteogenic differentiation and mineralization. The cells treated with MGO 
demonstrated decreased Alizarin red staining in a time-dependent manner compared to the 
mock osteogenic medium (Figure 1A). Similarly, ALP activity was also significantly decreased by 
MGO treatment at 9, 12, and 15 days compared to the mock osteogenic medium (Figure 1B).  
The expression of osteogenic differentiation proteins (BMP-2, BMP-7, and OPG) was also 
decreased by MGO, whereas the expression of RANKL was increased by MGO treatment in a 
time-dependent manner (Figure 1C).
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Figure 1. MGO impairs the function of bone formation in MC3T3 E1 cells. (A) Alizarin red staining after treatment of MC3T3 E1 cells with MGO for 3, 6, 9, 12, and 15 
days. (B) Effects of MGO on ALP activity in MC3T3 E1 cells at 3, 6, 9, 12, and 15 days. MC3T3 E1 cells were treated with OM with 5 mM β-glycerol phosphate, 100 μM 
ascorbic acid, and 10 nM dexamethasone for the indicated times and ALP was measured. (C) Protein expression of BMP-2, BMP-7, RANKL, and OPG analyzed by 
western blots after treatment with MGO. (D) Effects of MGO on the expression of inflammatory proteins and anti-oxidant enzymes analyzed by western blots. (E) 
Expression of IGFBP-3 in MC3T3 E1 cells induced with or without MGO. Each value was reported as the mean±standard deviation of 3 experiments. 
MGO: methylglyoxal, ALP: alkaline phosphatase, BMP: bone morphogenetic protein, OM: osteogenic medium, RANKL: receptor activator of nuclear factor-κB 
ligand, OPG: osteoprotegerin, IGFBP-3: insulin growth factor binding protein-3. 
*P<0.05.



MGO changes the expression of inflammatory, anti-oxidant, and IGFBP-3 proteins
Inflammation-related molecules (tumor necrosis factor-alpha [TNF-α], interleukin [IL]-6,  
and RAGE) were detected after the treatment of MC3T3 E1 cells with MGO. The cells 
demonstrated an increased expression of these molecules relative to controls (Figure 1D). 
Further, anti-oxidant activity was also evaluated by analyzing anti-oxidant molecules (Cu/
Zn-superoxide dismutase [SOD] and Mn-SOD). These SOD enzymes were reduced in cells 
treated with MGO (Figure 1D). Similarly, the expression of IGFBP-3 protein also decreased 
after treatment with MGO (Figure 1E).

IGFBP-3 increases osteogenic differentiation and mineralization in MGO-
treated MC3T3 E1 cells
The effect of IGFBP-3 in the response to MGO (400 μM) was examined in MC3T3-E1 cells 
after treatment with the conjugated Ch-GNP/IGFBP-3 complexes. Ch-GNP/LacZ complexes 
were used as the Ch-GNP control vector. The cells treated with Ch-GNPs/LacZ and MGO 
demonstrated decreased Alizarin red staining in a time-dependent manner. In contrast, the 
Ch-GNP/IGFBP-3-treated cells showed increased Alizarin red staining at 3, 9, and 15 days 
compared to the control Ch-GNP/LacZ cells, even when the cells were induced with MGO 
(Figure 2A). Correspondingly, ALP activity was also significantly increased by the Ch-GNP/
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IGFBP-3 complexes at 6 and 9 days compared to Ch-GNPs/LacZ (Figure 2B). The expression 
of IGFBP-3 protein significantly increased up to 15 days after the cells were treated with 
conjugated Ch-GNPs/IGFBP-3 (Figure 2C). MC3T3 E1 cells treated with the conjugated 
Ch-GNP/IGFBP-3 complexes demonstrated higher expression levels of BMP-2, BMP-7, and 
OPG than the Ch-GNP/LacZ cells, even though the cells were induced with MGO. RANKL 
expression was decreased by Ch-GNPs/IGFBP-3 treatment (Figure 2D).

