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Abstract: Biosensors are widely used in production and life, and can be used in medicine,
industrial production, and scientific research. Among them, the detection of pH has always
received extensive attention. In this study, we demonstrate the use of a one-step hydrothermal
method to prepare Co-FeS2/CoS2 nanomaterials as pH sensor (pH vs. overpotential) for the first time.
The proposed pH sensor exhibits outstanding performance in KOH solutions via electrochemical
methods with good stability. Overall, the results of this study not only add to the non-noble transition
metal electrocatalysis research, but also identify important sensing characteristics for electrocatalysts.
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1. Introduction

From the perspective of the environment protection and human health, some sensors used to
monitor temperature, moderation, biological substances, and heavy metals have a vital development
trend. Non-enzymatic hydrogen peroxide (H2O2) sensor was fabricated, which is based on few-layer
black phosphorus (BP) prepared by supercritical carbon dioxide, to utilize BP degradation under
ambient conditions [1]. BP can be used to detect biological molecules such as immunoglobulin G (IgG),
DNA, and carcinoembryonic antigen (CEA) [2]. In a narrow sense, many biological and chemical
reactions depend on the pH value. pH sensors are widely used in production and life processes to
ensure human health, water quality, food quality, and monitor chemical or biological reactions [3,4].
Accurate pH determination has always been an important part of life and production. Semiconductor
polymer dots can also be used as sensitive and broad-range photoelectrochemical pH sensors. Changes
in pH will cause conformational changes and further diffusion of carries. The redox characteristics
of polymer dots will also change. These will cause the photocurrent generated by the electrode to
change [5]. Metal compounds are often a good choice for water quality testing and research when
using electrochemical workstation [6,7]. A pH sensor was obtained by using screen printing of TiO2

thick film on alumina substrate. Additionally, it can be observed easily that the impendence of the
thick film is distinctly dependent on pH. However, the other type of the pH sensor such as low cost,
advanced materials still need to be developed or improved. In renewable energy fields, the electrolysis
of water is an important way to produce hydrogen [8–11]. Now, non-noble transition metal has been
studied in the electrolysis of water [12–14]. However, the research on using catalyst materials as pH
detection sensors, which remains rare.

In this study, we adopt a simple strategy to synthesize Co-FeS2/CoS2 nanomaterials with good
selectivity which is easy to prepare, low in cost, simple in testing, good in selectivity and reliable in
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results [15,16]. Using these Co-FeS2/CoS2 nanomaterials, a pH sensor was constructed to utilize the
electrocatalytic overpotential at different pH values. The overpotential of the hydrogen evolution
reaction of Co-FeS2/CoS2 nanoflowers in KOH solutions of different concentrations was tested and a
functional relationship between the pH value of the solution and hydrogen evolution was constructed.
Our proposed pH sensor exhibits outstanding performance in alkaline solutions via electrochemical
methods. The results of this study not only add to the non-noble transition metal electrocatalysts
research range but also identify important sensing characteristics for electrocatalysts. In the following
research, there is hope that Co-FeS2/CoS2 will be used for heavy metal ion detection.

2. Materials and Methods

2.1. Materials and Chemicals

FeSO4·7H2O used in the experiment was purchased from Shanghai Titan Technology Co., Ltd.
(Shanghai, China) Purchased sublimation sulfur (S), SC(NH2)2, Co(NO3)2·6H2O, KOH, C2H5OH from
Nanjing Chemical Reagent Co., Ltd. (Nanjing, China). Ultrapure water is obtained through Millipore
pure water filters (Millipore Q, Billerica, MA, USA). WOS1009 carbon cloth (CC) was provided by
CeTech Co., Ltd. (Taichung County, Taiwan).

