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Abstract
Methionine	 restriction	 (MetR)	 can	 extend	 lifespan	 and	 delay	 the	 onset	 of	 aging-	
associated pathologies in most model organisms. Previously, we showed that sup-
plementation with the metabolite S-	adenosyl-	L-	homocysteine	(SAH)	extends	lifespan	
and	activates	 the	energy	sensor	AMP-	activated	protein	kinase	 (AMPK)	 in	 the	bud-
ding yeast Saccharomyces cerevisiae. However, the mechanism involved and whether 
SAH	 can	 extend	metazoan	 lifespan	 have	 remained	 unknown.	 Here,	 we	 show	 that	
SAH	supplementation	reduces	Met	 levels	and	recapitulates	many	physiological	and	
molecular	effects	of	MetR.	In	yeast,	SAH	supplementation	leads	to	inhibition	of	the	
target	of	rapamycin	complex	1	(TORC1)	and	activation	of	autophagy.	Furthermore,	in	
Caenorhabditis elegans	SAH	treatment	extends	lifespan	by	activating	AMPK	and	pro-
viding	benefits	of	MetR.	Therefore,	we	propose	that	SAH	can	be	used	as	an	interven-
tion	to	lower	intracellular	Met	and	confer	benefits	of	MetR.

K E Y W O R D S
Caenorhabditis elegans,	methionine	restriction	(MetR),	Saccharomyces cerevisiae, S- adenosyl- L- 
homocysteine	(SAH),	S-	adenosyl-	L-	methionine	(SAM)

Dietary	restriction,	including	MetR,	is	an	effective	strategy	for	pro-
moting	 longevity	and	counteracting	age-	related	morbidities	 (Ables	
&	Johnson,	2017;	Parkhitko	et	al.,	2019).	In	addition,	genetic	manip-
ulation	 or	 pharmacological	 inhibition	 of	 Met	 metabolic	 pathways	
(Annibal	et	al.,	2021; Hepowit et al., 2021;	Johnson	&	Johnson,	2014; 
Obata	&	Miura,	2015; Ogawa et al., 2016;	Ruckenstuhl	et	al.,	2014)	

and	a	Met-	restricted	diet	prolong	lifespan	(Orentreich	et	al.,	1993; 
Wu	et	al.,	2013).	Several	studies	indicate	that	a	MetR	diet	is	possible	
for	humans	(Dong	et	al.,	2018; Gao et al., 2019;	McCarty	et	al.,	2009; 
Olsen et al., 2020, 2021),	but	 long-	term	compliance	to	such	a	diet	
is considered problematic. Previously, we showed that a yeast mu-
tant that accumulates S-	adenosyl-	L-	methionine	(SAM)	to	high	levels	
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exhibited	 reduced	 intracellular	 Met	 and	 lifespan	 extension	 medi-
ated	through	AMPK	activation	(Ogawa	et	al.,	2016)	(Figure 1a).	We	
also	showed	that	 in	a	wild-	type	(WT)	strain,	supplementation	with	
SAH	 increased	 SAM	 levels,	 activating	AMPK,	 and	 extending	 lifes-
pan.	However,	we	did	not	determine	whether	SAH	supplementation	
might	be	sufficient	to	reduce	Met	levels	or	determine	how	SAH	sup-
plementation	leads	to	SAM	accumulation	and	lifespan	extension.

To	 investigate	 the	 basis	 for	 SAH-	mediated	 longevity,	we	 per-
formed	 metabolomics	 (CE-	TOFMS)	 analysis	 of	 a	 WT	 S. cerevi-
siae	 strain.	 In	 response	 to	1	mM	SAH,	which	can	extend	 lifespan	
(Ogawa	 et	 al.,	 2016),	 148	 metabolites	 were	 detected	 (Table	 S1).	
Of these metabolites, 63 and 6 were significantly up- regulated 
and	 down-	regulated,	 respectively	 (Figure 1b,c).	 As	 previously	 re-
ported,	 SAH	 administration	 increased	 levels	 of	 SAH	 and	 SAM,	 a	
methyl	group	donor	(Ogawa	et	al.,	2016)	(Figure 1c	and	Figure	S1a).	
SAH	is	a	potent	competitive	 inhibitor	of	SAM-	dependent	methyl-
transferases,	 and	 SAH	 accumulation	 thereby	 impairs	 cell	 growth	
(Christopher	et	al.,	2002).	Previously,	we	showed	that	exogenous	
SAM	 improved	 the	 growth	 of	 the	 SAH	 hydrolase	mutant	 sah1- 1, 
which	accumulates	high	levels	of	SAH,	suggesting	that	SAM	is	pro-
tective	against	SAH-	dependent	growth	inhibition	(Mizunuma	et	al.,	
2004).	Therefore,	we	speculate	that	SAH	supplementation	can	in-
crease	SAM	synthesis	through	an	unknown	mechanism.	Since	SAM	
synthesis	 requires	 Met	 (Figure 1a),	 stimulating	 SAM	 production	
can	decrease	the	quantity	of	intracellular	Met.	Notably,	among	the	
amino	acids,	Met	exhibited	significantly	reduced	 levels	after	SAH	
supplementation	(Figure	S1b).

