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Abstract
Time-	series	data	offer	wide-	ranging	opportunities	to	test	hypotheses	about	the	phys-
ical	and	biological	factors	that	influence	species	abundances.	Although	sophisticated	
models	have	been	developed	and	applied	to	analyze	abundance	time	series,	they	re-
quire	 information	about	species	detectability	that	 is	often	unavailable.	We	propose	
that	in	many	cases,	simpler	models	are	adequate	for	testing	hypotheses.	We	consider	
three	relatively	simple	regression	models	for	time	series,	using	simulated	and	empiri-
cal	(fish	and	mammal)	datasets.	Model	A	is	a	conventional	generalized	linear	model	of	
abundance,	model	B	adds	a	temporal	autoregressive	term,	and	model	C	uses	an	esti-
mate	of	population	growth	rate	as	a	response	variable,	with	the	option	of	including	a	
term	for	density	dependence.	All	models	can	be	fit	using	Bayesian	and	non-	Bayesian	
methods.	Simulation	results	demonstrated	that	model	C	tended	to	have	greater	sup-
port	for	long-	lived,	lower-	fecundity	organisms	(K	life-	history	strategists),	while	model	
A,	the	simplest,	tended	to	be	supported	for	shorter-	lived,	high-	fecundity	organisms	
(r	life-	history	strategists).	Analysis	of	real-	world	fish	and	mammal	datasets	found	that	
models	A,	B,	and	C	each	enjoyed	support	for	at	 least	some	species,	but	sometimes	
yielded	different	 insights.	 In	particular,	model	C	 indicated	effects	of	predictor	vari-
ables	that	were	not	evident	in	analyses	with	models	A	and	B.	Bayesian	and	frequen-
tist	models	yielded	similar	parameter	estimates	and	performance.	We	conclude	that	
relatively	simple	models	are	useful	for	testing	hypotheses	about	the	factors	that	in-
fluence	abundance	in	time-	series	data,	and	can	be	appropriate	choices	for	datasets	
that	lack	the	information	needed	to	fit	more	complicated	models.	When	feasible,	we	
advise	fitting	datasets	with	multiple	models	because	they	can	provide	complementary	
information.
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1  |  INTRODUC TION

Understanding	 factors	 that	 govern	 population	 size	 through	 time	
is	 a	 central	 theme	 in	 ecology,	 with	 a	 rich	 history	 of	 inquiry	 that	
spans	 theoretical	 and	 mathematical	 (Hassell,	 1975;	 May,	 1975; 
Turchin,	 1990)	 to	 empirical	 and	 applied	 approaches	 (Beissinger	 &	
McCullough,	2002;	Morris	&	Doak,	2002).	Over	 the	 past	 decade,	
advances	in	state–	space	models	have	woven	together	a	number	of	
these	 different	 research	 lineages.	 For	 example,	 efforts	 have	 suc-
cessfully	incorporated	density-	dependent	population	growth	mech-
anisms	into	data-	driven	statistical	models	of	population	time	series	
while	 accounting	 for	 imperfect	 detection	 (Dail	 &	 Madsen,	 2011; 
Hostetler	&	Chandler,	2015;	Kanno	et	al.,	2015;	Zipkin	et	al.,	2014).	
Model	 extensions	 account	 for	 excess	 zeroes	 due	 to	 immigration/
emigration	 (Hostetler	 &	 Chandler,	 2015)	 and	 simultaneous	 anal-
ysis	 of	multiple	 populations,	which	 facilitates	 viability	 analysis	 for	
less	 intensively	sampled	populations	 (Leasure	et	al.,	2019;	Wenger	
et	al.,	2017).	Mark–	recapture	models	have	likewise	been	extended	
to	hierarchical	models	in	which	demographic	processes	are	the	focus	
(Link	&	Barker,	2005),	 joint	models	of	 interacting	species	 (Yackulic	
et	 al.,	2018),	 and	 integrated	population	 viability	models	 (Saunders	
et	al.,	2018),	among	others.

Two	fundamental	challenges	characterize	these	recent	modeling	
advances:	(1)	they	are	data	intensive,	generally	requiring	additional	
sampling	effort	to	estimate	observation	error,	and	(2)	they	are	struc-
turally	complex,	which	puts	them	beyond	the	reach	of	many	practi-
tioners.	The	first	point	is	the	most	important	because	many	existing	
time	 series	 datasets	 lack	 the	 information	 needed	 to	 fit	 an	 obser-
vation	model,	 rendering	 such	approaches	 infeasible.	However,	 the	
complexity	of	the	modeling	can	be	a	barrier	even	when	all	requisite	
data	are	available.	Most	such	models	must	be	fit	using	custom-	coded	
Bayesian	methods,	often	requiring	weeks	to	months	of	development	
and	troubleshooting.	With	large	datasets,	they	may	require	consid-
erable	computational	time	to	fit	a	single	model,	although	recent	ad-
vances	have	reduced	this	time	(e.g.,	Yackulic	et	al.,	2020).	Much	of	
this	 complexity	 is	 a	 necessary	 result	 of	 incorporating	 observation	
and	 sampling	 models,	 which	 are	 essential	 for	 obtaining	 unbiased	
estimates	 of	 true	 abundance	 and	 population	 viability	 (Freckleton	
et	al.,	2006;	Hobbs	&	Hooten,	2015).

However,	there	are	many	applications	where	incorporating	ob-
servation	and	sampling	models	is	not	essential,	and	for	which	simpler	
models	may	provide	useful	insights.	One	such	application,	which	is	
our	focus	here,	is	testing	ecological	hypotheses	to	explain	changes	
in	species	abundance	as	a	function	of	abiotic	or	biotic	covariates.	In	
this	case,	it	is	not	necessary	to	know	the	true	population	abundance	
or	the	observation	error,	as	 long	as	the	observation	errors	are	ho-
mogeneous,	or	nearly	 so.	Most	 importantly,	 the	observation	error	
cannot	be	correlated	strongly	with	a	predictor	variable	of	 interest.	

For	example,	if	one	wishes	to	test	whether	individual	counts	through	
time	are	a	function	of	temperature,	temperature	must	not	strongly	
influence	 detection.	 If	 this	 assumption	 can	 be	met,	 then	 a	 simple	
model	structure	may	yield	useful	insights.	This	is	fortunate	because,	
as	 mentioned	 above,	 many	 existing	 population	 time-	series	 data-
sets	 lack	 replicates	or	other	 auxiliary	data	with	which	 to	properly	
fit	observation	models	(e.g.,	repeat	sampling,	multiple	observers,	or	
mark–	recapture	data),	but	nevertheless	contain	information	poten-
tially	useful	for	testing	hypothesized	drivers	of	population	dynamics.	
The	number	of	such	datasets	has	greatly	increased	in	recent	decades	
(Comte	et	al.,	2021;	Dornelas	et	al.,	2018).

Most	population	time	series	have	some	degree	of	temporal	au-
tocorrelation,	meaning	that	the	abundance	at	any	point	in	time	is	de-
pendent	on	one	or	more	previous	time	steps	(Barker	&	Sauer,	1992; 
Tuljapurkar	&	Haridas,	2006).	This	presents	a	challenge	for	testing	
hypotheses	to	explain	abundance	through	time	because	abundance	
may	be	high	despite	unfavorable	environmental	conditions	if	it	was	
even	higher	in	a	previous	time	step,	or	low	despite	favorable	envi-
ronmental	 conditions	 if	 it	was	even	 lower	 in	a	previous	 time	step.	
Conversely,	negative	density	dependence	can	cause	populations	to	
decline	when	abundances	are	high	or	increase	when	abundances	are	
low,	 regardless	 of	 any	 environmental	 influence.	 Addressing	 these	
nuisances	may	be	necessary	for	testing	hypothesized	drivers	of	pop-
ulation	change.

