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Amphioxus innate immune network<p>Domain rearrangements in the innate immune network of amphioxus suggests that domain shuffling has shaped the evolution of immune systems.</p>

Abstract

Background: Regulation in protein networks often utilizes specialized domains that 'join' (or
'connect') the network through specific protein-protein interactions. The innate immune system,
which provides a first and, in many species, the only line of defense against microbial and viral
pathogens, is regulated in this way. Amphioxus (Branchiostoma floridae), whose genome was recently
sequenced, occupies a unique position in the evolution of innate immunity, having diverged within
the chordate lineage prior to the emergence of the adaptive immune system in vertebrates.

Results: The repertoire of several families of innate immunity proteins is expanded in amphioxus
compared to both vertebrates and protostome invertebrates. Part of this expansion consists of
genes encoding proteins with unusual domain architectures, which often contain both upstream
receptor and downstream activator domains, suggesting a potential role for direct connections
(shortcuts) that bypass usual signal transduction pathways.

Conclusion: Domain rearrangements can potentially alter the topology of protein-protein
interaction (and regulatory) networks. The extent of such arrangements in the innate immune
network of amphioxus suggests that domain shuffling, which is an important mechanism in the
evolution of multidomain proteins, has also shaped the development of immune systems.

Background
Protein networks are often 'joined' (or 'connected') by special-
ized protein-protein interaction domains that specifically rec-
ognize their targets and thus connect upstream and

downstream elements of the network. The group of proteins
involved in apoptosis, members of which incorporate the
death domain (DD), death effector domain (DED), and cas-
pase recruitment domain (CARD) [1], and the group of
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proteins involved in innate immunity, members of which
incorporate the Toll/interleukin-1 receptor (TIR) domains
[2,3], represent excellent examples of such networks.
Genomes of extensively studied organisms, such as
Caenorhabditis elegans, Drosophila melanogaster, and
human, display strong conservation of many elements of
these two networks. In genome evolution, domain recombi-
nation events, such as fusion and fission, can create proteins
with novel domain combinations that may lead to new func-
tions, including providing new connections inside an existing
network or between different networks [4,5]. Traditionally, it
was generally accepted that 'simpler' organisms have less
complex networks and that 'more advanced' organisms add
new elements to the canonical 'cores' of these networks. How-
ever, analyses of recently sequenced genomes, including sea
urchin, amphioxus, and sea anemone, challenge this notion
[6-8]. For instance, we have shown that the evolution of the
apoptotic regulatory network consists of a succession of line-
age-specific expansions and losses, which, combined with the
limited number of 'apoptotic' protein families, has resulted in
apparent similarities between networks in different organ-
isms that mask an underlying complex evolutionary history
[9]. Here, we focus our analysis on the innate immune system
and discuss the potential effects of domain rearrangements
on network topology.

The innate immune system mediates the primary line of
defense against bacterial and viral infection and has distinc-
tive roles in inflammatory diseases as well as in cancer [10-
12]. In evolutionary terms, innate immunity is very ancient,
and several of its mediators can be traced to the basal meta-
zoans (that is, Porifera [13] and Cnidaria [14]). Defense sys-
tems that share similarity to animals' innate immunity have
also been described in plants, although the exact relation-
ships between these two systems are not clear [15,16]. The
evolutionary history of innate immunity and its relationship
to adaptive immune systems is of profound significance to
our understanding of immune competence, interrelation-
ships of immune mediators, and immune regulatory net-
works [17,18]. The recent sequencing of the amphioxus and
sea urchin genomes, which occupy critical positions in the
evolution of the deuterostomes (Figure 1), provides a basis for
approaching this broad question.