2.2. Preparation of Co-FeS2/CoS2 Heterostructure Nanomaterials

In this experiment, the carbon cloth (2 cm × 2 cm) was ultrasonically cleaned with deionized
water and absolute ethanol for 15 min, and then the carbon cloth was blow dried with a hot air blower.
Subsequently, SC(NH2)2 (1.8 mM), FeSO4·7H2O (1.2 mM), and Co(NO3)2·6H2O (0.156 mM) and 25 mL
of deionized water were added to the 50 mL polytetrafluoroethylene reactor. The reaction kettle was
placed on a magnetic stirrer and stirred at a higher speed for 15 min to form uniform and transparent
solution. Then, during the stirring process, 0.96 mmol of sulfur powder was slowly poured into the
above reaction kettle, and the stirring was continued for 10 min after reducing the speed of the stirrer.
After the stirring was stopped, the sulfur powder would form a thin film on the solution. The cleaned
carbon cloth was put horizontally in the reaction kettle solution; the reaction kettle was tightened and
put in a 180 ◦C blast-drying oven for 8 h of reaction.

2.3. Eelectrochemical Studies

The CHI760E electrochemical analyzer (CH instrument, Shanghai Chenhua Company, Shanghai,
China) was used for electrochemical measurement. The sample was used as the working electrode,
the calomel electrode was used as the reference electrode, and the graphite rod was used as the
counter electrode. KOH solution was used as electrolyte solution and oxygen contained in the solution
was removed by bubbling nitrogen before testing. Linear scan voltammetry (LSV) has a scan rate
of 2 mV·S−1. The corresponding Tafel slope is calculated according to the logarithmic relationship
between the overpotential and current density in the LSV curve.

3. Results and Discussion

3.1. XRD Result

Figure 1a shows the X-ray diffraction (XRD) pattern of the Co-FeS2/CoS2 heterostructure. It can
be seen from the XRD pattern that the Co-FeS2/CoS2 exhibits good crystallinity. The broad peak at
26.5◦ belongs to the carbon cloth [17]. The six peaks at 28.4◦, 33.2◦, 37.3◦, 40.9◦, 47.6◦, and 56.4◦ are due
to FeS2 (JCPDS#42-1340) and CoS2 (JCPDS#41-1471) [18,19], corresponding to the (111), (200), (210),
(211), (220), and (311) planes of FeS2, respectively.
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Figure 1. (a) The X-ray diffraction (XRD) patterns for Co-FeS2/CoS2 heterostructure; (b) and (c) SEM 
images of Co-FeS2/CoS2 heterostructure; (d) TEM image of Co-FeS2/CoS2 heterostructure; (e) HRTEM 
image of Co-FeS2/CoS2 heterostructure. 

3.2. SEM Results 

As shown in the SEM image of Figure 1b, the micro-morphology of Co-FeS2/CoS2 is flower-like, 
with a diameter of about 5 micrometers. This clearly shows the nano-flower structure of the  
Co-FeS2/CoS2 heterostructure. The nano-petals on the flowers are interwoven and connected to form 
a 3D micro-flower structure[20]. This structure not only greatly increases the specific surface area, 
but also enhances the activity. More active sites can make the hydrogen produced by the 
decomposition of water during the reaction easier to desorb and adsorb, which can improve the 
performance of electrocatalyst. Figure 1c is a high-resolution SEM image of Co-FeS2/CoS2 
heterostructure. The presence of CoS2 on the nano-petals makes the surface uneven, which also 
further increases its specific surface area [21–23]. 

3.3. TEM Results 

TEM image of Co-FeS2/CoS2 heterostructure nano-petals is shown in Figure 1d. CoS2 was 
observed in the nano-petals, further increasing the surface area of the sample and helps to adjust the 
kinetic barrier in the hydrogen evolution reaction. Figure 1e shows a high-resolution TEM (HRTEM) 
image of the Co-FeS2/CoS2 heterostructure which demonstrates lattice fringes with spacing of 0.248 
and 0.242 nm, corresponding to the (210) facet of the cubic CoS2 and the (210) facet of the cubic FeS2, 
respectively. The (210) interplanar spacing of FeS2 is 0.24 nm [24], and the (210) interplanar spacing 
of CoS2 is 0.25 nm [17]. The same crystal configuration and the similar interplanar spacing of FeS2 and 
CoS2 provide favorable conditions for the formation of heterostructures of FeS2 and CoS2. This 
strongly supports the Co-FeS2/CoS2 heterostructure to exhibit superior electrocatalytic hydrogen 
absorption performance. In other words, the Co-FeS2/CoS2 heterostructure is more responsive to the 
solution environment change such as pH value fluctuation. 