IGFBP-3 activates anti-inflammatory and anti-oxidant expression in MGO-
induced MC3T3 E1 cells
MGO-induced Ch-GNPs/LacZ cells demonstrated increased expressions of TNF-α, IL-6, and 
RAGE at the indicated times (Figure 2E). High expression of the anti-oxidant molecules Cu/
Zn-SOD and Mn-SOD was seen in IGFBP-3-overexpressing MC3T3 E1 cells, even though the 
cells were induced with MGO (Figure 2E). The levels of ROS were analyzed 24 and 48 hours after 
the cells were induced with MGO. The ROS levels were significantly reduced in Ch-GNP/IGFBP-3 
cells compared to the Ch-GNPs/LacZ cells in a time-dependent manner (Figure 2F and G).

MGO reduces femur and alveolar bone formation in MGO-administered rats
μCT analysis and H&E staining were performed after the administration of MGO to rats. 
μCT examination of the femur 3 and 6 weeks after MGO administration demonstrated 
lower femoral cortical BMD, trabecular BMD, trabecular bone volume/total volume (BV/TV), 
trabecular number, trabecular thickness, and higher values for the femoral trabecular space 
compared to the controls (Figure 3A). However, μCT examination of the alveolar bone showed 
lower BMD and BV/TV in the MGO-administered group than in the control group (without 
MGO administered) at only 6 weeks (Figure 3B). The H&E staining results also confirmed a 
higher level of bone loss in the MGO-administered group at 3 and 6 weeks (Figure 3C).

IGFBP-3 restores mandibular bone deterioration in MGO-administered rats
To examine the role of IGFBP-3 in the osseointegration of dental implants in the MGO-
administered rat model, the first molar of the rat mandibles was extracted and the recovery of 
bone deterioration was checked 3 and 6 weeks after MGO administration (Figure 4A). Bone 
formation by Ch-GNPs/IGFBP-3 near the implant sites was higher than that of Ch-GNPs/LacZ  
in a time-dependent manner (Figure 4B). The 3D μCT images showed comparatively 
increased new bone formation, BMD, and BV in the Ch-GNP/IGFBP-3 group (Figure 4C). 
Furthermore, H&E staining also confirmed the recovery of bone deterioration in response to 
Ch-GNP/IGFBP-3-coated implants in MGO-administered rat mandibles compared to the Ch-
GNP/LacZ group at 3 and 6 weeks (Figure 4D).

Ch-GNP/IGFBP-3-coated implants decrease inflammatory molecules and 
increase osteogenic differentiation molecules in MGO-administered rats
IHC analysis demonstrated that the expression of IGFBP-3 increased at 3 and 6 weeks in the 
Ch-GNP/IGFBP-3-coated implant group (Figure 5A). These results indicated that the Ch-GNPs 
carried the reporter gene to the implantation site. Levels of inflammation-related molecules 
(TNF-α, IL-6, and RAGE) were increased in the Ch-GNP/LacZ-coated implant group 3 and 6 
weeks after the administration of MGO, whereas levels of these molecules decreased in the 
Ch-GNP/IGFBP-3-coated implant group even with MGO administration (Figure 5A and B).

The expression of osteogenic differentiation molecules near the implant site was identified 
by IHC. The expression of BMP-2, BMP-7, and OPG was higher in the MGO-administered Ch-
GNP/IGFBP-3-coated implant group than in the Ch-GNP/LacZ-coated implant group at 3 and 6 
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weeks (Figure 6A and B). The osteoclast-related molecule RANKL was more highly expressed 
in the MGO-administered Ch-GNPs/LacZ-coated implant group than in the Ch-GNPs/IGFBP-
3-coated implant group in a time-dependent manner (Figure 6B).