Sea urchin, an echinoderm, is a representative of one of the
two main branches of the deuterostome phylogeny [6].
Amphioxus, a cephalochordate, coming from one of the most
basal groups in the extant chordate lineage [19-21], repre-
sents the other (Figure 1). A large expansion in several multi-
gene families encoding pathogen recognition molecules
relative to both vertebrates, such as mammals, and inverte-
brates, such as C. elegans and D. melanogaster, was reported
in sea urchin [22,23]. Using different bioinformatics
resources and tools as well as directed analysis of specific
gene transcripts, we studied the innate immune genes in the
recently completed amphioxus genome. We found a similar

expansion in the numbers of innate receptors; however,
unlike sea urchin, much of this expansion in amphioxus con-
sists of genes with novel domain combinations. It is rather
unexpected that such radical changes can occur in a relatively
conserved network. At this point, amphioxus seems to be
unique in the scale of its novel domain rearrangements,
although the phenomenon of domain shuffling is likely to be
a common mechanism of genome evolution. The extent of
such changes in amphioxus highlights the importance of this
mechanism in the evolutionary development of the innate
immune system.

Results
Large multigene families encoding innate receptors
Innate immune responses depend on several families of pat-
tern-recognition receptors that recognize pathogen-associ-
ated molecular patterns and cellular danger signals, which
originate from invading pathogens or are released by dying or
injured cells. Two families of pattern-recognition receptors,
the transmembrane Toll-like receptors (TLRs) [24-26] and
the intracellular NOD-like receptors (NLRs) [27-29], are of
particular interest because of their role in a number of dis-
eases. Major differences in the numbers of the above pattern-
recognition receptors, as well as in other receptors, such as

Evolutionary relationships of select metazoansFigure 1
Evolutionary relationships of select metazoans. Taxa are arranged in 
descending order of phylogenetic emergence relative to vertebrates. The 
protostomes/deuterostomes split is indicated by a red circle. The blue 
shading is used to distinguish deuterostomes from all other animals. One 
branch of the deuterostomes includes the chordates (shown against a light 
blue background) and the other includes the echinoderms (shown against 
a deep blue background). Times of phylogenetic divergence are not to 
scale, and the tree branches are intended only to depict general 
relationships. The phylogenetic relationships between chordates described 
here are based on the current view that the cephalochordate is the most 
basal group in the extant chordate lineage [19-21].
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scavenger receptor cysteine-rich (SRCR) proteins [30], have
been reported in sea urchin relative to both vertebrates and
other invertebrates [22,23]. A similar expansion in these fam-
ilies is seen in the amphioxus genome (Table 1; Additional
data file 3). The several-fold increases in the number of genes
in these families in both sea urchin and amphioxus over other
known invertebrates and vertebrates suggest that there is
considerably more specificity in innate recognition in the
former two species. It appears as if expansion of innate recep-
tors is a shared characteristic of representatives of both arms
of deuterostome evolution (Figure 1). From the standpoint of
mammalian immunity, the findings in amphioxus are most
interesting as the phenomena along the chordate arm of evo-
lution has been lost in higher vertebrates; relatively few mem-
bers of these families of innate receptors are found in
vertebrate genomes.

The domain content of innate receptors in amphioxus 
is unique
TLRs consist of multiple leucine-rich repeats (LRRs) at the
amino terminus and a TIR domain at the carboxyl terminus
that recruits TIR domain-containing adaptors for down-
stream signaling [2,31] (Figure 2a); examples (in human) are
myeloid differentiation factor 88 (MyD88), TIR domain-con-
taining adaptor protein (TIRAP), TIR domain-containing
adaptor inducing interferon-β (TRIF), TRIF-related adaptor

molecule (TRAM), and sterile α and HEAT-Armadillo motifs
containing protein (SARM). Approximately eight domain
combinations containing the TIR domain occur in mammals,
five in Drosophila, and three in C. elegans (Figure 3; Addi-
tional data file 4). TIR domain combinations seen in Dro-
sophila and C. elegans are also found in human. In contrast,
20 (out of a total of 28) domain combinations containing a
TIR domain in amphioxus are specific to this organism. The
difference with sea urchin is of particular note, since only
about six TIR domain combinations exist in sea urchin,
although the number of proteins containing TIR domains in
sea urchin is even larger than in amphioxus (Table 1).