3.4. XPS Results 

X-ray photoelectron spectroscopy (XPS) was used to study the chemical composition and 
elemental oxidation states of the Co-FeS2/CoS2 heterostructure. The XPS survey spectrum in Figure 
2a shows that the Co-FeS2/CoS2 heterostructure is mainly composed of Co, Fe, and S. Figure 2b shows 
the high-resolution XPS spectrum of Co 2p. From the peak splitting results, Co 2p is split into three 
spin-orbit doublets. The two peaks with binding energies of 778.7 and 794.1 eV belong to cobalt in 
Co-FeS2. The fitted peaks at 780.9 eV and 797.3 eV can be assigned to cobalt in single-phase CoS2 [25]. 

Figure 1. (a) The X-ray diffraction (XRD) patterns for Co-FeS2/CoS2 heterostructure; (b,c) SEM images
of Co-FeS2/CoS2 heterostructure; (d) TEM image of Co-FeS2/CoS2 heterostructure; (e) HRTEM image of
Co-FeS2/CoS2 heterostructure.

3.2. SEM Results

As shown in the SEM image of Figure 1b, the micro-morphology of Co-FeS2/CoS2 is flower-like,
with a diameter of about 5 micrometers. This clearly shows the nano-flower structure of the
Co-FeS2/CoS2 heterostructure. The nano-petals on the flowers are interwoven and connected to
form a 3D micro-flower structure [20]. This structure not only greatly increases the specific surface area,
but also enhances the activity. More active sites can make the hydrogen produced by the decomposition
of water during the reaction easier to desorb and adsorb, which can improve the performance of
electrocatalyst. Figure 1c is a high-resolution SEM image of Co-FeS2/CoS2 heterostructure. The presence
of CoS2 on the nano-petals makes the surface uneven, which also further increases its specific surface
area [21–23].

3.3. TEM Results

TEM image of Co-FeS2/CoS2 heterostructure nano-petals is shown in Figure 1d. CoS2 was
observed in the nano-petals, further increasing the surface area of the sample and helps to adjust the
kinetic barrier in the hydrogen evolution reaction. Figure 1e shows a high-resolution TEM (HRTEM)
image of the Co-FeS2/CoS2 heterostructure which demonstrates lattice fringes with spacing of 0.248
and 0.242 nm, corresponding to the (210) facet of the cubic CoS2 and the (210) facet of the cubic FeS2,
respectively. The (210) interplanar spacing of FeS2 is 0.24 nm [24], and the (210) interplanar spacing of
CoS2 is 0.25 nm [17]. The same crystal configuration and the similar interplanar spacing of FeS2 and
CoS2 provide favorable conditions for the formation of heterostructures of FeS2 and CoS2. This strongly
supports the Co-FeS2/CoS2 heterostructure to exhibit superior electrocatalytic hydrogen absorption
performance. In other words, the Co-FeS2/CoS2 heterostructure is more responsive to the solution
environment change such as pH value fluctuation.

3.4. XPS Results

X-ray photoelectron spectroscopy (XPS) was used to study the chemical composition and elemental
oxidation states of the Co-FeS2/CoS2 heterostructure. The XPS survey spectrum in Figure 2a shows
that the Co-FeS2/CoS2 heterostructure is mainly composed of Co, Fe, and S. Figure 2b shows the
high-resolution XPS spectrum of Co 2p. From the peak splitting results, Co 2p is split into three
spin-orbit doublets. The two peaks with binding energies of 778.7 and 794.1 eV belong to cobalt in
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Co-FeS2. The fitted peaks at 780.9 eV and 797.3 eV can be assigned to cobalt in single-phase CoS2 [25].
The two satellite peaks (identified as “Sat”) with binding energies at 784.8 and 803.3 eV are attributed
to oxidized Co, produced by the oxidation of the Co-FeS2/CoS2 surface [26]. Figure 2c shows the
high-resolution XPS spectrum of Fe 2p. The peaks at 707.8 and 720.5 eV belong to Fe 2p3/2 and Fe 2p1/2,
respectively [27]. While the peaks at 711.2 and 732.5 eV belong to oxides of FeS2 on the surface of
the Co-FeS2/CoS2 heterostructure [28]. The high-resolution S 2p XPS spectrum, shown in Figure 2d,
has a peak at 162.6 eV, which belongs to S2

