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Abstract

Diabetes mellitus is a major public health problem worldwide. This endocrine disease is clustered 

into distinct subtypes based on the route of development, with the most common forms associated 

with either autoimmunity (T1DM) or obesity (T2DM). A shared hallmark of both major forms of 

diabetes is a reduction in function (insulin secretion) or mass (cell number) of the pancreatic islet 

beta-cell. Diminutions in both mass and function are often present. A wide assortment of plants 

have been used historically to reduce the pathological features associated with diabetes. In this 

review, we provide an organized viewpoint focused around the phytochemicals and herbal extracts 

investigated using various preclinical and clinical study designs. In some cases, crude extracts 

were examined directly, and in others, purified compounds were explored for their possible 

therapeutic efficacy. A subset of these studies compared the botanical product with standard of 

care prescribed drugs. Finally, we note that botanical formulations are likely suspects for future 

drug discovery and refinement into class(es) of compounds that have either direct or adjuvant 

therapeutic benefit.
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Introduction

Diabetes mellitus describes a cluster of endocrine diseases that are sub-classified based 

on the etiology of development. Type 1 diabetes mellitus (T1DM) is proposed to occur 

via autoimmune mechanisms targeting the pancreatic islet beta-cell, leading to reduced 

circulating insulin [1]. Type 2 diabetes mellitus (T2DM) is most commonly associated with 

obesity as a major risk factor, which leads first to insulin resistance and then to eventual 

beta-cell failure [2]. Thus, both T1DM and T2DM have in common a reduction in the 

mass and/or function of the pancreatic islet β-cells [3, 4]. Collectively, all forms of diabetes 

mellitus create numerous clinical problems, including diseases of the eyes, kidneys, and 

cardiovascular system [5]. As of 2019, it is reported that 8.8% of the global population 

(representing greater than 460 million people) have diabetes; this unfortunate reality places 

an enormous burden on the healthcare systems of the individual countries [6]. In addition, 

and perhaps not surprisingly, over the past decade, diabetes has consistently been one of the 

top 10 leading causes of death worldwide.

T1DM accounts for 5–10% of all diabetes mellitus cases and has historically been thought 

to affect children more often than adults [7]. However, more recent evidence shows that 

T1DM can also affect adults over 18 at almost equal incidence to children [8]. T2DM 

is the most common form of diabetes. This form of the disease is closely linked to 

overweight and obesity, chronic inflammation, insulin resistance, and ultimately islet β-cell 

de-differentiation, death, and/or dysfunction [9–11]. In healthy individuals, islet β-cells in 

the pancreas produce and secrete insulin, a hormone responsible for the metabolism and 

partitioning of macronutrients [12]. However, when insulin production and secretion are 

insufficient, alterations in metabolism occur and accumulation of glucose in the blood 

signals the clinical diagnosis of diabetes [13–15]. In addition to elevations in blood glucose, 

T2DM has been linked with alterations in blood lipid concentrations, oxidative stress in 

various tissues, and changes in endoplasmic reticulum function [16, 17]. Despite the cause 

or type of diabetes, it is evident that maintaining islet β-cell function, enhancing β-cell 

replication capability, and protecting against losses in total β-cell mass are important factors 

for the control and prevention of these endocrine diseases [3, 18–20].

The search for improved diabetes treatments is critically important due to the global increase 

in incidence and prevalence of the major forms of diabetes. One such strategy being actively 

considered is the use of plant-based derivatives (often a mixture of complex molecules) to 

improve blood glucose control. Along these lines, botanical products have historically been 

used to treat a plethora of human diseases and chronic ailments, including diabetes. Some of 

the documented treatments, which were initially without mechanistic targets, eventually led 

to the development of commonly used anti-diabetic drugs. For example, metformin, one of 

the most widely used insulin-sensitizing pharmaceuticals on the market, arose from studies 

on the plant Galega officinalis, also known as French lilac. The active biguanide compound 

was later isolated and synthesized into dimethylbiguanide, which is now sold as metformin 

[21]. In addition, combinations of herbal extracts contained within a single formulation are 

also being investigated in the hopes that individual botanicals will synergize to provide 

greater efficacy compared with a single extract [22].
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Many additional botanicals are being tested in the hope that they too will yield promise 

as plausible and viable options to treat symptoms or reduce the deleterious consequences 

of diet, genetics, or environmental factors that contribute to the progression to diabetes. 