We	explore	a	range	of	regression	models	that	differ	mainly	in	how	
they	account	for	temporal	autocorrelation.	At	one	end	of	the	spec-
trum	is	a	traditional	generalized	linear	modeling	(GLM)	approach	in	
which	abundance	at	every	time	step	is	assumed	to	be	independent	of	
previous	time	steps.	This	simple	model	would	likely	be	most	suitable	
for	highly	fecund,	short-	lived	species	 (i.e.,	 r	 life-	history	strategists)	
whose	populations	undergo	large	fluctuations	with	low	temporal	au-
tocorrelation.	We	refer	to	this	as	model	A.	At	the	other	end	of	the	
spectrum,	model	C	uses	the	difference	in	abundance	between	time	
steps	 (which	can	be	 interpreted	as	 the	population	growth	 rate)	 as	
the	response	variable,	an	approach	more	appropriate	for	long-	lived	
species	with	low	fecundity	(i.e.,	K	life-	history	strategists)	where	pop-
ulations	change	relatively	slowly	through	time	(i.e.,	their	population	
time	series	have	high	temporal	autocorrelation).	This	model	can	also	
readily	accommodate	density	dependence.	An	 intermediate	model	
(model	B)	 is	a	GLM	with	 the	same	structure	as	model	A,	but	with	
random	effects	modeled	as	temporally	autoregressive.	Model	B	rep-
resents	abundance	as	a	function	of	environmental	covariates,	as	in	
Model	A,	 but	 removes	 the	 assumption	 that	 successive	 counts	 are	
independent.

We	describe	the	three	models	(Section	2)	and	evaluate	them	using	
simulated	population	data	to	test	how	they	perform	for	species	with	
different	 life-	history	characteristics	 (Section	3).	We	then	apply	the	
models	to	two	case	studies	using	empirical	data	(Sections	4	and	5).	

T A X O N O M Y  C L A S S I F I C A T I O N
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The	first	case	study	uses	a	freshwater	fish	dataset	to	test	hypotheses	
of	associations	between	river	 flow	conditions	and	abundance	over	
time,	and	the	second	case	study	uses	a	small	mammal	dataset	to	test	
hypotheses	of	population	response	to	precipitation	and	fire	regimes.	
Finally,	we	discuss	the	results	and	provide	recommendations	based	
on	the	model	comparisons	(Section	6).	Throughout,	our	perspective	
is	pragmatic	rather	than	theoretical:	we	wish	to	identify	models	that	
are	useful	for	testing	hypotheses	to	understand	the	change	in	abun-
dance	 through	 time.	 Our	 hope	 is	 that	 this	 study	 provides	 useful	
guidance	to	ecologists	and	managers	who	are	interested	in	testing	
hypotheses	 using	 existing	 time-	series	 datasets,	 particularly	 those	
datasets	that	lack	information	for	fitting	more	complicated	models.

2  |  THREE REGRESSION MODEL S AND 
VARIANTS FOR TESTING HYPOTHESES TO 
E XPL AIN VARIATION IN ABUNDANCE OVER 
TIME

2.1  |  Model A. Generalized linear mixed model of 
abundance

For	all	models,	we	assume	a	dataset	of	counts	comprised	of	individu-
als (Ns,t)	at	one	or	more	sites	(s)	at	two	or	more	points	in	time	(t),	with	
at	least	one	candidate	covariate	(X1s,t)	to	explain	variation	in	counts	
in	space	and/or	time	(in	this	section,	we	index	the	covariate	by	space	
and	time,	but	in	our	examples,	 it	 is	 indexed	only	by	time,	with	one	
exception	for	example	2).	Because	we	are	modeling	count	data,	we	
use	a	generalized	linear	mixed	model	(GLMM)	in	which	stochasticity	
is	treated	as	conditionally	Poisson	(potentially	with	overdispersion)	
or	negative	binomially	distributed.	The	simplest	model,	which	we	call	
“model	A,”	assumes	no	latent	temporal	autocorrelation	in	abundance	
after	accounting	for	fixed	effects.

This	is	an	overdispersed	Poisson	GLMM.	If	there	are	multiple	sites,	
latent	random	effects	�s,t	may	not	be	fully	independent,	as	sites	may	
differ	 in	 mean	 abundances	 even	 after	 accounting	 for	 covariates.	
Therefore,	a	random	intercept	for	site	 identity	will	usually	be	nec-
essary.	Random	slopes	for	covariates	may	also	be	considered.	This	
model	 is	 very	 similar	 to	 the	 basic	 Bayesian	model	 for	 time-	series	
analysis	 at	 multiple	 sites	 presented	 by	 Kéry	 and	 Schaub	 (2012),	
which	has	been	widely	applied	in	ecological	analyses.	It	can	be	fit-
ted	with	common	non-	Bayesian	statistical	packages	or	by	Bayesian	
methods.

2.2  |  Model B. Generalized linear mixed model of 
abundance with autoregressive errors

Model	B	accounts	for	latent	autoregressive	dependence	via	the	pa-
rameter ρ	 in	 formula	2	below.	Most	commonly,	 the	autoregressive	

dependence	 is	assumed	to	be	Markov,	 i.e.,	dependent	only	on	the	
previous	time	step	(also	called	AR1	or	a	moving	average	model),	al-
though	different	dependence	structures	are	possible.

This	 can	 be	 coded	with	 relative	 ease	 in	 Bayesian	 software	 such	 as	
JAGS	(Plummer,	2003)	or	stan	(Stan	Development	Team,	2020),	or	it	
can	be	fit	with	the	R	packages	glmmTMB	(Brooks	et	al.,	2017)	and	brms	
(Bürkner,	2017).	One	consequence	of	adding	the	autoregressive	term	
is	that	this	model	requires	more	temporally	complete	data	than	model	
A	because	at	least	two	consecutive	time	steps	of	data	are	required	to	
estimate	the	AR1	error	term.	However,	missing	count	data	can	be	im-
puted	if	Bayesian	methods	are	used	or	a	custom	model	is	written.	The	
model	implicitly	assumes	that	time	steps	are	equal.

2.3  |  Model C. Generalized linear model of 
growth rate

Model	C	(Equation 3)	characterizes	the	change	in	abundance	through	
time—	i.e.,	the	population	growth	rate.

This	model	cannot	be	fit	in	this	form	using	conventional	non-	Bayesian	
regression	packages	(although	see	Equation 5	for	a	reformulation),	but	
can	be	estimated	with	Bayesian	methods.	We	can	include	an	autore-
gressive	abundance	term	(on	the	original	scale,	not	logged)	to	serve	as	
a	density	dependence	term	(Hobbs	&	Hooten,	2015; Equation 4).

Coefficient	β2	will	usually	take	on	a	negative	value,	representing	neg-
ative	density	dependence,	 i.e.,	 the	reduction	 in	growth	rate	as	N	 in-
creases.	 The	 intercept	 in	 this	model	 (β0)	 can	 now	 be	 interpreted	 as	
the	intrinsic	growth	rate	or	the	growth	rate	when	N is close to 0. This 
model	formulation	is	a	form	of	the	Ricker	model,	with	carrying	capacity	
calculated	as	K =

�0

− �2
,	 after	 accounting	 for	exogenous	 influences	on	

population	change	(�1X1s,t).	For	simplicity,	we	use	Equation 3	for	model	
C	in	the	simulations	and	examples	in	this	study,	but	we	return	to	the	
topic	of	density	dependence	in	Section	6.

Like	 model	 B,	 model	 C	 implicitly	 assumes	 that	 time	 steps	 are	
approximately	equal,	and	is	not	appropriate	for	datasets	with	many	
missing	 data	 points	 unless	 using	 Bayesian	 methods	 or	 a	 custom	
model	that	allows	for	imputation.	Unlike	models	A	and	B,	a	random	
effect	 for	 site	 identity	may	not	 be	 necessary	 because	 differences	
in	 mean	 abundances	 among	 sites	 are	 accounted	 for	 by	 modeling	
changes	in	abundance	rather	than	absolute	abundance.	However,	if	
some	sites	have	higher	or	lower	long-	term	growth	rates	than	can	be	
explained	by	covariates,	random	effects	may	be	required.	Random	
slopes	may	also	be	considered	 if	covariates	affect	the	growth	rate	
differently	due	to	context-	dependent	processes	that	vary	in	space.

(1)

Ns,t
∼ Poisson

(

�s,t

)

; log
(

�s,t

)

= �0 + �1X1s,t + �s,t ; �s,t
∼Normal

(

0, �2
)

.

(2)

Ns,t
∼ Poisson

(

�s,t

)

; log
(

�s,t

)

= �0 + �1X1s,t + �s,t ; �s,t
∼
N
(

�
(

�s,t−1
)

, �2
)

.

(3)

Ns,t
∼ Poisson

(

�s,t

)

; log
(

�s,t

)

= log
(

�s,t−1

)

+ �0 + �1X1s,t + �s,t ; �s,t
∼
N
(

0, �2
)

.