NLRs contain a nucleotide binding NACHT (domain present
in neuronal apoptosis inhibitory protein (NAIP), CIITA,
HET-E, and TP1) domain and are members of a distinct sub-
family of the AAA+ (ATPase associated with diverse cellular
activities) family [32]. In vertebrates, NLRs possess one of
several types of linker domains (CARD, PYRIN/PAAD
[amino-terminal domain of protein pyrin/pyrin, AIM
(absent-in-melanoma), ASC (apoptosis-associated speck-like
protein), and DD-like], or BIR (baculovirus inhibitor of apop-
tosis repeat)) at the amino terminus and multiple LRRs at the
carboxyl terminus that effect pathogen recognition [3,28]
(Figure 2a). Upon activation, NLRs are believed to assemble
into complexes (inflammasomes) and recruit and activate
additional proteins, such as caspase-1 and caspase-5 [33]. In
amphioxus, approximately 21 different domain combinations
involve NACHT domains, whereas approximately 5 are
predicted in mammals (Figure 3; Additional data file 4). The
NACHT domain is absent in Drosophila and C. elegans.
Finally, it is noteworthy that in amphioxus SRCR-containing
proteins, the SRCR domain - another domain related to the
innate immune system [30] - is also combined with a greater
diversity of other domains than in comparable proteins of sea
urchins and other animals (Additional data file 3), similar to
observations noted about TIR and NACHT domains.

Unique domain combinations imply unique topology of 
innate receptors
Activation of downstream host-defense mechanisms occurs
via specialized signal transduction pathways that are medi-
ated by a number of specific protein domains [3,34]. Domain
shuffling can create multidomain proteins with new domain
architectures and functions, including proteins serving as
novel connectors in regulatory pathways [5]. Organisms dif-
fer not only in the sizes of protein families, but also in their
domain architectures - the combination of different domains
in multidomain proteins. To study such differences, we have
previously developed the Comparative Analysis of Protein
Domain Organization (CADO) software package [35], which
provides a tool that can visualize and analyze domain combi-
nations of proteins in a given genome. CADO defines protein
organization as a graph in which protein domains are repre-
sented as nodes, and domain combinations, defined as
instances of two domains found in one protein, are repre-

Table 1

Expansion of protein families with innate immunity domains in 
amphioxus

Genome TIR NACHT

Homo sapiens (human) 24 (23) 23 (22)

Mus musculus (mouse) 24 (22) 33 (33)

Canis familiaris (dog) 26 (25) 17 (17)

Gallus gallus (chicken) 28 (27) 6 (6)

Xenopus tropicalis (western clawed frog) 28 (28) 22 (21)

Danio rerio (zebrafish) 30 (29) 21 (19)

Fugu rubripes (Japanese pufferfish) 17 (16) 180 (116)

Tetraodon nigroviridis (green pufferfish) 23 (20) 80 (11)

Ciona intestinalis (transparent sea squirt) 4 (4) 49 (45)

Branchiostoma floridae (amphioxus) 134 (125) 95 (94)

Strongylocentrotus purpuratus (purple sea 
urchin)

244 (216) 326 (320)

Drosophila melanogaster (fruit fly) 11 (11) 0

Caenorhabdidits elegans 2 (2) 0

Nematostella vectensis (sea anemone) 7 (7) 45 (43)

The value in each domain category for each species is the total number 
of full-length protein sequence hits, with the number confirmed by Pfam 
Protein Search or NCBI CD-Search under the default threshold shown 
in parentheses. Because of the extreme diversity of both TIR and 
NACHT domains and experimental verification of only limited numbers 
of gene predictions, the numbers of predicted proteins in all recently 
sequenced genomes are considered as approximations, dependent on 
significance thresholds for gene predictions and specific homology 
recognition tools used in the analysis. For a detailed list of protein 
sequences, see Additional data files 1 and 2.
Genome Biology 2008, 9:R123
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sented as edges (lines). Using CADO, domain graphs of two
(or more) genomes can be compared, identifying similarities
and differences both in individual domain combinations and
in general topology of the domain graph [35,36].