DISCUSSION

MGO has been found to decrease bone mineral density in an animal model [16]. MGO 
and MGO-derived AGEs are normally associated with the development of DM and its 
complications [36]. DM may decrease bone density and increase the risk of chronic 
inflammation, which advances to bone-related pathology such as osteoporosis, which is 
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Figure 3. MGO impairs femur and alveolar bone formation in MGO-administered rats. (A) μCT (2-dimensional) imaging of rat femur after the administration of 
MGO (75 mg/kg) for 3 and 6 weeks. Analysis of femoral cortical BMD, trabecular BMD, BV/TV, trabecular number, thickness, and space. (B) Detection of changes 
in rat alveolar bone by 2-dimensonal μCT after the administration of MGO and analysis of mandible BMD and BV/TV. M1: the mandibular first molar; M: mesial 
root; B: buccal root; D: distal root; L: lingual root; and T1 and T2: the 2 parallel horizontal planes passing through the alveolar ridge and the apex of the buccal 
muscle separately. (C) H&E staining of rat mandible with or without the administration of MGO. Data are expressed as mean±SEM at 3 and 6 weeks (n=6). 
MGO: methylglyoxal, μCT, micro-computed tomography, BMD: bone mineral density, BV: bone volume, TV: total volume, H&E: hematoxylin and eosin, SEM: 
standard error of the mean. 
*P<0.05.



one of the major complications of DM [3]. Furthermore, ROS accumulate in DM and impair 
the biological performance of osteoblastic cells on Ti surfaces [37]. Delivery of the IGFBP-3 
gene upregulated osteogenesis, downregulated osteoclastogenesis, and enhanced bone 
remodeling around the Ti surfaces of dental implants [27]. This study demonstrated the role 
of Ch-GNPs/IGFBP-3 in MGO-induced bone deterioration and inflammation in MGO-treated 
MC3T3 E1 cells and a Sprague-Dawley rat animal model.

The increased expression of IGFBP-3 by Ch-GNP/IGFBP-3 indicated that Ch-GNPs easily 
carried IGFBP-3 plasmid DNA to the cells and alveolar bone in the targeted area. Alizarin red 
staining was used to detect mineralization nodules during bone formation in the MC3T3 E1 
cells. Similarly, ALP activity is an early differentiation marker of osteoblastic mineralization 
and maturation [38]. In this study, MGO reduced Alizarin red staining and ALP activity 
in MC3T3 E1 cells, indicating that MGO affected osteoblastic mineralization and bone 
matrix maturation. However, the increased Alizarin red staining and ALP activity in MGO-
induced MC3T3 E1 cells pretreated with Ch-GNPs/IGFBP-3 suggested that IGFBP-3 enhanced 
osteoblastic mineralization.

The present study demonstrated that MGO decreased osteogenic molecules (BMP-2, BMP-
7, and OPG) and increased the expression of RANKL in MC3T3 E1 cells. BMP is involved 
in bone formation by osteoblast differentiation [39]. RANKL regulates bone destruction 
by stimulating osteoclastogenesis [40]. OPG promotes osteoblastogenesis by inhibiting 
osteoclastogenesis with minimization of RANKL [41]. In this study, the decreased 
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expression of BMP and OPG, and increased expression of RANKL by MGO indicated 
that MGO interfered with osteoblast differentiation and bone formation, and enhanced 
osteoclastogenesis and bone resorption. Nevertheless, the recovered expression of BMP-
2, BMP-7, and OPG, and downregulation of RANKL by IGFBP-3 in MGO-induced MC3T3 
E1 cells indicated that IGFBP-3 recovered osteogenesis and bone formation by inhibiting 
osteoclastogenesis in MGO-induced bone cell deterioration.