(4)
Ns,t

∼ Poisson
(

�s,t

)

; log
(

�s,t

)

= log
(

�s,t−1

)

+ �0 + �1X1s,t + �2�s,t−1 + �s,t ; �s,t
∼
N
(

0, �2
)

.
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Although	this	model	cannot	be	fit	using	conventional	frequentist	
statistical	packages,	an	approximation	using	conventional	frequen-
tist	regression	methods	is	possible	if	the	dataset	contains	no	zeros,	
or	if	1	is	added	to	all	counts	to	preclude	non-	zero	values.	We	rear-
range	the	model	to	bring	the	lagged	abundance	term	to	the	left	side	
and	omit	the	Poisson	stochasticity	(Equation 5).

In	the	previously	presented	models,	the	data	used	are	the	abundances,	
but	here	 the	data	are	 the	 log	of	 the	 ratio	of	abundance	 in	 time	 t to 
abundance	in	time	t − 1,	which	is	equivalent	to	log(Ns,t) − log(Ns,t−1).	This	
makes	it	possible	to	fit	the	model	using	any	linear	regression	software.	
Models	of	similar	form	have	been	used	in	ecological	time-	series	analy-
sis	previously,	although	often	with	a	coupled	observation	model	(e.g.,	
Williams	et	al.,	2003).

For	all	three	models,	observation	error	 is	a	problem	if	 it	 is	cor-
related	with	one	or	more	variables	of	interest,	as	mentioned	previ-
ously.	 If	 a	 variable	 (say,	 temperature)	 affects	 both	 abundance	 and	
detection,	the	individual	effects	cannot	be	separated	using	the	mod-
els	 discussed	 here.	 However,	 if	 detection	 varies	 predictably	 with	
an	environmental	variable	that	is	not	of	research	interest	and	is	not	
strongly	correlated	with	a	variable	of	 interest,	then	 it	may	be	pos-
sible	to	include	a	covariate	to	account	for	the	observation	bias	and	
obtain	an	unbiased	estimate	of	the	covariate	that	is	of	interest.	This	
does	not	require	a	separate	observation	model;	the	covariate	can	be	
simply	 included	as	a	 linear	term	(Barker	et	al.,	2018).	We	 illustrate	
this	idea	in	the	case	study	presented	in	Section	4.

3  |  SIMUL ATIONS

We	simulated	population	time	series	to	compare	the	performance	of	
the	Bayesian	and	non-	Bayesian	versions	of	the	three	models	when	
fitted	to	datasets	representing	populations	that	varied	by	fecundity	
and	survival.	Our	simulations	were	based	on	a	matrix	modeling	ap-
proach	that	accounted	for	life	span,	reproductive	age,	juvenile	sur-
vival	rate,	adult	survival	rate,	fecundity	(technically,	this	is	fecundity	
multiplied	by	egg-	to-	juvenile	survival),	carrying	capacity,	initial	pop-
ulation	size,	and	length	of	simulation	(Figure 1).

We	assumed	that	juvenile	survival	(Sj)	was	affected	by	a	single	time-	
varying	environmental	variable	(env1),	adult	survival	(Sa)	was	affected	
by	a	different	time-	varying	environmental	variable	(env2),	and	that	Sj 
and	Sa	did	not	covary.	These	environmental	variables	were	drawn	from	
normal	distributions	(one	draw	per	time	step,	t)	with	a	mean	of	zero	
and	were	added	to	Sj	and	Sa	on	the	logit	scale,	after	which	the	variables	
were	back-	transformed	to	probabilities.	Survival	was	calculated	inde-
pendently	for	each	year	class	as	a	binomial	process	based	on	the	appli-
cable	(juvenile	or	adult)	survival	probability.	Recruitment	was	modeled	
as	a	Poisson	process	based	on	the	number	of	reproductive	adults	and	
fecundity.	Density	dependence	was	incorporated	into	the	juvenile	sur-
vival	term	by	multiplying	Sj	by	1 − (Nt−1/K),	where	K	is	the	carrying	ca-
pacity.	All	code	is	provided	with	the	data	in	the	Zenodo	archive.

In	our	first	round	of	simulations,	we	ran	a	large	number	of	iter-
ations	representing	two	scenarios.	Scenario	1	specified	high	fecun-
dity	(4	juveniles	per	adult),	low	survival	(Sj =	0.25,	Sa =	0.4),	a	carrying	
capacity	of	1000,	and	a	lifespan	of	3 years.	Scenario	2	specified	low	
fecundity	(0.5	juveniles	per	adult),	high	survival	(Sj =	0.5,	Sa =	0.9),	
a	carrying	capacity	of	500,	and	a	 lifespan	of	12 years.	To	test	our	
models,	 we	 summed	 the	 adult	 population	 at	 each	 time	 step	 and	
modeled	N	as	a	function	of	env1	and	env2	using	each	of	the	three	
model	structures.	We	predicted	that	models	A	and	B	would	be	fa-
vored	for	Scenario	1	(a	population	of	a	high-	fecundity,	short-	lived	
species	with	low	temporal	autocorrelation),	and	that	model	C	would	
be	 favored	 for	 Scenario	 2	 (a	 population	 of	 a	 low-	fecundity,	 long-	
lived	species	with	high	temporal	autocorrelation),	with	model	B	in	
second	place.	For	the	Bayesian	models,	we	ran	1000	simulations	of	
50 years	each	for	both	scenarios	using	RunJAGS	(Denwood,	2016)	
and	JAGS	(Plummer,	2003).	For	each	simulation,	we	ran	four	chains	
for	a	burn-	in	period	 that	varied	by	 the	model	 (5000	for	model	A;	
20,000	for	model	B;	and	10,000	for	model	C,	based	on	tests	to	en-
sure	convergence)	followed	by	a	20,000-	iteration	sampling	period.	
For	the	non-	Bayesian	models,	we	ran	1000	simulations	of	50 years	
each	for	both	scenarios	using	glmmTMB	(Brooks	et	al.,	2017).	We	
considered	 numerous	 indicators	 of	 model	 performance	 but	 de-
termined	 that	 most	 were	 inappropriate	 for	 comparison	 between	
Bayesian	 and	 non-	Bayesian	 models	 that	 have	 different	 response	
variables	(e.g.,	likelihood-	based	information	criteria	such	as	AIC	or	
BIC	are	not	an	option).	We	elected	to	compare	models	based	on	the	
squared	correlation	between	model	predictions	and	actual	values	
(a	pseudo-	R2),	a	simple	but	admittedly	imperfect	metric	because	it	
does	not	consider	model	complexity	or	out-	of-	sample	performance.	
In	all	cases,	model	predictions	only	included	fixed	effects,	not	error	
terms.

We	found	that	models	A	and	B	had	better	average	performance	
than	model	C	for	scenario	1,	consistent	with	predictions	 (Table 1).	
Nevertheless,	 model	 C	 was	 the	 best-	supported	 model	 for	 about	
a	quarter	of	 the	datasets.	Bayesian	 and	non-	Bayesian	models	had	
nearly	identical	average	performance,	but	for	non-	Bayesian	models,	
model	B	had	a	performance	that	was	consistently	just	slightly	lower	
than	 model	 A,	 and	 therefore	 was	 rarely	 selected	 as	 best	 overall.	
However,	the	actual	performance	difference	between	models	A	and	

(5)log
(

Ns,t ∕Ns,t−1

)

= �0 + �1X1s,t + �s,t ; �s,t
∼
N
(

0, �2
)

.

F I G U R E  1 Structure	of	simulation	model.	Solid	arrows	indicate	
transitions;	dashed	arrows	indicate	influence.	See	text	for	details.	
This	shows	one	juvenile	stage	and	three	adult	stages	as	an	example,	
but	the	number	of	stages	can	be	user	defined.
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B	was	very	small,	so	we	caution	against	interpreting	model	B	as	infe-
rior.	Model	A	has	the	benefit	of	simplicity,	while	model	B	is	arguably	
a	“safer”	choice	because	it	does	not	assume	independence	between	
years,	and	therefore	does	not	risk	underestimating	the	standard	er-
rors	of	parameter	estimates.	For	scenario	2	we	found	that	model	C	
consistently	had	the	highest	pseudo-	R2.	Models	A	and	B	had	very	
similar	 performance	 to	 each	 other,	 but	 much	 lower	 performance	
than	model	C.

