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Abstract
Methionine restriction (MetR) can extend lifespan and delay the onset of aging-
associated pathologies in most model organisms. Previously, we showed that sup-
plementation with the metabolite S-adenosyl-L-homocysteine (SAH) extends lifespan 
and activates the energy sensor AMP-activated protein kinase (AMPK) in the bud-
ding yeast Saccharomyces cerevisiae. However, the mechanism involved and whether 
SAH can extend metazoan lifespan have remained unknown. Here, we show that 
SAH supplementation reduces Met levels and recapitulates many physiological and 
molecular effects of MetR. In yeast, SAH supplementation leads to inhibition of the 
target of rapamycin complex 1 (TORC1) and activation of autophagy. Furthermore, in 
Caenorhabditis elegans SAH treatment extends lifespan by activating AMPK and pro-
viding benefits of MetR. Therefore, we propose that SAH can be used as an interven-
tion to lower intracellular Met and confer benefits of MetR.

K E Y W O R D S
Caenorhabditis elegans, methionine restriction (MetR), Saccharomyces cerevisiae, S-adenosyl-L-
homocysteine (SAH), S-adenosyl-L-methionine (SAM)

Dietary restriction, including MetR, is an effective strategy for pro-
moting longevity and counteracting age-related morbidities (Ables 
& Johnson, 2017; Parkhitko et al., 2019). In addition, genetic manip-
ulation or pharmacological inhibition of Met metabolic pathways 
(Annibal et al., 2021; Hepowit et al., 2021; Johnson & Johnson, 2014; 
Obata & Miura, 2015; Ogawa et al., 2016; Ruckenstuhl et al., 2014) 

and a Met-restricted diet prolong lifespan (Orentreich et al., 1993; 
Wu et al., 2013). Several studies indicate that a MetR diet is possible 
for humans (Dong et al., 2018; Gao et al., 2019; McCarty et al., 2009; 
Olsen et al., 2020, 2021), but long-term compliance to such a diet 
is considered problematic. Previously, we showed that a yeast mu-
tant that accumulates S-adenosyl-L-methionine (SAM) to high levels 
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exhibited reduced intracellular Met and lifespan extension medi-
ated through AMPK activation (Ogawa et al., 2016) (Figure 1a). We 
also showed that in a wild-type (WT) strain, supplementation with 
SAH increased SAM levels, activating AMPK, and extending lifes-
pan. However, we did not determine whether SAH supplementation 
might be sufficient to reduce Met levels or determine how SAH sup-
plementation leads to SAM accumulation and lifespan extension.

To investigate the basis for SAH-mediated longevity, we per-
formed metabolomics (CE-TOFMS) analysis of a WT S. cerevi-
siae strain. In response to 1 mM SAH, which can extend lifespan 
(Ogawa et al., 2016), 148  metabolites were detected (Table S1). 
Of these metabolites, 63 and 6 were significantly up-regulated 
and down-regulated, respectively (Figure 1b,c). As previously re-
ported, SAH administration increased levels of SAH and SAM, a 
methyl group donor (Ogawa et al., 2016) (Figure 1c and Figure S1a). 
SAH is a potent competitive inhibitor of SAM-dependent methyl-
transferases, and SAH accumulation thereby impairs cell growth 
(Christopher et al., 2002). Previously, we showed that exogenous 
SAM improved the growth of the SAH hydrolase mutant sah1-1, 
which accumulates high levels of SAH, suggesting that SAM is pro-
tective against SAH-dependent growth inhibition (Mizunuma et al., 
2004). Therefore, we speculate that SAH supplementation can in-
crease SAM synthesis through an unknown mechanism. Since SAM 
synthesis requires Met (Figure 1a), stimulating SAM production 
can decrease the quantity of intracellular Met. Notably, among the 
amino acids, Met exhibited significantly reduced levels after SAH 
supplementation (Figure S1b).

To investigate whether the decrease in intracellular Met was 
due to accelerated consumption, we substituted L-[methyl-13C]Met 
in the culture medium for Met and followed its fate with or with-
out addition of SAH. SAH supplementation significantly decreased 
[methyl-13C]Met and increased [methyl-13C]SAM intracellularly 
compared with the control (Figure 1d,e). Furthermore, extracellular 
metabolomic data showed that after SAH treatment [methyl-13C]
Met levels were comparable with that of the control (Figure 1f). 
These results suggest that SAH reduces Met levels by converting 
endogenous Met to SAM.

The lower Met content in SAH-treated cells suggests that lon-
gevity from SAH supplementation can induce a MetR state. Hence, 
since MetR extends chronological lifespan (CLS) (Fabrizio & Longo, 
2007) in an autophagy-dependent manner (Plummer & Johnson, 
2019; Ruckenstuhl et al., 2014), we investigated the effect of SAH 
on autophagy by monitoring the GFP-Atg8  cleavage assay (Nair 
et al., 2011). SAH treatment increased degradation of the auto-
phagy marker GFP-Atg8 to yield free GFP (Figure 1g), suggesting 
that SAH administration promotes autophagy. Furthermore, since 
TORC1 negatively regulates autophagy (Shimobayashi & Hall, 
2014), we tested whether SAH inhibits TORC1. In WT cells, treat-
ment with SAH reduced the phosphorylation of Rps6, a homolog 
of ribosomal protein S6 (Figure 1h), which is phosphorylated by 
TORC1 (Wullschleger & Hall, 2006), suggesting that SAH reduces 
levels of TORC1 activity. Additionally, the CLS of tor1Δ and atg7Δ 
(deletion mutant of an essential autophagic machinery component) 

cells was not prolonged compared with WT cells treated with SAH 
(Figure 1i). Thus, consistent with the induction of MetR, SAH ex-
tends lifespan through the inhibition of TORC1 and activation of 
autophagy.