MGO can activate inflammatory molecules with excess formation of pro-inflammatory 
cytokines through oxidative stress [42]. MGO produces high amounts of ROS, which is one 
of the major causes of oxidative stress and is responsible for DM-related impairments in 
cognitive function [12,13]. RAGE evokes oxidative stress with increases in ROS formation that 
stimulate the production of pro-inflammatory cytokines (TNF-α and IL-6) [43]. The present 
study also demonstrated increased levels of ROS, RAGE, TNF-α, and IL-6, and decreased 
expression of antioxidant enzymes (Cu/Zn-SOD and Mn-SOD) after the treatment of MC3T3 
E1 cells with MGO, and these results were associated with the effects of MGO. In addition, 
IGFBP-3 effectively reduced oxidative stress as well as inflammatory molecules, even with 
MGO treatment. Thus, these results suggest that IGFBP-3 may be able to minimize the 
oxidative stress and inflammation produced by MGO and influence the formation of bone-
related proteins, which considerably promote osteogenesis and inhibit bone resorption.

A distinct decrease in bone mineral density and bone volume appeared at the femur site and 
mandible in MGO-administered rats compared to the control group in this study. Moreover, 
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Figure 5. Ch-GNP/IGFBP-3-coated implants inhibit inflammatory proteins in MGO-administered rats. (A, B) Analysis of IGFBP-3, TNF-α, IL-6, and RAGE by IHC 
staining after 3 and 6 weeks. The intensity specific for the brown color correlates with the protein level. 
Ch-GNP: chitosan gold nanoparticle, IGFBP-3: insulin growth factor binding protein-3, MGO: methylglyoxal, TNF: tumor necrosis factor, IL: interleukin, RAGE: 
receptor for advanced glycation end products, IHC: immunohistochemistry. 
*P<0.05.



MGO affected various histological phenomena, such as femoral trabeculae and minimal new 
bone growth in the mandible relative to normal rats. Thus, these results suggested that MGO 
induced oxidative stress and an inflammatory reaction, and hindered bone formation.

The role of IGFBP-3 in osteogenic differentiation and bone formation has been well studied 
[27,44,45]. Our previous study successfully demonstrated that Ch-GNP/IGFBP-3-coated dental 
implants promoted osseointegration and bone formation in the implant insertion area [27]. 
We hypothesized that delivery of the IGFBP-3 gene may overcome inflammation and support 
regional bone regeneration, thereby overcoming MGO interference in the MGO-administered 
rat model. In this study, when IGFBP-3 was applied to implants in the rat model induced with 
MGO, increased bone mineral density, bone volume, and new bone formation were seen, 
even under MGO stress. In IHC staining, the restoration of bone formation-related molecules 
(BMP-2, BMP-7, and OPG) and alleviation of inflammatory protein expression (TNF-α, IL-6, 
RAGE, and RANKL) were dependent upon IGFBP-3 expression. These results suggested that the 
application of IGFBP-3 seemed to improve MGO-induced stress at the regional sites of the dental 
implants and supported dental implant osseointegration and minimized bone resorption.

In conclusion, MGO-induced oxidative stress and inflammation could be minimized by 
the application of Ch-GNPs/IGFBP-3 to titanium dental implants, which supported bone 
formation near the implantation site. In summary, the overall results of this study, within 
some limitations, showed that the generation of regional IGFBP-3 gene expression by dental 
implants may provide an appropriate therapeutic approach for osseointegration in MGO-
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Figure 6. Ch-GNP/IGFBP-3-coated implants increase osteogenic differentiation in MGO-administered rats. (A, B) IHC staining of BMP-2, BMP-7, OPG, and RANKL 
for the detection of osteoblast differentiation. The intensity specific for the brown color correlates with the protein level. 
Ch-GNP: chitosan gold nanoparticle, IGFBP-3: insulin growth factor binding protein-3, MGO: methylglyoxal, IHC: immunohistochemistry, BMP: bone 
morphogenetic protein, OPG: osteoprotegerin, RANKL: receptor activator of nuclear factor-κB ligand. 
*P<0.05.



induced stress and DM. To develop a treatment modality that can be applied to patients with 
diabetes who have increased MGO levels, more detailed research is needed in the future.
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