We	ran	a	second	round	of	simulations	in	which	we	compared	
models	based	on	predictor	variables	that	were	strongly	correlated	
with	 abundance	 (i.e.,	 env1	 and	 env2,	 as	 used	 in	 the	 first	 round	
of	simulations)	with	a	weakly	correlated	predictor	variable	(env3)	
that	was	based	on	the	sum	of	env1	and	env2	but	had	substantial	
random	noise	added.	For	this	comparison,	we	only	used	the	three	
non-	Bayesian	models	and	evaluated	them	based	on	their	ability	to	
predict	abundance	in	the	final	year	(i.e.,	the	mean	absolute	percent	
error	 for	 year	 50),	 which	was	withheld	 from	model	 fitting.	 This	
also	provided	an	out-	of-	sample	estimate	of	model	 error.	We	 ran	
1000	 iterations	 for	 each	 of	 the	 same	 two	 scenarios	 used	 in	 the	
first	 round.	We	 hypothesized	 that	 the	 “strong”	model	would	 be	
selected	the	great	majority	of	the	time	in	all	cases.	However,	our	
results	indicated	that	the	“weak”	model	was	selected	almost	half	
the	time	in	some	cases,	and	at	least	a	third	of	the	time	in	all	cases	
(Table 2).	This	was	true	in	spite	of	the	fact	that	mean	error	rates	
were	higher	for	the	“weak”	models	in	both	scenarios.	This	serves	
as	a	reminder	to	be	cautious	in	interpreting	the	results	of	an	anal-
ysis	with	a	single	time	series—	even	a	49-	year	time	series—	as	pro-
viding	strong	evidence	in	favor	of	one	hypothesis	over	another.	By	
random	chance,	a	weak	variable	can	have	a	tighter	correlation	with	
abundance	than	a	strong	variable	in	any	individual	dataset.	Unless	

random	 variability	 is	 quite	 low,	multiple	 datasets	 are	 needed	 to	
have	high	confidence	in	the	outcomes	of	a	test	of	two	competing,	
correlated predictor variables.

Across	our	simulations,	we	found	that	all	three	models	produced	
similar	parameter	estimates	in	most	cases,	although	model	A	tended	
to	have	lower	standard	errors	on	parameters	than	models	B	and	C.	
We	consider	the	standard	errors	of	model	A	to	be	biased	low	since	
this	model	assumes	independence	of	annual	samples,	an	assumption	
we	know	is	not	met	in	Scenario	2.	In	these	simulations,	we	cannot	
evaluate	the	accuracy	of	parameter	estimates	against	known	values	
because	the	simulation	model	is	substantially	more	complicated	than	
any	of	the	three	fitting	models.	Nevertheless,	we	have	found	these	
simulations	 to	 be	 a	 useful	 tool	 for	 evaluating	model	 behavior	 and	
performance.	The	simulations	we	report	here	are	just	a	few	of	those	
that	are	possible,	and	we	encourage	users	to	adapt	the	supplied	sim-
ulation	 code	 to	 conduct	 other	 comparisons	 relevant	 to	 particular	
applications.

4  |  C A SE STUDY 1 .  FLOW ECOLOGY OF 
SHOAL FISHES IN THE ETOWAH RIVER , 
GEORGIA ,  UNITED STATES

Aquatic	 organisms	 that	 have	 evolved	 in	 riverine	 ecosystems	 are	
assumed	 to	 be	 adapted	 to	 a	 flow	 regime	 (Lytle	 &	 Poff,	 2004; 
Poff	 et	 al.,	 1997).	 Although	 researchers	 have	 demonstrated	 that	
fish	 communities	 are	 structured	 by	 patterns	 in	 natural	 (Mims	 &	
Olden,	2012;	Poff	&	Allan,	1995)	and	altered	flow	regimes	(Bunn	&	
Arthington,	2002;	Kiernan	&	Moyle,	2012;	Perkin	&	Bonner,	2011),	
species-	specific	 or	 trait-	specific	 models	 of	 organismal	 response	

TA B L E  1 Predictions	and	results	of	simulations	of	the	three	models	under	two	scenarios.	The	“%	each	model	selected	as	best”	indicates	
the	frequency	with	which	each	model	had	the	lowest	mean	absolute	percent	error	(MAPE)	in	1000	random	model	runs.	The	“pseudo-	R2”	is	
the	squared	correlation	between	model	predictions	and	actual	values.

Scenario Scenario characteristics Prediction Model type

% of each model selected 
as best Pseudo- R2

A B C A B C

1 High	fecundity,	short-	lived	
(r-	strategist)

A,	B,	and	C	similar Non-	Bayesian 69% 6% 23% .44 .42 .35

Bayesian 49% 26% 25% .42 .41 .35

2 Low	fecundity,	long-		lived	(k-	strategist) C	over	B	over	A Non-	Bayesian 0% 0% 100% .20 .19 .67

Bayesian 0% 0% 100% .19 .19 .67

TA B L E  2 Results	of	simulations	to	test	a	“strong”	model	(with	predictors	directly	correlated	with	abundance)	versus	a	“weak”	model	
(with	predictors	indirectly	correlated	with	abundance	and	added	noise).	The	“%	of	times	the	‘strong’	model	selected	as	best”	indicates	the	
frequency	with	which	the	strong	model	had	lower	mean	absolute	percent	error	(MAPE)	than	the	weak	model,	in	1000	random	model	runs.	
The	“mean	error	rate”	indicates	the	average	MAPE	for	the	strong	and	weak	models	in	each	scenario.

Scenario Scenario characteristics

% of times the “strong” model selected 
as best

Mean error rate for “strong”/“weak” 
model

A B C A B C

1 High	fecundity,	short	lived	(r-	strategist) 64% 62% 55% 58/78% 49/63% 66/74%

2 Low	fecundity,	long	lived	(k-	strategist) 56% 59% 65% 30/32% 27/28% 7/10%
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to	 interannual	variability	 in	 flows	are	 still	 largely	 lacking	 (Freeman	
et	al.,	2022).	 It	has	been	suggested	 that	 these	 flow	ecology	ques-
tions	could	be	better	answered	with	the	use	of	population	rates	(e.g.,	
growth	 rate)	 rather	 than	 states	 (e.g.,	 abundance)	 as	 response	vari-
ables	 in	 time-	series	data	analyses	 (Poff,	2018;	Tonkin	et	al.,	2019; 
Wheeler	 et	 al.,	 2018).	 Model	 C	 can	 be	 viewed	 as	 a	 rate	 model,	
whereas	models	A	and	B	are	repeated-	state	models	(i.e.,	models	of	
abundances	observed	repeatedly	through	time).

We	used	a	long-	term	dataset	of	fish	counts	from	the	Etowah	River	
in	Georgia,	USA	(Freeman	et	al.,	2017),	a	tributary	of	the	Coosa	River	
that	supports	a	diverse	fish	assemblage,	including	several	imperiled	
species	 of	 conservation	 interest.	 Fish	were	 collected	 using	 seines	
annually	in	the	fall	(September–	October)	at	10	sites	between	1997	
and	2016,	 although	collections	were	not	made	 in	2010	and	2011,	
and	some	sites	were	not	sampled	in	some	years	due	to	persistently	
high-	flow	conditions	that	made	sampling	unsafe	and	ineffective.	For	
this	analysis,	we	focused	on	six	small-	bodied	shoal-	dwelling	fish	spe-
cies,	all	considered	r-	strategists,	which	generally	mature	at	1 year	of	
age	 and	 are	 known	 to	 spawn	 in	 the	 late	 spring	 and	 early	 summer	
(Table 3).	We	 standardized	 abundance	 over	 different	 sampling	 ef-
forts	for	each	site	by	dividing	the	number	of	individuals	of	each	spe-
cies	by	the	number	of	samples	conducted	at	each	collection	event	
and	multiplying	by	100.

We	proposed	four	hypotheses	regarding	how	the	abundances	of	
fish	species	respond	to	flow:

1.	 Populations	decline	in	years	of	exceptionally	high	summer	flows	
due	 to	 direct	 mortality	 of	 eggs	 and	 young	 of	 the	 year,	 which	
reduces	total	abundance	(Harvey,	1987;	Humphries	et	al.,	1999).

2.	 Populations	 increase	 in	years	 following	exceptionally	high	 sum-
mer	 flows	 due	 to	 the	 scouring	 of	 fine	 sediment	 that	 increases	
the	 productivity	 of	 the	 system	 in	 the	 following	 year	 (Cattanéo	
et	al.,	2001).	Alternatively,	populations	could	rise	due	to	a	density-	
dependent	response	to	declines,	or	to	observation/sampling	error	
that	mimics	density	dependence	(Freckleton	et	al.,	2006);	it	may	
not	be	possible	to	disentangle	these	mechanisms.

3.	 Populations	decline	 in	years	of	exceptionally	 low	summer	 flows	
due	 to	 reduced	 habitat	 volume	 and	 productivity,	 although	 this	
effect	could	be	masked	if	individuals	immigrate	to	sampled	sites	
from	adjacent,	less	suitable	habitats	(Falke	et	al.,	2010;	Hakala	&	
Hartman,	2004;	Hedden	&	Gido,	2020).