CADO-based analysis was applied in order to determine if the
expansion of the innate immunity receptor families also
resulted in changes to the overall topology of the innate
immune network in terms of unique domain combinations.
Based on the comparison of amphioxus, human, and sea
urchin genomes, the TIR domain combination repertoire of
sea urchin is very close to that seen in human (Figure 4a),
although the copy number of TIR-containing sequences

between human and sea urchin differs approximately 10-fold
(Table 1). Almost all the TIR domain combinations present in
human and sea urchin can also be identified in amphioxus,
which are shown by gray lines in Figure 4b,c; however,
amphioxus has many more unique TIR domain combina-
tions. Most of the domain combinations seen in amphioxus
are specific to this organism (red lines in Figure 4b,c).

Similar observations have been made for NLRs. In this case,
most of the differences reside in the amino-terminal domain.
Instead of a vertebrate-specific PYRIN/PAAD domain,
amphioxus can have CARD, DD, or DED as connector
domains (Figure 2b). The DD-NACHT and DED-NACHT

The diversification of the innate immune arsenal in amphioxusFigure 2
The diversification of the innate immune arsenal in amphioxus. (a) A simplified model of extracellular and intracellular innate immune signaling in human. 
TLR signaling involves recruitment of a number of TIR domain-containing adaptors, including myeloid differentiation factor 88 (MyD88), TIR domain-
containing adaptor protein (TIRAP), TIR domain-containing adaptor inducing interferon-β (TRIF), TRIF-related adaptor molecule (TRAM), and sterile α 
and HEAT-Armadillo motifs containing protein (SARM), which in turn activates transcription factors such as nuclear factor-κB (NF-κB) and interferon 
regulatory factors (IRFs) that ultimately lead to tumor necrosis factor (TNF) and type I interferon (IFN) production. NLR signaling can also stimulate 
inflammatory responses via the NF-κB pathway. Also, NLRs can form the inflammasome with apoptosis-associated speck-like protein (ASC) and 
procaspase-1, leading to the generation of the active form of interleukin (IL)-1β and IL-18. (b) The diversity of the innate immune system in amphioxus. 
Novel domain architectures as well as significant expansion in receptor number are evident. Selected 'direct connection' gene models are shown against a 
pink background. The cellular localization of amphioxus TLR proteins is still unclear; some of them could be localized in endosome in a manner equivalent 
to that seen in mammals. Domains: BIR, baculovirus inhibitor of apoptosis repeat domain [1]; CARD, caspase recruitment domain [1]; CASPASE, caspase 
[1]; DD, death domain [1]; DED, death effector domain [1]; IPAF, ICE (IL-1β converting enzyme) protease activating factor; LRR, leucine-rich repeat [24]; 
NACHT, NAIP, CIITA, HET-E, and TP1 [28]; NALP, NACHT, LRR, and PYRIN-domain-containing protein; NB-ARC, nucleotide-binding adaptor shared by 
APAF-1, R proteins, and CED-4 [42]; PYRIN, amino-terminal domain of protein pyrin [1]; TIR, Toll/interleukin-1 receptor [3,26]; TNFR, tumor necrosis 
factor receptor [59]; WD40, Trp-Asp 40 [60].
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direct domain combinations seen in NLRs have not been seen
in vertebrates but are found in sea urchin [6,23] and Nemato-
stella vectensis [7,37]. Because the amino-terminal prodo-
main in amphioxus caspases can be any of the DD, DED, or
CARD types, these hybrid intracellular pathogen recognition
receptors may directly trigger the apoptosis response (Figure
2b), rather than function through an ASC-like 'hub'.

Other types of hybrid genes, including those encoding tumor
necrosis factor receptor (TNFR)-caspase, LRRs-caspase,
TIR-NACHT, TIR-[NB-ARC]-WD40s (NB-ARC is nucle-
otide-binding adaptor shared by APAF-1, R proteins, and
CED-4; WD40 is Trp-Asp 40), TIR-sterile alpha motif (SAM),
TIR-Laminin and so on, which potentially could mediate
immune-related functions, have also been identified in the
amphioxus genome.