To	 investigate	 whether	 the	 decrease	 in	 intracellular	 Met	 was	
due to accelerated consumption, we substituted L- [methyl- 13C]Met	
in	 the	culture	medium	for	Met	and	 followed	 its	 fate	with	or	with-
out	addition	of	SAH.	SAH	supplementation	significantly	decreased	
[methyl- 13C]Met	 and	 increased	 [methyl-	13C]SAM	 intracellularly	
compared	with	the	control	(Figure 1d,e).	Furthermore,	extracellular	
metabolomic	 data	 showed	 that	 after	 SAH	 treatment	 [methyl-	13C]
Met	 levels	 were	 comparable	 with	 that	 of	 the	 control	 (Figure 1f).	
These	 results	 suggest	 that	 SAH	 reduces	Met	 levels	 by	 converting	
endogenous	Met	to	SAM.

The	lower	Met	content	in	SAH-	treated	cells	suggests	that	lon-
gevity	from	SAH	supplementation	can	induce	a	MetR	state.	Hence,	
since	MetR	extends	chronological	lifespan	(CLS)	(Fabrizio	&	Longo,	
2007)	 in	 an	 autophagy-	dependent	manner	 (Plummer	 &	 Johnson,	
2019;	Ruckenstuhl	et	al.,	2014),	we	investigated	the	effect	of	SAH	
on	 autophagy	 by	 monitoring	 the	 GFP-	Atg8	 cleavage	 assay	 (Nair	
et al., 2011).	 SAH	 treatment	 increased	 degradation	 of	 the	 auto-
phagy	marker	GFP-	Atg8	to	yield	free	GFP	(Figure 1g),	suggesting	
that	SAH	administration	promotes	autophagy.	Furthermore,	since	
TORC1	 negatively	 regulates	 autophagy	 (Shimobayashi	 &	 Hall,	
2014),	we	tested	whether	SAH	inhibits	TORC1.	In	WT	cells,	treat-
ment	with	SAH	reduced	the	phosphorylation	of	Rps6,	a	homolog	
of	 ribosomal	 protein	 S6	 (Figure 1h),	 which	 is	 phosphorylated	 by	
TORC1	(Wullschleger	&	Hall,	2006),	suggesting	that	SAH	reduces	
levels	of	TORC1	activity.	Additionally,	the	CLS	of	tor1Δ and atg7Δ 
(deletion	mutant	of	an	essential	autophagic	machinery	component)	

cells	was	not	prolonged	compared	with	WT	cells	treated	with	SAH	
(Figure 1i).	Thus,	consistent	with	the	 induction	of	MetR,	SAH	ex-
tends	 lifespan	 through	 the	 inhibition	of	TORC1	and	activation	of	
autophagy.

Subsequently,	to	determine	whether	SAH	acts	as	an	anti-	aging	
metabolite	in	a	metazoan,	we	investigated	its	effects	on	the	nema-
tode C. elegans.	SAH	treatment	extended	the	lifespan	of	WT	animals	
in a concentration- dependent manner, with 50 μM	SAH	inducing	the	
most	significant	increase	(Figure 2a).	We	also	obtained	similar	results	
with 50 μM	SAH	in	the	absence	of	the	reproduction	blocker	fluoro-
deoxyuridine	(FUdR),	or	when	SAH	was	supplemented	only	during	
adulthood.	The	latter	finding	ruled	out	a	role	for	possible	develop-
mental	effects	(Figures	S2a,b).	Notably,	SAH	did	not	affect	food	con-
sumption,	brood	size,	or	viability	 (Figure	S2c,d,e).	Additionally,	 the	
longevity-	extending	effects	of	SAH	were	 independent	of	bacterial	
metabolism	 (Figure	 S2f).	 SAH	 also	 partially	 prevented	 the	 aging-	
associated	 decrease	 in	 physical	 capacity	 (Figure	 S2g).	 Altogether,	
these	results	suggest	that	SAH	mediates	phylogenetically	conserved	
anti- aging effects.