4.	 Populations	 also	 decline	 in	 years	 following	 exceptionally	 low	
flows	(Rolls	et	al.,	2012).

We	 calculated	 high-		 and	 low-	flow	 metrics	 for	 the	 Etowah	
River	 from	 the	USGS	gage	 at	Canton,	GA	 (gage	02392000;	U.S.	
Geological	Survey,	2021),	based	on	the	90th	percentile	and	10th	
percentile	daily	flows	for	the	period	of	record	(1896–	present	ex-
cept	for	the	years	1906–	1935).	For	every	year	for	which	we	had	
fish	data,	we	calculated	the	number	of	days	above	the	90th	per-
centile	(high-	flow	days,	HFDt)	and	number	of	days	below	the	10th	

TA B L E  3 Parameter	estimates	(posterior	means	and	standard	deviations)	and	performance	scores	for	the	Bayesian	versions	of	the	three	
model	types	for	six	fish	species.	“High	flow”	and	“Low	flow”	are	variables	representing	the	number	of	high-	flow	days	and	low-	flow	days	
in	the	current	year.	“lag”	indicates	the	same	variable	for	the	prior	year.	“Q”	is	the	discharge	on	the	day	of	sampling.	Superscripts	indicate	
support	for	hypotheses	of	the	corresponding	number	(i.e.,	parameter	estimates	with	the	expected	sign	and	90%	credible	intervals	that	do	
not	overlap	zero).	R2	is	the	squared	correlation	between	conditional	model	predictions	and	observations	(a	pseudo-	R2).

Species Model High flow High flow lag Low flow Low flow lag Q DIC R2

Cyprinella callistia
Alabama	shiner

A −0.49	(0.09)1 −0.11	(0.06) −0.01	(0.07) 0.01	(0.07) −0.42	(0.07) 1207 .39

B −0.45	(0.09)1 −0.07	(0.06) 0.03	(0.07) 0.02	(0.06) −0.43	(0.07) 1207 .37

C −0.19	(0.08)1 0.30	(0.07)2 0.28	(0.08) −0.30	(0.07)4 −0.25	(0.07) 1210 .54

Macrhybopsis etnieri
Coosa	chub

A −0.13	(0.11) −0.01	(0.07) −0.04	(0.08) −0.12	(0.08) −0.05	(0.09) 1085 .05

B −0.13	(0.11) −0.01	(0.07) −0.04	(0.09) −0.13	(0.08) −0.04	(0.09) 1085 .04

C 0.07	(0.12) 0.17	(0.10) 0.17	(0.12) −0.13	(0.11) −0.02	(0.11) 1088 .04

Noturus leptacanthus
Speckled	madtom

A −0.70	(0.16)1 −0.08	(0.08) −0.26	(0.10)3 0.02	(0.09) −0.25	(0.11) 706 .10

B −0.69	(0.16)1 −0.08	(0.08) −0.25	(0.10)3 0.02	(0.09) −0.25	(0.11) 707 .07

C −0.48	(0.16)1 0.63	(0.15)2 −0.04	(0.13) 0.00	(0.12) −0.15	(0.13) 720 .30

Noturus	sp.	cf.	munitis
Coosa madtom

A −0.28	(0.14)1 −0.18	(0.09) 0.10	(0.11) −0.20	(0.10)4 0.12	(0.11) 821 .06

B −0.23	(0.14) −0.14	(0.09) 0.13	(0.10) −0.18	(0.10) 0.15	(0.11) 820 .03

C −0.07	(0.14) 0.04	(0.13) 0.36	(0.13) −0.39	(0.12)4 0.38	(0.13) 821 .17

Percina nigrofasciata
Blackbanded	darter

A −0.55	(0.10)1 −0.24	(0.06) −0.17	(0.07)3 −0.15	(0.07)4 −0.45	(0.08) 1076 .30

B −0.53	(0.10)1 −0.23	(0.06) −0.18	(0.07)3 −0.15	(0.07)4 −0.45	(0.08) 1078 .35

C −0.28	(0.11)1 0.47	(0.09)2 −0.14	(0.09) −0.09	(0.09) −0.45	(0.09) 1084 .36

Percina palmaris
Bronze	darter

A −0.48	(0.11)1 0.04	(0.06) −0.03	(0.08) −0.15	(0.07)4 −0.43	(0.08) 1064 .22

B −0.40	(0.11)1 0.05	(0.06) 0.02	(0.07) −0.15	(0.07)4 −0.40	(0.08) 1064 .21

C −0.18	(0.10)1 0.64	(0.08)2 0.22	(0.09) −0.29	(0.08)4 −0.27	(0.09) 1065 .41
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percentile	(low-	flow	days,	LFDt)	for	the	summer,	which	we	defined	
as	June	through	September.	We	used	the	same	flow	metric	values	
for	each	site	within	a	year	(i.e.,	flow	metrics	vary	by	time	but	not	
space).

For	 each	 species,	we	 fit	 the	Bayesian	 versions	 of	models	A–	C	
using	 RunJAGS	 (Denwood,	2016)	 and	 JAGS	 (Plummer,	2003).	We	
tested	all	hypotheses	simultaneously	by	including	fixed	effects	for	
HFDt,	HFDt−1,	LFDt,	and	LFDt−1.	We	also	included	a	term	for	mean	
discharge	on	the	day	of	sampling	(Q),	hypothesizing	that	capture	ef-
ficiency	would	be	negatively	related	to	stage	height	(this	term	was	
only	 moderately	 correlated	 with	 other	 flow	 variables;	 Pearson's	
r < .5).	Correlations	among	other	predictor	variables	also	were	 low	
(Pearson	r =	.42	or	less).	For	consistency,	we	included	a	random	inter-
cept	for	the	site	in	all	models.	All	predictor	variables	were	standard-
ized	by	subtracting	the	mean	and	dividing	by	the	standard	deviation.	
We	 specified	 vague	 priors	 for	 all	 parameters.	We	 ran	 four	 chains	
for	 a	 30,000-	iteration	 burn-	in	 period	 (including	 a	 2000-	iteration	
adaptation)	 followed	 by	 a	 100,000-	iteration	 sampling	 period	with	
a	 thinning	 factor	 of	 10,	 for	 a	 total	 of	 40,000	 samples	 included	 in	
the	 posterior	 parameter	 estimates.	 We	 determined	 convergence	
based	on	the	Brooks–	Gelman–	Rubin	diagnostic	(R-	hat	<1.1).	When	
necessary,	model	runs	were	extended	to	achieve	convergence.	We	
calculated	the	deviance	information	criterion	(DIC)	as	an	indicator	of	
the	relative	support	for	each	set	of	three	models	for	each	species.	
We	also	calculated	a	pseudo-	R2	as	the	squared	correlation	between	
marginal	(i.e.,	without	random	effects)	model	predictions	and	obser-
vations.	Code	is	provided	with	the	data	in	the	Zenodo	archive.

All	algorithms	converged.	We	found	that,	based	on	DIC,	models	
A	and	B	had	very	similar	performance;	the	slightly	better	likelihood	
of	model	B	was	balanced	by	its	slightly	greater	complexity	(Table 3).	
Model	C	had	similar	 support	 to	models	A	and	B	 for	most	 species,	
although	 it	had	 substantially	 lower	 support	 for	 the	 speckled	mad-
tom	and	the	blackbanded	darter.	Based	on	pseudo-	R2,	model	C	had	
higher	support	than	models	A	and	B	for	all	species	except	the	Coosa	
chub.

We	found	mixed	support	for	our	hypotheses	(Table 3).	Hypothesis	
1	(negative	effect	of	high	flows)	was	generally	supported,	with	neg-
ative	parameter	estimates	for	almost	all	models	for	all	species.	We	
found	support	for	hypothesis	2	(positive	effect	of	lagged	high	flows)	
for	 four	 species,	 but	 only	 with	 model	 C.	 Hypothesis	 3	 (negative	
effect	 of	 low	 flows)	was	 generally	 not	 supported,	with	 parameter	
estimates	 ranging	 from	weakly	negative	 to	weakly	positive	 across	
species	and	models,	with	the	exception	of	the	speckled	madtom	and	
the	blackbanded	darter.	This	could	indicate	a	lack	of	an	effect	or	that	
negative	effects	of	low	flows	on	abundances	were	masked	by	aggre-
gation	of	 individuals	 (Falke	et	 al.,	2010;	Hakala	&	Hartman,	2004; 
Hedden	&	Gido,	2020).	Hypothesis	4	(negative	effect	of	lagged	low	
flows)	was	moderately	supported,	with	generally	negative	parameter	
estimates,	although	these	were	imprecisely	estimated	for	half	of	the	
species.	Support	for	Hypothesis	4	was	generally	more	evident	with	
model	C	than	with	other	models.	All	species	except	the	Coosa	mad-
tom	had	the	expected	negative	parameter	estimate	for	discharge	on	
the	 day	 of	 sampling.	 Broadly	 speaking,	 parameter	 estimates	were	

quite	similar	between	models	A	and	B	for	a	given	species,	but	model	
C	tended	to	have	parameter	estimates	that	differed	from	the	other	
two	models.	We	explore	this	in	Section	6.