The unique predicted hybrid genes are expressed
Despite the presence of unusually complex patterns of repet-
itive DNA, the current assembly of the amphioxus genome is
generally highly reliable [19]; notwithstanding this high level
of confidence in the hybrid gene predictions, it is essential to
note that cDNA transcripts of many of the predicted hybrid
proteins have been recovered. The TNFR-caspase domain
protein (Joint Genome Institute (JGI) model: Brafl1_82667)
represents one of the shortcut pathways of particular interest
(Figure 2b; Additional data file 6 part a). This predicted trans-
membrane protein contains an extracellular TNFR domain
and an intracellular caspase domain and presumably pro-
vides a shortcut between inflammatory-type signals and cell
death. cDNA analyses not only validate this domain architec-
ture but also have identified other related gene sequences,

Different domain combinations in innate immunity receptor familiesFigure 3
Different domain combinations in innate immunity receptor families. 
Numbers of different domains that combine with an individual TIR or 
NACHT domain in each designated genome are displayed. 'Average of all 
domains' (purple bars) means the average of domain combinations over all 
domains found in a genome. A detailed list of partner domains that 
combine with TIR or NACHT in each genome is given in Additional data 
file 4. The absolute numbers differ slightly when different Ensembl protein 
datasets or thresholds are used, but the relative fluctuations between 
different genomes are the same.
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including more than one type of both TNFR and caspase
domains. These transcripts are the products of three genetic
regions on scaffolds: _41, _114, and _457. Other examples
include cDNAs encoding: the death-caspase domain combi-
nation predicted in model Brafl1_105741
(fgenesh2_pg.scaffold_505000014); the death-NACHT
domain combination in model Brafl1_82459
(fgenesh2_pg.scaffold_111000114) and Brafl1_89453
(fgenesh2_pg.scaffold_187000018); the DED-NACHT com-
bination in model Brafl1_98233
(fgenesh2_pg.scaffold_317000043); and the TIR-SAM com-
bination in model Brafl1_131196
(estExt_fgenesh2_pg.C_5050026), which are described in
Additional data file 5.

The recovery of transcripts corresponding to the 'direct con-
nector' genes is, in itself, important as many of these genes
most likely exhibit developmental stage-specific expression,
may be expressed in relatively low abundance, and/or are
transcribed in cells that are present in relatively low numbers
or are undergoing apoptosis. Efforts to locate the expression
of hybrid genes are currently underway.

Discussion
The large-scale expansion of several families of innate recep-
tors in amphioxus parallels that seen in sea urchin and is a
shared feature of both sides of the deuterostome split. The
phenomenon of lineage-specific gene expansion has also been
reported for protein families in other genomes [38]. Further
sequencing efforts are required to establish if the large num-
bers of novel domain architectures in innate immune-related
genes are specific only to amphioxus, are specific only to deu-
terostomes, or represent a more general mechanism. We
stress that the exact functions of these genes from amphioxus
remain unknown and that further experimental work is
needed; however, it is reasonable to hypothesize that the wide
variety of domain combinations reported here likely expands
the functions of the innate immune system in amphioxus. It
is tempting to speculate that perhaps functionality of the
amphioxus specific genes is provided by other regulatory
mechanisms in vertebrates and that better understanding of
the functions of novel amphioxus genes may help in discover-
ing these mechanisms.

Many of the domain combinations in amphioxus are present
in separate proteins in vertebrates that are interconnected by
multistep signaling pathways (examples shown in Figure 2b
and Additional data file 6). As such, the amphioxus proteins
can be viewed as shortcuts between two endpoints. The pres-
ence of such shortcuts would change the topology of the net-
work in a way that can be described as a difference between
'hub-and-spoke' versus 'direct connection' networks [39]. For
instance, a TIR-NACHT architecture, present in amphioxus
but absent in vertebrates, is a shortcut that directly connects
the extra- and intracellular pathogenic pattern-recognition