Similar	to	findings	in	yeast	(Ogawa	et	al.,	2016),	SAH	supplemen-
tation	increased	the	phosphorylation	of	AAK-	2,	a	C. elegans homolog 
of	the	catalytic	AMPK	subunit	(Figure 2b).	HLH-	30,	an	orthologue	of	
the	human	transcription	factor	TFEB,	is	a	master	regulator	that	pro-
motes	autophagy	 (Settembre	et	al.,	2011).	Thus,	we	examined	 the	
autophagy activity by monitoring a GFP- tagged HLH- 30 that trans-
locates	to	the	nucleus	upon	mechanistic	TORC1	(mTORC1)	inhibition	
(Settembre	et	al.,	2012).	SAH	induced	HLH-	30	nuclear	accumulation	
(Figure 2c),	suggesting	that	it	can	reduce	mTORC1	activity	and	pro-
mote	autophagy.	Subsequently,	to	investigate	how	the	SAH	extends	
lifespan, we used the loss- of- function mutant strains aak- 2(ok524) 
(Apfeld	et	al.,	2004),	hlh- 30(tm1978)	(Visvikis	et	al.,	2014),	and	raga- 
1(ok386)	(Schreiber	et	al.,	2010).	No	effect	of	SAH	on	lifespan	exten-
sion	 in	these	mutants	was	observed,	suggesting	that	SAH	extends	
lifespan	through	a	mechanism	dependent	on	AMPK,	mTORC1,	and	
autophagy	(Figure 2d,e,f).

sams- 1	 encodes	 an	 evolutionarily	 conserved	 SAM	 synthetase,	
knockdown	 of	which	 extends	 lifespan	 (Hansen	 et	 al.,	2005).	 SAH	
does not increase median lifespan further in sams- 1(ok3033), a loss- 
of- function mutant allele of sams- 1	(Walker	et	al.,	2011)	(Figure 2g),	
consistent	with	 the	 idea	 that	 SAH	 extends	 lifespan	 through	 SAM	
synthesis.	These	results	suggest	that	lifespan	extension	in	the	sams- 
1	strain,	which	is	unable	to	produce	SAM,	is	likely	to	occur	through	a	
mechanism	entirely	different	from	MetR.

Additionally,	 the	 expression	 of	HSP-	6,	 an	 orthologue	 of	 the	
mitochondrial chaperone mitochondrial Hsp70, is induced by 
MetR	 through	 its	 induction	 of	 the	mitochondrial	 unfolded	 pro-
tein	response	(UPRmt)	 (Amin	et	al.,	2020).	Supplementation	with	
100 μM	SAH	significantly	 increased	the	expression	level	of	hsp- 
6p::GFP	 (Figure 2h).	 Furthermore,	 this	 increase	was	 suppressed	
upon	Met	supplementation,	consistent	with	a	model	of	MetR	 in	
C. elegans.

In	 conclusion,	 our	 results	 suggest	 that	 SAH	 extends	 lifespan	
by	 inducing	MetR	 or	mimicking	 its	 downstream	 effects.	 Since	 the	
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lifespan-	extending	effects	of	SAH	are	conserved	in	yeast	and	nem-
atodes,	 and	MetR	 extends	 the	 lifespan	 of	many	 species,	 exposure	
to	 SAH	 is	 expected	 to	 have	 multiple	 benefits	 across	 evolutionary	
boundaries. Our findings offer the enticing possibility that in humans 

the	benefits	of	a	MetR	diet	can	be	achieved	by	promoting	Met	reduc-
tion	with	SAH.	The	use	of	endogenous	metabolites,	such	as	SAH,	is	
considered safer than drugs and other substances, suggesting that it 
may be one of the most feasible ways to prevent age- related diseases.

F I G U R E  1 SAH	reduces	intracellular	Met	and	induces	MetR-	like	conditions	in	S. cerevisiae.	(a)	Model	for	yeast	longevity	mediated	by	
the	stimulation	of	SAM	synthesis	by	SAH.	Volcano	plot	(b)	or	heat	map	(c)	showing	metabolite	levels	in	WT	cells	with	or	without	SAH	
supplementation. n = 3. FDR < 0.05, two- sided unpaired t-	test.	See	also	in	Table	S1.	Intracellular	[methyl-	13C]Met	(d),	Intracellular	[methyl-	
13C]SAM	levels	(e),	and	[methyl-	13C]Met	levels	in	the	medium	(f)	were	assessed	using	CE-	TOFMS.	Mean	± S.D, n = 3, two- sided unpaired 
t-	test.	The	relative	intensity	of	free	GFP	(g)	or	phosphorylated	Rps6	(h)	normalized	to	Cdc28	is	shown.	Mean	± SD, n = 3, two- sided unpaired 
t-	test.	(i)	The	CLS	curve	is	indicated.	(d–	f,	g,	h)	ns,	not	significant;	***p <	0.001.	(i)	Statistical	analyses	are	shown	in	Table	S2
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E XPERIMENTAL PROCEDURES

Full detailed methods and experimental procedures are available in 
Appendix	S1.
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performed	 yeast	 experiments.	 M.K.	 performed	 [methyl-	13C]Met	
analyses.	 T.S.	 performed	metabolome	 analyses.	 T.O.	 and	 Y.O.	 dis-
cussed the results and contributed to the improvement of the 
manuscript.	T.K.B.	and	M.M.	wrote	the	manuscript.	T.K.B.	and	M.M.	
supervised	the	work.
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