We	also	ran	non-	Bayesian	versions	of	all	models	for	all	species.	
The	results,	reported	in	the	Supporting	Information	(Table	SI1),	were	
very	similar	 to	the	Bayesian	model	results	 in	most	cases,	although	
the	standard	errors	on	parameter	estimates	tended	to	be	substan-
tially	smaller	for	model	A.

5  |  C A SE STUDY 2 .  SMALL MAMMAL S IN 
KONZ A PR AIRIE ,  K ANSA S,  UNITED STATES

Temporal	changes	in	the	community	composition	of	small	mammals	
have	 been	 linked	 to	 interannual	 climate	 variation,	 especially	 pre-
cipitation	(Bruckerhoff	et	al.,	2020;	Cárdenas	et	al.,	2021;	Thibault	
et	al.,	2010).	Mammal	species	representing	different	feeding	guilds	
are	 hypothesized	 to	 respond	differently	 to	 variations	 in	 precipita-
tion	given	the	distinct	effects	of	rainfall	on	different	mammal	food	
resources	(Reed	et	al.,	2006b),	but	these	predictions	have	not	been	
widely	tested.	We	assessed	whether	populations	of	small	mammal	
species	at	Konza	Prairie	Biological	Station	(KPBS)	respond	differen-
tially	to	precipitation	based	on	their	feeding	guilds.	We	also	assessed	
the	 role	of	 the	burning	 regime	as	burning,	and	grazing	 treatments	
are	applied	at	the	watershed	scale	at	KPBS,	a	tallgrass	prairie	pre-
serve,	 and	Long-	Term	Ecological	Research	 site	 in	 the	Flint	Hills	 of	
Northeastern	Kansas,	USA.

Small	mammal	data	from	KPBS	consisted	of	annual	autumn	sam-
pling	from	1992	to	2012	in	six	watersheds.	The	upland	and	lowland	
portions	of	each	watershed	were	surveyed	with	20	stations	of	two	
Sherman	 live	traps.	We	used	annual	 total	precipitation	at	KPBS	as	
our	climatic	variable	of	interest.	We	also	examined	the	role	of	time	
since	the	last	burn;	prescribed	burns	have	been	carried	out	at	inter-
vals	of	1,	4,	or	20 years	depending	on	the	watershed.	Correlations	
among	predictor	variables	were	 low	(Pearson	 r < .01).	We	 included	
the	six	most	common	small	mammal	species	in	our	analysis	(Table 4)	
and	 classified	 the	 feeding	 guild	 of	 each	 species	 based	 on	 Reed	
et al. (2006b).

We	proposed	four	hypotheses	about	how	small	mammal	popula-
tions	would	fluctuate	with	precipitation	and	burning	regime:

1.	 Populations	 of	 herbivores	 increase	 in	 years	 with	 higher	 pre-
cipitation,	 as	 more	 rainfall	 generates	 increased	 forage	 biomass	
(Reed	 et	 al.,	 2006a,	 2007).

2.	 Populations	of	 insectivores	and	omnivores	also	 increase	 in	high	
rainfall	 years,	 as	 insect	 food	 sources	 are	 positively	 associated	
with	 increases	 in	 plant	 biomass	 (Kaufman	 et	 al.,	 2012; Reed 
et	al.,	2006a).

3.	 Granivore	 populations	 decline	 in	 years	 with	 high	 precipitation	
because	 increased	plant	 litter	negatively	affects	seed	predation	
(Reed	et	al.,	2006b).

4.	 Increased	 time	 since	 burning	 has	 an	 overall	 negative	 effect	 on	
populations	 across	 long	 time	 periods.	 While	 the	 relationship	
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between	woody	 cover	 and	 the	 abundance	of	 several	 species	 is	
not	monotonic,	the	lowest	levels	of	abundance	and	small	mammal	
richness	occur	at	the	highest	levels	of	forest	cover,	i.e.,	the	great-
est	time	since	burning	(Matlack	et	al.,	2008).

We	used	Bayesian	versions	of	models	A,	B,	and	C	to	analyze	the	
mammal	 dataset.	 Each	 model	 included	 as	 predictors	 annual	 pre-
cipitation	 and	 time	 since	 burning—	each	 scaled	 by	 subtracting	 the	
mean	and	dividing	by	the	standard	deviation—	along	with	a	random	
effect	for	the	site.	Precipitation	varied	in	time	but	not	among	sites,	
whereas	time	since	burning	varied	in	both	dimensions.	Models	were	
fit	and	compared	using	the	same	methodology	and	specifications	as	
Example	1,	albeit	with	a	shorter	burn-	in	period	(20,000	iterations).	
Code	is	provided	with	the	data	in	the	Zenodo	archive.

All	 algorithms	 converged.	 The	 top-	ranked	 model	 formulation	
varied	among	taxa	(Table 4).	As	with	the	fish	analysis,	models	A	and	
B	diverged	little	in	model	fit	for	five	of	six	species	based	on	DIC	(i.e.,	
ΔDIC	≤2).	These	 two	models	performed	better	 than	model	C	 (i.e.,	
ΔDIC >2)	 for	 four	 species	 (Eliot's	 short-	tailed	shrew,	white-	footed	
mouse,	deer	mouse,	and	Western	harvest	mouse),	whereas	models	
B	 and	C	 performed	 similarly	 and	were	 the	 top-	ranked	models	 for	
prairie	vole.	All	three	models	performed	similarly	in	the	case	of	the	
hispid	cotton	 rat.	Pseudo-	R2	based	strictly	on	 fixed	effects	varied	
considerably	among	taxa,	and	also	generally	indicated	greater	sup-
port	for	models	A	and	B.

We	 found	mixed	support	 for	our	hypotheses	 (Table 4).	Annual	
precipitation	was	associated	with	increases	in	counts	of	one	of	the	
two	herbivores	(prairie	vole;	Hypothesis	1)	as	well	as	the	insectivore	
(Eliot's	short-	tailed	shrew;	Hypothesis	2),	but	not	for	the	two	omni-
vores	 (white-	footed	mouse	and	deer	mouse;	Hypothesis	2),	where	
the	effect	of	precipitation	did	not	differ	from	zero	based	on	Bayesian	
credible	 intervals	 (BCI).	The	 lack	of	a	 strong	 rainfall	effect	 in	deer	
mouse	was	consistent	with	a	short-	term	demographic	analysis	of	this	
taxon	at	KPBS,	in	which	the	highest	population	growth	rate	occurred	
during	a	year	of	average	precipitation,	as	opposed	to	a	very	wet	or	
dry	year	(Reed	et	al.,	2007).	We	expected	the	granivorous	Western	
harvest	mouse	to	decline	with	precipitation	(Hypothesis	3)	but	this	
species	also	showed	a	small	positive	association	with	rainfall	in	the	
top	models.	Species	had	mixed	responses	to	time	since	burning,	with	
only	 deer	 mouse	 exhibiting	 the	 hypothesized	 negative	 response	
in	 the	 top-	ranked	models	 compared	 to	 two	 species	 with	 positive	
responses	 based	 on	 BCI	 (prairie	 vole	 and	 white-	footed	 mouse).	
Parameter	estimates	for	the	predictors	of	interest	in	models	A	and	B	
were	similar:	they	had	the	same	sign	(i.e.,	positive,	negative,	or	zero	
according	 to	BCI)	 in	11	of	12	cases,	 and	differed	 in	magnitude	by	
<25%	in	most	cases.	Parameter	estimates	from	model	C,	however,	
deviated	in	several	instances	from	those	of	A	and	B,	particularly	for	
the	time-	since-	burning	covariate.	Results	of	the	non-	Bayesian	mod-
els (Table SI2)	were	qualitatively	similar	 to	the	Bayesian	model	 re-
sults	 in	most	cases	 (e.g.,	most	parameter	estimates	have	the	same	

TA B L E  4 Parameter	estimates	(posterior	means	and	standard	deviations)	and	performance	scores	for	the	Bayesian	versions	of	the	three	
model	types	for	six	mammal	species.	“Precipitation”	and	“Time	since	burning”	are	variables	representing	the	amount	of	precipitation	in	
the	preceding	year	and	the	number	of	years	since	prescribed	burns	occurred	at	the	site.	Superscripts	indicate	support	for	hypotheses	of	
the	corresponding	number	(i.e.,	parameter	estimates	with	the	expected	sign	and	90%	credible	intervals	that	do	not	overlap	zero).	R2 is the 
squared	correlation	between	conditional	model	predictions	and	observations	(a	pseudo-	R2).