It is conceivable that many of these natural bioactive compounds will be modified using 

medicinal chemistry approaches to enhance their potential as novel pharmaceuticals. As 

many as 50% of currently used drugs are natural bioactive compounds or derivatives of 

such compounds [23]. In this review, we will focus on studies of botanical compounds that 

have reported beneficial properties relevant to pancreatic islet β-cells in the context of either 

obesity, T1DM, or T2DM.

Methods

A literature search was performed using PUBMED and Google Scholar as the 

primary search engines for the following keywords: anti-diabetic, β-cell function, β-cell 

proliferation, β-cell inflammation, and pancreatic inflammation with no year restriction. 

From the results of this database query, articles retrieved from English language journals 

were screened for reported use of botanicals. Studies that also described the isolation of the 

active components identified within the experimental substances were included. We focused 

particular attention on the specific impact of such botanical-based approaches to impact 

pancreatic β-cells either in vitro or in vivo. Collectively, this literature search formed the 

basis of this integrative narrative review.

Results

Although numerous studies have explored the effects of natural bioactive compounds for 

their anti-diabetic properties, a frequently encountered limitation is the study of the broad 

anti-diabetic effects of a plant extract without isolating the key active compounds. In many 

cases, the active component(s) are not known. In this review, we focus our attention on a 

variety of botanicals that report a beneficial impact on pancreatic β-cells. The parameters 

addressed herein include insulin secretion, markers of β-cell death, inflammation and related 

signaling pathways, and changes to β-cell replication or other measures that would lead to 

enhanced cell numbers.

Berberine

Berberine is an isoquinoline alkaloid isolated from roots, rhizomes, stems, and bark in 

several plants including Berberis, Amur cork trees, and California poppy (Table 1). The 

use of plants containing berberine for treatment purposes dates back to as early as 650 

BC, where it was used for the treatment of inflammation, infectious disease, wounds, 

and many other ailments [24]. In more recent times, berberine has been shown to have 

protective effects against a number of diseases including liver injury, cancer, cardiovascular 

disease, and neurological disorders, due to anti-oxidant, anti-proliferation, and anti-ischemic 

properties [25, 26].

Using rodent models of obesity and T2DM, treatment with berberine has been shown to 

improve fasting blood glucose (FBG), glucose tolerance, and fasting insulin levels [27–29]. 
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Additionally, berberine has been reported to protect against streptozotocin (STZ)-induced 

β-cell death [30, 31]. Furthermore, in patients with T2DM, long-term treatment with 

berberine proved to have similar efficacy as the commonly prescribed anti-hyperglycemic 

agent metformin [32].

In Vivo Studies

Administration of berberine (5 mg/kg/day) via intraperitoneal (i.p.) injection to 12-week-old 

db/db mice, a model of human T2DM [33], resulted in reduced FBG and improved glucose 

tolerance. This was accompanied by a 13% weight loss when compared to db/db mice 

administered a vehicle control, which may have contributed to the improved glucose control. 

Importantly, berberine treatment did not alter food intake, yet weight loss occurred via a 

reduction in epididymal fat mass relative to the vehicle control group [27].

In Wistar rats fed a 60% high-fat diet, berberine supplementation (380 mg/kg/day, oral 

gavage for 2 weeks) improved glucose tolerance, decreased insulin resistance, and reduced 

plasma triglyceride (TG) concentrations in the high-fat diet (HFD) group compared to 

the vehicle-treated rats [27]. Whether the improvement in glucose tolerance was directly 

induced by berberine or a result of weight loss was not addressed. Similar improvements 

in glucose tolerance, insulin sensitivity, and plasma triglycerides were seen in high-fat-fed 

Sprague Dawley (SD) rats administered berberine (150 mg/kg/day, oral gavage) for 6 weeks 

[28].

In Wistar rats fed a 60% high-fat diet for 6 months and then given berberine 

supplementation (125 mg/kg/day, oral gavage twice daily for 5 weeks), a clear decrease 

in both fasting and post-prandial blood glucose levels was seen during an ipGTT compared 

to high-fat-fed control animals. Fasting insulin levels were also reduced in the berberine-

treated rats [29].

A dose-dependent improvement in glucose tolerance was observed following a 4-week 

treatment with two doses of berberine [187.5 and 526.5 mg/kg/day, intragastrically (i.g.)] 

in Wistar rats given a single i.p. injection of STZ (30 mg/kg)] [30]. Fasting insulin levels 

in the rats given the highest dose of berberine were significantly different from control 

animals. Furthermore, FBG levels and plasma TG were significantly reduced compared to 

STZ-injected animals without berberine supplementation. In this study, the highest dose of 

berberine was shown to be as efficacious as metformin in lowering glucose and insulin levels 

compared to STZ-treated animals without intervention [30].