pathways (Figure 2b). In human, these two pathways are
likely connected 'indirectly' by transforming growth factor-β
activated kinase 1 (TAK1), receptor-interacting protein 2
(RIP2), and/or other molecules, although the detailed rela-
tionships of this functional integration are not resolved
[3,34,40]. Proteins composed of LRRs or TNFR domains that
directly connect to the caspase domain could provide direct
links between pathogen recognition and apoptosis (Figure
2b; Additional data file 6). All these proteins contain the con-
served QACXG (where X is R, Q, or G) pentapeptide active-
site motif [41] in their caspase domains and, thus, likely have
proteolytic function (Additional data file 7). Amphioxus pro-
teins that combine a TIR domain with an NB-ARC domain
[42] and WD40 repeats share features with Apaf-1 (apoptotic
protease activating factor 1; a central regulator of apoptosis in
animals, which consists of a CARD domain, an NB-ARC
domain, and multiple WD40 repeats). The association of
these structures with an amino-terminal TIR domain sug-
gests a direct link between the innate immunity and apoptosis
networks.

In general, the innate immunity and apoptosis networks,
which interact through a complex system of signaling path-
ways in human and other vertebrates, are closely intertwined
in amphioxus through multiple direct connection proteins. It
is possible that the close relationship between these two
major systems represents an important innovation at the base
of the deuterostome lineage that has been preserved through-
out the vertebrates, albeit implemented through different
mechanisms. It has been shown that the artificial joining of
domains in novel combinations [43-45] create new signaling
pathways. Specifically, the chimeric adaptor proteins, which
contain a DED with a phosphotyrosine-binding (PTB) or Src
homology 2 (SH2) domain, can redirect tyrosine kinase sign-
aling from survival and cell growth to apoptosis [45]. In
another example, it has been shown that caspase can be acti-
vated by the chemically inducible dimerization (CID) signal,
resulting in apoptosis when its catalytic domain is artificially
fused to CID-binding domains [43]. These directed studies
lend considerable support for potential functions of the mul-
tiple shortcut proteins that have been identified in amphi-
oxus. Furthermore, the results suggest that engineering of
constructs corresponding to the amphioxus chimeric mole-
cules represents a viable approach for gaining a better under-
standing of how these molecules function in innate immunity.
The presence of direct connectors has important conse-
quences for the flexibility of the network. In the hub-and-
spoke model, the number of possible connections is exponen-
tial, even with the linear growth of the number of proteins. A
very large number of different 'direct connections' would be
required to provide equivalent flexibility.

Although not characterized at the transcription level, some of
the 'hub' domains and connections that are present in human
can also be found in the cnidarian N. vectensis [14,46], such
as the NACHT domain, the death-TIR connection, the Ig-TIR
Genome Biology 2008, 9:R123
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connection, and so on. Thus, the 'hub-and-spoke' model
could be considered ancestral and was reduced in the arthro-
pod and nematode lineage by eliminating some 'destinations'
and/or even 'hubs' (for example, C. elegans has only one Toll-
like receptor, TOL-l [47], and one SARM-like TIR domain
containing adaptor, TIR-1 [48]; the NACHT domain is absent
in both C. elegans and Drosophila (Table 1)). Taken together
with the observations reported here, expansion appears to
have occurred at the base of deuterostomes, and further evo-
lution may well have proceeded independently in the echino-
derm and cephalochordate branches. Although proteins with
novel domain combinations also have been found in sea
urchin [23,49], the extent of such direct connections appears
to be far greater in amphioxus. It is reasonable to assume that
some direct connections could have been lost with the emer-
gence of the vertebrate adaptive immune system or effectively
replaced by additional 'hub' molecules, such as the ASC in the
vertebrate lineage [33]. In light of these changes, the topology
of the network would become closer to that of the common
ancestor. The coexistence of both shortcut and conventional
pathways in an extant species is exceptional and underscores
the potential relevance of amphioxus for understanding the
selective advantages of such arrangements.