Species Model Precipitation Time since burning DIC R2

Microtus ochrogaster	Prairie	vole	(herbivore) A 0.76	(0.26)1 0.57	(0.28) 301.0 .29

B 0.66	(0.28)1 0.56	(0.32) 297.9 .29

C 0.32	(0.34) 0.14	(0.25) 297.6 .02

Sigmodon hispidus
Hispid	cotton	rat	(herbivore)

A −0.16	(0.28) 0.44	(0.35) 282.3 .06

B −0.22	(0.28) 0.33	(0.39) 283.8 .05

C −0.21	(0.30) −0.05	(0.25) 282.7 .01

Blarina hylophaga
Elliot's	short-	tailed	shrew	(insectivore)

A 0.49	(0.17)2 0.14	(0.19) 364.5 .03

B 0.46	(0.18)2 0.13	(0.19) 365.7 .04

C 0.85	(0.20)2 −0.05	(0.14) 373.9 .12

Peromyscus leucopus	White-	footed	mouse	(omnivore) A −0.07	(0.10) 0.44	(0.14) 526.6 .58

B −0.08	(0.10) 0.42	(0.17) 525.6 .58

C −0.01	(0.11) 0.04	(0.08) 529.3 .00

Peromyscus maniculatus	Deer	mouse	(omnivore) A 0.06	(0.07) −0.41	(0.14)4 586.8 .27

B 0.04	(0.07) −0.44	(0.15)4 587.4 .28

C 0.00	(0.08) −0.06	(0.08) 594.6 .00

Reithrodontomys megalotis	Western	harvest	mouse	
(granivore)

A 0.20	(0.13) −0.18	(0.19) 438.1 .00

B 0.27	(0.14) −0.10	(0.20) 437.1 .00

C −0.01	(0.23) −0.09	(0.21) 442.4 .00
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sign	 and	 similar	 magnitude).	 As	 for	 Case	 Study	 1,	 we	 found	 that	
model	A	had	much	smaller	standard	errors	on	parameter	estimates	
than	models	B	and	C.

6  |  DISCUSSION

Time-	series	datasets	of	species	abundances	have	become	more	widely	
available	in	recent	decades	(Comte	et	al.,	2021;	Dornelas	et	al.,	2018),	
offering	increasing	opportunities	to	test	hypotheses	to	explain	varia-
tion	in	species	abundances	through	time.	Our	objective	was	to	evalu-
ate	the	potential	for	simple	statistical	models	to	test	such	hypotheses.	
We	found	that	even	the	simplest	model	(model	A)	was	useful	for	de-
tecting	relationships	between	predictors	and	abundances,	particularly	
for	r-	strategists	(shorter-	lived	and	higher	fecundity	species),	although	
a	model	with	autoregressive	errors	(model	B)	and	a	model	of	growth	
rate	(model	C)	was	sometimes	preferred	in	both	simulations	and	case	
studies.	In	simulations	of	time	series	of	K-	strategists	(longer-	lived	and	
lower	fecundity	species),	models	B	and	C	were	usually	preferred.	The	
species	 in	both	of	our	case	 studies	were	closer	 to	 r-	strategists	 than	
K-	strategists,	but	we	nevertheless	found	that	model	C	was	preferred	
for	 several	 species.	Based	on	our	 results,	our	general	 recommenda-
tion	is	to	test	all	three	models,	rather	than	trying	to	determine	a	priori	
which	is	likely	to	be	the	best	supported	based	on	species	traits	or	char-
acteristics	of	 the	 time	series.	After	 the	data	are	 formatted,	all	 three	
models	are	straightforward	to	implement.	Of	course,	depending	on	the	
research	question,	 there	could	be	 reasons	 to	select	one	model	over	
another	 (e.g.,	 if	 questions	 concern	population	 growth	 rate,	model	C	
would	be	preferred).

The	fact	that	model	C	revealed	relationships	not	evident	in	models	
A	and	B	is	an	important	result	and	is	a	further	rationale	to	fit	multiple	
models.	Such	discrepancies	among	models	can	provide	insight	into	the	
mechanisms	giving	rise	to	observed	population	patterns,	and	(poten-
tially)	evidence	 in	 favor	of	one	or	more	alternative	hypotheses	 (Yen	
et	al.,	2021).	Case	Study	1	provides	an	 illustration:	evidence	 for	hy-
pothesis	2	(populations	increase	in	years	following	exceptionally	high	
flows)	is	only	provided	by	model	C.	Models	A	and	B	do	not	reveal	this	
relationship	because	they	use	abundance	rather	than	growth	rate	as	a	
response	variable,	and	abundances	tend	to	be	low	in	years	following	
exceptionally	high	flows	because	populations	are	still	recovering	from	
the	even	lower	levels	in	the	preceding	year.	The	fact	that	populations	
tend	to	rebound	in	the	year	after	the	high	flow	is	only	evident	when	
using	 the	 growth	 rate	 as	 the	 response	 variable	 (similar	 patterns	 of	
lagged	high-	flow	effects	are	well	documented	in	the	fish	ecology	liter-
ature;	Gido	et	al.,	2013;	Humphries	et	al.,	2008;	Rogosch	et	al.,	2019).	
Because	the	models	assess	different	things,	we	advise	fitting	multiple	
models	and	interpreting	outputs	from	each.

Model	C	has	one	advantage	over	 the	other	models:	because	 it	
measures	change,	abundance	is	entirely	factored	out	of	the	regres-
sion	equation.	This	implies	the	model	can	be	used	to	simultaneously	
analyze	multiple	datasets	collected	with	different	sampling	methods,	
as	 long	as	 such	methods	have	been	used	consistently	within	each	
dataset.	Of	course,	the	same	predictor	variables	must	be	available	in	

each	dataset	to	make	such	comparisons,	and	the	assumption	of	ho-
mogeneity	of	observation	error	still	applies.	Setting	up	such	a	multi-	
dataset	model	 is	straightforward	with	the	non-	Bayesian	version	of	
model	C,	although	it	requires	more	work	with	the	Bayesian	version.

On	the	other	hand,	model	C	will	not	be	as	useful	for	datasets	that	
(1)	lack	sufficient	year-	to-	year	variability	or	(2)	have	spatial	variability	
rather	than	temporal	variability	in	relationships	of	interest.	The	first	
case	is	perhaps	best	illustrated	with	an	extreme	example:	consider	
a	 hypothetical	 10-	year	 dataset	 in	which	 the	 environmental	 condi-
tions	are	poor	for	5 years	running	and	then	good	for	5 years	running.	
Further,	assume	that	the	population	responds	by	staying	at	a	steadily	
low	 level	 for	 5 years	 and	 then	 at	 a	 steadily	 high	 level	 for	 5 years.	
Because	there	 is	overall	 little	 information	on	the	change	 in	such	a	
dataset,	model	C	will	perform	poorly,	whereas	models	A	and	B	should	
perform	quite	well.	This	is	a	toy	example,	but	the	more	general	point	
is	 that	 to	 test	 hypotheses	 about	 the	 factors	 governing	population	
increases	and	decreases,	the	dataset	must	have	sufficient	dynamics	
in	both	the	population	response	and	predictors.	Three	mammal	taxa	
in	case	study	2	illustrate	the	second	case	in	which	model	C	may	be	
inappropriate.	For	these	species—	prairie	vole,	white-	footed	mouse,	
and	deer	mouse—	sites	with	above-	average	time-	since-	burning	val-
ues	had	variable	but	typically	higher	species	abundances	(or	 lower	
in	the	case	of	deer	mouse)	than	sites	with	more	frequent	burning.	
Models	A	and	B	identified	this	correlation	between	time	since	burn-
ing	and	overall	abundance	while	model	C	did	not	because	the	great-
est	variability	in	both	abundance	and	the	predictor	occurred	across	
space	 rather	 than	 through	 time.	 Therefore,	 for	 datasets	 in	 which	
effects	of	 interest	vary	spatially,	model	C	may	not	be	as	useful	as	
models	A	and	B.