In rats administered a single 35 mg/kg injection of STZ in combination with a high-fat/high-

sugar diet, 16 weeks of berberine treatment (150 or 300 mg/kg/day, via gavage) decreased 

serum insulin levels and improved insulin sensitivity relative to rats without a drug regimen. 

A similar outcome was seen in animals treated with rosiglitazone (PPARγ agonist), but 

not fenofibrate (PPARα agonist). Furthermore, both berberine and rosiglitazone, but not 

fenofibrate, protected against loss of insulin-positive cell mass in STZ-injected diabetic 

rats. Berberine also protected against STZ-dependent β-cell damage, improved pancreatic 

superoxide dismutase (SOD) abundance, and reduced pancreatic malonaldehyde to similar 

values as the non-diabetic group [31]. Increased survival and function are also thought to 
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be a result of the improved anti-oxidant defense. Berberine increases anti-oxidant enzymes 

like SOD, helping to explain the reduction in oxidative stress, resulting in improved β-cell 

integrity and decreased loss of function [31].

Berberine was also shown to be effective in human studies. In a randomized controlled 

trial, male and female patients with T2DM treated with berberine (1500 mg/day, oral tablet) 

for 3 months showed similar improvements as metformin on lowering FBG, post-prandial 

blood glucose (PBG) concentrations, and HbA1c. As part of a combination therapy with 

metformin, improvements were seen in fasting and post-prandial insulin values. In addition, 

there was an improvement in HOMA-IR as early as 5 weeks in berberine- and metformin-

treated patients. A limitation of this study is that HOMA-IR was only measured as a 

combination therapy with metformin and not when using either drug as a monotherapy [32].

In Vitro Studies

Despite the benefits observed in vivo, the effects of berberine in vitro are conflicting, 

specifically with insulin secretion. The effects of berberine on insulin secretion seem to be 

dose-dependent; however, whether it increases or decreases insulin secretion is not clear 

based on existing studies.

In hamster HIT-T15 cells, overnight treatment with berberine (10 μM) in the presence of 

increasing concentrations of glucose potentiated insulin secretion. In addition, berberine (1 

and 10 μM) potentiated glucose-stimulated insulin secretion in a dose-dependent manner. 

Interestingly, 100 μM berberine was shown to be toxic to HIT-T15 cells [30].

However, the insulinotropic effects of acute treatment of insulinoma cells with high 

berberine concentrations are uncertain. Two studies using similar cell lines and methods 

produced contradictory results. Acute treatment of mouse MIN6 cells with berberine (1–50 

μM for 1 h) reduced insulin secretion in a dose-dependent manner. Treatment of MIN6 cells 

with berberine (2.5 μM for 1 h) also reduced palmitate-dependent potentiation of glucose-

stimulated insulin secretion [28]. Conversely, in a separate study, MIN6 cells acutely 

treated with berberine (50 μM for 30 min) increased insulin secretion in a dose-dependent 

manner [34]. Perhaps limiting the time of cell exposure to high doses of berberine may be 

important in eliciting the insulinotropic effects. Nevertheless, more evidence is needed to 

fully elucidate the effects of berberine in vitro.

Mechanistically, activation of AMPK is thought to be at least partially responsible for 

the increased insulin secretion in response to berberine seen in some studies. Berberine 

promotes phosphorylation of AMPK in 3T3-L1 adipocytes [27, 29] and primary mouse 

adipocytes [27]. In L6 myotubes, berberine promotes phosphorylation of AMPK (Thr172) 

[27, 29] and translocation of GLUT4 to the plasma membrane [27]. In primary human and 

rodent islets, pharmacological activation of AMPK under glucose stimulatory conditions 

has been shown to potentiate insulin secretion due to an increase in intracellular Ca2+ 

(iCa2+) concentrations [35]. Despite the clear effects of berberine on activation of AMPK in 

adipocytes and myotubes, the direct ability of berberine to activate AMPK in either primary 

islets or β-cell lines has not been tested.
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Capsaicin