Conclusion
Two aspects of genome architecture and complexity influence
innate immunity in amphioxus. First, large-scale gene expan-
sion, a characteristic shared with sea urchin, creates a greater
level of potential specificity in several families of innate
immune receptors than is found in species with adaptive
immune systems and could result in refinement of immune
function. Second, novel domain architectures and, in particu-
lar, direct connections (shortcuts) in regulatory pathways can
introduce a more refined level of functional integration of
networks than would likely be achieved by the simple dupli-
cation and subsequent divergence of genes encoding immune
receptors. A model for expansion and the possibility of topol-
ogy change of a network is presumed in the analyses of the
amphioxus genome presented here. A corollary issue raised
by these observations is whether specific features of the
amphioxus genome, such as the extraordinary level of site
variation and unusually complex patterns of repetitive DNA,
factor in such changes. Irrespective of their origins, genes
with novel architectures in amphioxus could potentially serve
as a pathway-level 'Rosetta stone' for elucidating new regula-
tory connections in the innate systems of contemporary ver-
tebrates, similar to approaches that are used to elucidate
protein and regulatory complexes in prokaryotic genomes
[50]. Assuming that such shortcuts impart selective advan-
tage, there is reason to look for signaling alternatives that may
emulate the predicted distinct function implicit in these
unique hybrid structures.

Materials and methods
Datasets
The v.1.0 genome assembly and related gene models of
amphioxus (Branchiostoma floridae) were obtained from the
JGI [51] as were the genome assembly 1.0 and related protein
set of the sea anemone (N. vectensis). The genome assembly
Spur_v2.0 and the GLEAN3 gene models for the sea urchin
(Strongylocentrotus purpuratus) were obtained from the
Baylor College of Medicine Human Genome Sequencing
Center [52]. The other genome sequences and corresponding
protein sets, including human, mouse, dog, chicken, Xeno-
pus, zebrafish, fugu, tetraodon, ciona, nematode (C. elegans),
and fruit fly (D. melanogaster) were downloaded from
Ensembl [53].

Database search and sequence analysis
Several rounds of PSITBLASTN [54] searches were per-
formed against each genome using known human TIR or
NACHT domain amino acid sequences as seeds. Hits were
mapped to the corresponding genome protein set in order to
obtain the full-length protein sequences (for sea urchin and
sea anemone, some of the gene models were in addition pre-
dicted by GenScan [55]). All identified genes were checked
using: first, reciprocal BLAST analysis; second, Pfam protein
searches, performed either locally or at the Pfam website [56],
which also address the issue of family specificity, such as dis-
tinguishing NACHT domain from NB-ARC domain based on
different hidden Markov models; third, NCBI CD-Search [57]
and local RPS-BLAST search; and fourth, multiple sequence-
alignment and phylogeny analysis.

Domain combination analysis
Different combinations of innate immune domains identified
in the aforementioned genomes were compared using the
CADO [35] approach.

RT-PCR confirmation of select modular transcripts
JGI-predicted models were used to develop PCR strategies for
identifying cDNA transcripts. The predicted transcripts were
placed onto the current assembly (v.1.0) using local BLAST
(v.2.2.11) to verify genomic organization (for example, exon/
intron structure and gene copy number). Primers were
designed (from visual alignments or with Primer3 [58]) to
span domain combinations and specific exon/intron bounda-
ries. Primer design accommodated variations due to genetic
polymorphism and haplotype complexity, a significant con-
founding aspect of this type of analysis. Total RNA was iso-
lated from 30 animals using RNA-Bee (Tel-Test, Inc.,
Friendswood, TX, USA), and cDNA synthesis was primed
using either poly-A or random hexamer strategies (Super-
ScriptIII, Invitrogen, Carlsbad, CA, USA). cDNAs were com-
bined and served as templates for PCR amplification. Certain
transcripts could be detected only after two rounds of nested
PCR. Transcribed sequences with the expected length were
sequenced to confirm the predicted gene models. The verified
amphioxus gene models in this study have been deposited in
Genome Biology 2008, 9:R123
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the GenBank database under accession numbers [Gen-
Bank:EU049583] to [GenBank:EU049596] and [Gen-
Bank:EU279424] to [GenBank:EU279425] (Additional data
file 5).
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