2− in FeS2 [29]. The peak at 163.8 eV belongs to the S in the
Co-FeS2 structure, while the peak at 168 eV is attributed to the oxide species of S [30].
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Figure 2. XPS spectra of Co-FeS2/CoS2 heterostructure: (a) survey spectrum, and high-resolution,
(b) Co 2p, (c) Fe 2p, (d) S 2p spectrum.

3.5. Electrocatalytic Performace

The electrocatalytic performance of Co-FeS2/CoS2 nanoflowers was tested in KOH solutions of
different pH. As shown in Figure 3a, when the pH of the solution is 14, 13.7, 13.4, 13.1, 12.4, 12.1,
and 11.4, the overpotentials required to reach a current density of 10 mA cm−2 are 132, 168, 223, 279, 492,
678, and > 1000 mV, respectively. By comparing the overpotential at different pH, it can be found that
the overpotential changes significantly with the change of pH which has a higher sensitivity [31,32].
As shown in Figure 3b, to further analyze the relationship between current density and pH, the required
overpotential at a current density of 10 mA cm−2 and different pH values were plotted. The equation
obtained by linear fitting is y = 0.322x − 4.6 (R2 = 0.944).

The results manifested the high sensitivity of the developed electrocatalytic sensor. When testing
the pH of an unknown solution, the overpotential required for Co-FeS2/CoS2 nano-flowers in this
solution, at a current density of 10 mA cm−2, can be measured first, and the pH of the unknown solution
can be obtained by substituting the overpotential into the equation. As a pH sensor, adding other
cations to the solution (pH = 14) will not interfere with the results, and there is almost no change
in overpotential. The Tafel slope is an important indicator for evaluating the reaction rate during
the HER process. It reveals the additional voltage required when the current density increases by
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a factor of 10. As shown in Figure 3c, the required Tafel slopes of the Co-FeS2/CoS2 nano-flowers
are 229, 251, 268, 315, 497, 687 and 1054 mV dec−1, when the solution pH is 14, 13.7, 13.4, 13.1, 12.4,
12.1 and 11.4, respectively. As shown in Figure 3d, a histogram was created to reveal the relationship
between the Tafel slope and pH more intuitively. Establishing a reliable linear relationship between the
electrocatalytic values of Co-FeS2/CoS2 nanoflowers and the pH of the solution can be used to obtain
the pH of an unknown solution.
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slope of Tafel in (c).

Due to adsorption/diffusion of H+/OH− ions the surface of nanoflowers becomes charged and it
creates an electrical double layer structure by site binding theory. With changes in the pH of a solution
the contribution of both H+ and OH− ions also varies, which can affect the efficiency of HER [13]. Also,
Figure A1 shows that Co-FeS2/CoS2 nanowires synthesized in previous work were used as a pH sensor,
and a similar linear relationship was obtained [20]. Figure A2 shows that by plotting the overpotential
required for the Co-FeS2/CoS2 nanowires to reach a current density of 10 mA cm−2 versus pH, the linear
equation y = 0.333x − 4.7 was obtained (R2 = 0.953). Both Co-FeS2/CoS2 nanoflowers and Co-FeS2/CoS2

nanowires have the potential to be used as pH sensors. In order to ensure the applicability of the
material, we conducted a stability test of 0–600 cycles on the samples, and performed an electrocatalytic
activity test every 100 cycles. The resulting LSV curve is shown in Figure 4a. Figure 4b is the
overpotential corresponding to the curve in Figure 4a after each stability test. It can be seen that after
the stability test, the performance only decreased 6 mV, indicating the good reversibility, which is the
better reversibility than the previous work [12,13,31].
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