Capsaicin is a major active component of chili peppers and is the predominant capsaicinoid 

found in any fruit belonging to the Capsicum genus [36, 37] (Table 1). Capsaicin was first 

extracted in 1816 and called capsicin [38]; however, it was not until 1876 when capsaicin 

was first truly isolated [39, 40]. Capsaicin has been reported to have beneficial roles in 

treating obesity, cardiovascular, gastrointestinal conditions, various cancers, neurogenic, and 

dermatologic conditions [41]. Administration of capsaicin has also been shown to have 

anti-hyperglycemic effects in a number of rodent models of obesity and T2DM [42–45]. In 

certain studies, this observation correlated with an improvement in glucose tolerance and 

lowering of HBA1c levels, with or without alterations in plasma insulin levels. Anti-diabetic 

effects were also reported in rodent models of T1DM, including NOD mice, as well as 

models of acute inflammation: STZ-injected animals, and a partial pancreatectomy study. 

Further, capsaicin was proven to be efficacious in pregnant women with gestational diabetes 

mellitus (GDM).

In Vivo Studies

Supplementation of capsaicin (0.015% of diet) to high-fat diet fed C57BL/6 mice for the 

last 10 weeks of a 20-week dietary protocol resulted in a reduction in body weight without 

decreased food intake. This decrease in body weight correlated with a reduction in fasting 

plasma concentrations of glucose and insulin, improved glucose tolerance, and reduced TG 

concentrations [42]. Thus, it is possible that capsaicin increases energy expenditure, which 

has been documented in other studies [46].

KKAy mice, a genetic model of obesity, fed a high-fat diet for 5 weeks were supplemented 

with 0.015% capsaicin in their diet for the final 2 weeks of the study. Fasting plasma 

glucose, insulin, and TGs were all decreased in the dietary capsaicin group compared 

to the control mice; interestingly, these changes occurred without any alteration in body 

weight [43]. Dietary supplementation of capsaicin (0.0042%) to female KKAy mice for 30 

days also significantly lowered glucose levels as early as 19 days into the study, with no 

observable changes in plasma insulin levels [44].

Zucker diabetic rats, a model of obesity, insulin resistance, and T2DM, were injected 

with three ascending doses [20, 30, and 50 mg/kg, subcutaneous (SQ)] over 3 days and 

subsequently monitored for 60 days post-treatment. Despite a larger weight gain in the 

capsaicin-treated group over 60 days compared to vehicle-treated Zucker diabetic fatty 

(ZDF) rats, fasting plasma glucose levels remained in the physiological range over the 60-

day monitoring period, and HbA1c levels were significantly lower in capsaicin-treated rats 

at the end of the study. Capsaicin-treated ZDF rats demonstrated improved glucose tolerance 

without any alteration in plasma insulin compared to vehicle control rats. Furthermore, 

glucose-stimulated insulin secretion was restored in islets from capsaicin-treated animals 

compared to a completely blunted response to glucose in ZDF vehicle controls [45]. This 

phenotype was accompanied by a total loss of TRPV1 expression in islet-innervating fibers 

of the pancreas [45]. Following initial stimulation, prolonged capsaicin stimulation is known 

to promote desensitization and deterioration of neuronal fibers [47, 48].
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In STZ-exposed SD rats (single STZ injection 60 mg/kg), 28 days of capsaicin treatment (6 

mg/kg/day, oral gavage) significantly improved FBG, glucose tolerance, serum insulin, and 

glycosylated serum protein (GSP). Capsaicin also increased pancreatic mRNA and protein 

abundance of TRPV1, pancreatic duodenal homeobox 1 (Pdx1), insulin receptor substrate 

(IRS)1, IRS2, and glucose transporter 2 (GLUT2) [49]. In female NOD mice, a mouse 

model of T1DM, 20 weeks of capsaicin treatment (50 mg/kg/day, i.p. injection) significantly 

reduced insulitis compared to vehicle control mice, corresponding with a delay in diabetes 

development in capsaicin-treated mice [50].

In a 90% pancreatectomy model of diabetes, SD rats fed an HFD (40% fat) supplemented 

with capsaicin (0.025% of diet) for 8 weeks displayed an increase in fasting insulin levels, as 

well as a reduction in fasted glucose concentration, compared to pancreatectomized animals 

receiving HFD without supplementation. Capsaicin-supplemented diabetic rats displayed 

an improvement in glucose tolerance, increased insulin secretion during a hyperglycemic 

clamp, and enhanced β-cell mass relative to non-supplemented HFD diabetic animals [51]. 