Datasets	with	many	gaps	present	a	problem	for	the	non-	Bayesian	
versions	 of	 models	 B	 and	 C	 when	 using	 conventional	 regression	
packages.	Fitting	models	B	and	C	requires	data	from	both	the	cur-
rent	and	the	prior	time	step,	thus	one	missing	value	can	effectively	
eliminate	two	observations	from	the	time	series	(i.e.,	2 years	of	data).	
Where	sampling	is	conducted	every	other	year	or	every	few	years,	
which	 is	 often	 employed	 in	 wildlife	 and	 fish	 population	 monitor-
ing	designs	(Urquhart	&	Kincaid,	1999),	model	A	becomes	the	only	
choice	available	if	conventional	frequentist	methods	are	used.	The	
Bayesian	versions	of	 the	models	allow	 imputation	of	missing	data,	
although	we	have	not	tested	their	performance	when	frequency	and	
intervals	in	gaps	are	large.

The	 simplicity	 of	Model	 A	 is	 appealing,	 but	 outputs	 from	 this	
model	must	be	interpreted	carefully	as	the	assumption	of	indepen-
dence	of	errors	 is	unlikely	to	be	met	 in	many	time-	series	datasets.	
We	found	that	the	precisions	of	the	parameter	estimates	from	non-	
Bayesian	model	 A	were	 overly	 optimistic	 in	 both	 simulations	 and	
case	studies.	This	did	not	appear	to	be	an	 issue	with	the	Bayesian	
version	of	model	A,	however.

We	expect	that	some	readers	may	be	concerned	with	the	lack	of	
an	observation	model.	Occupancy	models	(MacKenzie	et	al.,	2002),	
N-	mixture	 models	 (Royle,	 2004),	 and	 their	 variants	 have	 become	
standard	 methods	 for	 many	 ecologists	 and	 fisheries	 and	 wildlife	
practitioners,	despite	the	additional	data	requirements	and	serious	
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questions	 about	 their	 reliability	 under	 certain	 conditions	 (Barker	
et	al.,	2018;	Link	et	al.,	2018).	Our	objective	is	not	to	discourage	the	
use	of	observation	models	for	datasets	with	the	information	to	pa-
rameterize	them.	Rather,	we	seek	to	encourage	the	use	of	accessi-
ble	methods	for	analyzing	long-	term	datasets	when	the	information	
needed	for	observation	models	is	lacking	(e.g.,	monitoring	programs	
that	were	 initiated	prior	to	the	widespread	use	of	repeat	sampling	
methods),	 or	when	 the	 statistical	 programming	 and	 time	 required	
for	implementing	a	hierarchical	model	with	an	observation	compo-
nent	renders	such	methods	impractical.	As	shown	in	Case	Study	1,	
variables	that	affect	detection	can	be	included	as	covariates	in	the	
regression	equation;	we	suspect	that	this	can	address	detection	bias	
as	effectively	as	an	observation	model,	or	nearly	so,	in	many	cases	
(also	see	Barker	et	al.,	2018).	However,	if	the	variables	affecting	de-
tection	are	highly	correlated	with	variables	hypothesized	to	affect	
the	abundance,	then	it	is	impossible	to	distinguish	detection	effects	
from	abundance	effects.	 In	such	cases,	an	observation	model	 (and	
the	additional	data	to	parameterize	such	a	model)	is	necessary.

All	models	presented	herein	are	variants	of	linear	regression,	and	
their	 appropriateness	 for	 testing	hypotheses	depends	on	whether	
those	hypotheses	can	be	represented	in	the	form	of	a	linear	relation-
ship	with	the	response.	Reality	is	complex,	and	a	hypothesis	such	as	
“populations	of	herbivores	 increase	 in	years	with	higher	precipita-
tion,	as	more	rainfall	generates	increased	forage	biomass”	attempts	
to	identify	the	most	essential	relationship	in	a	cascade	of	influences	
and	interactions	involving	spatially	variable	soils,	timing	of	precipi-
tation,	the	size	of	other	herbivore	populations,	etc.	 If	a	hypothesis	
is	not	supported	in	the	form	that	it	is	tested,	it	could	be	because	a	
key	aspect	of	the	process	is	missing,	or	because	the	metric	chosen	
does	 not	 have	 a	 linear	 relationship	with	 the	 response.	 Sometimes	
relationships	can	be	 linearized	via	 transformations	 (e.g.,	 saturating	
relationships	can	be	made	more	linear	by	log	transformation	of	the	
predictor)	or	by	including	polynomial	terms.	In	our	examples,	we	did	
not	compare	alternative	metrics	for	representing	our	hypothesis,	but	
if	we	were	conducting	these	analyses	in	earnest	(rather	than	demon-
strating	methods),	we	would	certainly	consider	other	possibilities.

Density	dependence	is	another	potential	nuisance.	Although	we	
do	not	incorporate	density	dependence	into	Model	C	in	the	simula-
tions	or	examples	reported	here,	 in	separate	explorations	we	have	
frequently	found	support	for	including	this	parameter.	In	these	tests,	
we	have	nearly	always	found	that	the	parameter	estimate	was	neg-
ative,	 indicating	negative	density	 dependence.	 Including	 a	 density	
dependence	 term	 has	 the	 additional	 advantage	 of	 accounting	 for	
observation	and	sampling	error	that	mimics	negative	density	depen-
dence	(Freckleton	et	al.,	2006).	By	random	variation,	a	particular	ob-
served	count	could	be	exceptionally	high	or	low,	but	such	anomalies	
are	 unlikely	 to	 be	 followed	by	 a	 similarly	 extreme	estimate	 in	 the	
next	time	step.	The	result	is	that	populations	will	appear	to	increase	
rapidly	after	an	unusual	dip,	and	to	decline	after	an	unusual	peak,	a	
pattern	 similar	 to	 negative	 density-	dependent	 behavior.	However,	
unless	density	dependence	is	the	focus	of	the	analysis,	it	is	of	little	
consequence	whether	the	density	dependence	term	represents	true	
or	apparent	density	dependence.	The	term	serves	the	dual	purpose	

of	accounting	for	both,	with	a	caveat	that	the	unique	contributions	
of	each	may	not	be	identifiable.

The	 choice	 between	 non-	Bayesian	 and	 Bayesian	 methods	 is	
mostly	 a	 practical	 one.	We	 have	 observed	 that	 the	 non-	Bayesian	
and	Bayesian	versions	of	all	three	models	generally	yield	very	sim-
ilar	parameter	estimates.	We	find	the	non-	Bayesian	model	C	to	be	
somewhat	unsatisfying	in	that	it	requires	the	ad	hoc	solution	of	add-
ing	1	to	counts	of	0.	Nevertheless,	our	simulations	indicated	that	the	
non-	Bayesian	version	of	model	C	can	detect	relationships	between	
predictors	and	response	where	they	are	present,	and	so	is	likely	to	
be	 sufficient	 for	many	purposes.	One	analytical	 strategy	could	be	
to	first	test	models	using	the	non-	Bayesian	methods,	and	to	invest	
the	effort	 into	 the	Bayesian	models	only	 if	 results	 are	 sufficiently	
interesting	or	the	application	is	sufficiently	important.	This	two-	step	
process	may	be	favored	when	there	are	large	numbers	of	hypothe-
ses	to	be	tested,	as	preliminary	screening	can	be	conducted	much	
more	quickly	with	the	non-	Bayesian	models.

Long-	term	abundance	datasets	were	once	a	scarce	resource,	but	
they	have	been	quietly	accumulating	 in	 recent	decades.	There	are	
now	 many	 hundreds,	 likely	 thousands	 of	 such	 datasets,	 although	
many	lack	the	auxiliary	data	necessary	to	parameterize	a	linked	ob-
servation	model.	We	were	thus	motivated	to	explore	relatively	sim-
ple,	accessible	methods	that	could	be	used	to	make	valid	inferences	
from	 time-	series	 datasets	without	 an	 observation	model.	 Despite	
limitations	potentially	imposed	by	unknown	observation	biases,	we	
believe	that	unlocking	the	information	in	these	datasets	could	con-
tribute	greatly	to	ecological	understanding.	We	hope	that	our	results	
will	encourage	others	to	use	the	models	presented	here	as	starting	
points	to	investigate	environmental	effects	on	population	dynamics.
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