Subsequently, to determine whether SAH acts as an anti-aging 
metabolite in a metazoan, we investigated its effects on the nema-
tode C. elegans. SAH treatment extended the lifespan of WT animals 
in a concentration-dependent manner, with 50 μM SAH inducing the 
most significant increase (Figure 2a). We also obtained similar results 
with 50 μM SAH in the absence of the reproduction blocker fluoro-
deoxyuridine (FUdR), or when SAH was supplemented only during 
adulthood. The latter finding ruled out a role for possible develop-
mental effects (Figures S2a,b). Notably, SAH did not affect food con-
sumption, brood size, or viability (Figure S2c,d,e). Additionally, the 
longevity-extending effects of SAH were independent of bacterial 
metabolism (Figure S2f). SAH also partially prevented the aging-
associated decrease in physical capacity (Figure S2g). Altogether, 
these results suggest that SAH mediates phylogenetically conserved 
anti-aging effects.

Similar to findings in yeast (Ogawa et al., 2016), SAH supplemen-
tation increased the phosphorylation of AAK-2, a C. elegans homolog 
of the catalytic AMPK subunit (Figure 2b). HLH-30, an orthologue of 
the human transcription factor TFEB, is a master regulator that pro-
motes autophagy (Settembre et al., 2011). Thus, we examined the 
autophagy activity by monitoring a GFP-tagged HLH-30 that trans-
locates to the nucleus upon mechanistic TORC1 (mTORC1) inhibition 
(Settembre et al., 2012). SAH induced HLH-30 nuclear accumulation 
(Figure 2c), suggesting that it can reduce mTORC1 activity and pro-
mote autophagy. Subsequently, to investigate how the SAH extends 
lifespan, we used the loss-of-function mutant strains aak-2(ok524) 
(Apfeld et al., 2004), hlh-30(tm1978) (Visvikis et al., 2014), and raga-
1(ok386) (Schreiber et al., 2010). No effect of SAH on lifespan exten-
sion in these mutants was observed, suggesting that SAH extends 
lifespan through a mechanism dependent on AMPK, mTORC1, and 
autophagy (Figure 2d,e,f).

sams-1 encodes an evolutionarily conserved SAM synthetase, 
knockdown of which extends lifespan (Hansen et al., 2005). SAH 
does not increase median lifespan further in sams-1(ok3033), a loss-
of-function mutant allele of sams-1 (Walker et al., 2011) (Figure 2g), 
consistent with the idea that SAH extends lifespan through SAM 
synthesis. These results suggest that lifespan extension in the sams-
1 strain, which is unable to produce SAM, is likely to occur through a 
mechanism entirely different from MetR.

Additionally, the expression of HSP-6, an orthologue of the 
mitochondrial chaperone mitochondrial Hsp70, is induced by 
MetR through its induction of the mitochondrial unfolded pro-
tein response (UPRmt) (Amin et al., 2020). Supplementation with 
100 μM SAH significantly increased the expression level of hsp-
6p::GFP (Figure 2h). Furthermore, this increase was suppressed 
upon Met supplementation, consistent with a model of MetR in 
C. elegans.

In conclusion, our results suggest that SAH extends lifespan 
by inducing MetR or mimicking its downstream effects. Since the 
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lifespan-extending effects of SAH are conserved in yeast and nem-
atodes, and MetR extends the lifespan of many species, exposure 
to SAH is expected to have multiple benefits across evolutionary 
boundaries. Our findings offer the enticing possibility that in humans 

the benefits of a MetR diet can be achieved by promoting Met reduc-
tion with SAH. The use of endogenous metabolites, such as SAH, is 
considered safer than drugs and other substances, suggesting that it 
may be one of the most feasible ways to prevent age-related diseases.

F I G U R E  1 SAH reduces intracellular Met and induces MetR-like conditions in S. cerevisiae. (a) Model for yeast longevity mediated by 
the stimulation of SAM synthesis by SAH. Volcano plot (b) or heat map (c) showing metabolite levels in WT cells with or without SAH 
supplementation. n = 3. FDR < 0.05, two-sided unpaired t-test. See also in Table S1. Intracellular [methyl-13C]Met (d), Intracellular [methyl-
13C]SAM levels (e), and [methyl-13C]Met levels in the medium (f) were assessed using CE-TOFMS. Mean ± S.D, n = 3, two-sided unpaired 
t-test. The relative intensity of free GFP (g) or phosphorylated Rps6 (h) normalized to Cdc28 is shown. Mean ± SD, n = 3, two-sided unpaired 
t-test. (i) The CLS curve is indicated. (d–f, g, h) ns, not significant; ***p < 0.001. (i) Statistical analyses are shown in Table S2
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E XPERIMENTAL PROCEDURES

Full detailed methods and experimental procedures are available in 
Appendix S1.
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