In this model, capsaicin-treated islets had an elevated abundance of IRS2 and Pdx1, a β-cell-

enriched transcription factor responsible for maintenance of the adult β-cell phenotype. 

BrdU+ cells were also increased in the islet; therefore, increased β-cell proliferation, along 

with a reduction in markers of apoptosis, would be predicted to promote increased β-cell 

mass [51].

Capsaicin also appears to have a beneficial effect in humans. In healthy, non-diabetic 

males and females, a single dose of capsicum (5 g, oral capsule) containing 26.6 mg of 

capsaicin significantly lowered plasma glucose levels during an oral glucose tolerance test 

(OGTT) with a concomitant increase in plasma insulin, when compared to the placebo group 

[52]. Five milligrams of capsaicin per day over 4 weeks in women with GDM improved 

post-prandial, but not fasting glucose, and insulin levels [53].

In Vitro Studies

Currently, the literature regarding the mechanisms of action of capsaicin is conflicting. 

Capsaicin can directly promote insulin secretion from rat RINm5F cells, although toxicity 

was observed at the highest dose tested [54]. Furthermore, capsaicin was shown to promote 

an increase in the intracellular calcium concentration in rat INS-1E cells; however, this 

response was not recapitulated in Wistar rat primary β-cells or human β-cells [55]. It has 

been proposed that capsaicin mediates its effects through the transient receptor potential 

vanilloid type 1 (TRPV1) ion channel [56], although capsaicin is not selective for TRPV1 

[57].

TRPV1 mRNA expression was observed in rat INS-1, RINm5F cells [54], and INS-1E 

cells [58], and immunostaining displayed TRPV1 expression in INS-1E cells [55], rat islet 

endocrine cells [54], but not in β-cells from ZDF rats [45], NOD mice [50], or from isolated 

human islets or insulinomas [55]. Although capsaicin can increase mRNA levels and protein 

abundance of the TRPV1 in pancreatic tissue of STZ-injected rats, a model of insulin 

insufficiency [49], treatment of INS-1E cells with the TRPV1 antagonist, capsazepine, did 

not alter glucose-stimulated insulin secretion in INS-1E cells [58]. Given the variability in 

detecting TRPV1 across different model systems, it is unclear at present whether the effects 
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of capsaicin are mediated directly through TRVP1 in the β-cell. However, it appears that the 

contribution of TRPV1 in modulating insulin secretion in a capsaicin-dependent manner 

cannot be completely excluded and may be more complex than previously suggested. 

Instead, it is possible that pancreatic islets do not express TRPV1, but rather are innervated 

by TRPV1-expressing sensory nerve fibers, which may play a role in the progression of islet 

inflammation and autoimmune-mediated diabetes [50] and T2DM [57].

Cinnamaldehyde

Cinnamaldehyde is an aldehyde derived from cinnamon (Table 1). This compound, which 

was first discovered in 1834, constitutes about 90% of the oil found in cinnamon bark and is 

responsible for the flavor and odor associated with the spice [59, 60]. Cinnamaldehyde has 

been reported to have anti-oxidant, anti-inflammatory, anti-cancer, anti-diabetic, and wound 

healing properties [61].

A number of studies demonstrate the protective effects of cinnamaldehyde against STZ-

induced β-cell injury [62–66]. Whereas acute treatment with cinnamaldehyde was shown 

to lower fasting blood glucose levels, chronic treatment showed a significant improvement 

in glucose tolerance and restoration of plasma insulin to non-diabetic levels. Moreover, 

cinnamaldehyde has been demonstrated to mediate anti-inflammatory effects directly on the 

β-cell [67].

In Vivo Studies

In Wistar rats exposed to STZ (single injection, 60 mg/kg), treatment with cinnamaldehyde 

(20 mg/kg/day, oral gavage) for 45 days markedly reduced plasma glucose, increased plasma 

insulin to near normal concentrations, and reduced TG concentrations [62]. Similarly, oral 

administration of cinnamaldehyde for 28 days in diabetic Wistar rats (single injection 

STZ, 50 mg/kg) improved glucose tolerance, increased plasma insulin, decreased FBG, 

reduced HbA1c, improved malondialdehyde (MDA) concentrations to near normal, and 

improved glutathione (GSH) concentrations [63]. In the same study, acute (4 h) treatment 

with cinnamaldehyde (20 mg/kg, single oral gavage) reduced FBG similar to the effect 

of glibenclamide, a commonly used anti-diabetic medication [63]. Also in Wistar rats 

exposed to STZ (single injection 60 mg/kg), treatment with cinnamaldehyde (5, 10, 20 

mg/kg/day, oral gavage) for 45 days improved plasma glucose in a dose-dependent manner. 

Moreover, the highest concentration of cinnamaldehyde (20 mg/kg) protected against the 

STZ-dependent decrease in plasma insulin levels and, similar to glibenclamide, improved 

pancreatic concentrations of SOD, GSH, glutathione peroxidase (GPx), and catalase (CAT) 

[64].

In Wistar rats exposed to STZ (single injection, 50 mg/kg), cinnamaldehyde ingestion 

(20 mg/kg/day, oral gavage) for 60 days was as effective as glibenclamide in reducing 

FBG and HbA1c compared to untreated diabetic control animals. Both cinnamaldehyde- 

and glibenclamide-treated rats showed a restoration of serum insulin to a non-diabetic 

concentration [65]. Cinnamaldehyde was shown to mediate its effects directly on the 

β-cell as acute treatment (2 mg/mL for 2 h) promoted a greater than two-fold increase 
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in insulin release compared to islets of STZ-exposed rats. A similar effect was seen with 

glibenclamide treatment [65].

Cinnamaldehyde supplementation (10 mg/kg/day, oral gavage) for 30 days in HFD (20% 

sucrose and 12.5% fat combined with 67% normal chow) combined with STZ exposure 

(single injection, 35 mg/kg) in Wistar rats partially restored glucose tolerance to the level 

of non-diabetic animals and improved insulin sensitivity. Furthermore, supplementation with 

cinnamaldehyde improved fasting glucose and restored fasting serum insulin levels to that 

of the control group. Calculations of HOMA-IR and HOMA-β values showed no significant 

differences when compared with the non-diabetic control group [66]. Protective effects of 

cinnamaldehyde may be at least in part due to the restoration of insulin signaling (increased 

expression of IRS1/PI3K/AKT2) in pancreatic tissue of diabetic rats, decreased levels of 

advanced glycation end-products (AGEs) in serum of diabetic animals, and normalization of 

serum lipid profiles, in the presence of cinnamaldehyde [66].

In Vitro Studies

In rat RINm5F cells, cinnamaldehyde pretreatment (5 and 10 μM for 3 h) inhibited a 

number of inflammatory processes induced by STZ. First, cinnamaldehyde attenuated the 

STZ-induced phosphorylation of IκB and blocked translocation of NF-κB into the nucleus. 

Second, cinnamaldehyde inhibited STZ-induced phosphorylation of extracellular signal-

regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK), and p38 mitogen-activated 

protein kinase (MAPK). Consequently, cinnamaldehyde ameliorated STZ-induced NF-κB 

activity resulting in decreased nitric oxide (NO) production, iNOS mRNA and protein 

expression, COX2 mRNA and protein expression, and prostaglandin E2 (PGE2) production 

[67]. Reduction in inflammation in the presence of cinnamaldehyde correlated with an 

increase in β-cell survival [67].

Cinnamaldehyde can activate the transient receptor potential ankyrin 1 (TRPA1) [68], which 

has been shown to be expressed in isolated islets from Sprague Dawley rats and RINm5F 

insulinoma cells [69]. Activation of this receptor can promote insulin release through 

increased intracellular Ca2+ influx [69].

Conophylline

Conophylline can be isolated from the leaves of Tabernaemontana divaricate using an 

ethanol extraction procedure [70] (Table 1). Conophylline has been reported to improve 

non-alcoholic steatohepatitis, cellular neurodegenerative disease, and islet fibrosis [71]. Its 

biological properties include promoting differentiation of pancreatic β-cells in culture and 

increasing β-cell mass in vivo following ablation by STZ [72, 73]. Conophylline has also 

been shown to be effective at reducing hyperglycemia and improving glucose tolerance in 

the STZ model [73]. There has been one report of the effectiveness of conophylline to 

improve glycemia in rodent models of T2DM.

In Vivo Studies

Neonatal Wistar rats injected with STZ (single injection, 85 μg/g) and treated with 

conophylline (5 mg/kg/day, SQ injection) every other day (e.g., days 1, 3, 5, 7) for 7 
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days displayed reduced plasma glucose concentrations, improved glucose tolerance, and 

increased secretion of insulin in response to glucose over an 8-week period. At the end of 

the study period, there was also a significant increase in the number of Pdx1-positive ductal 

cells, insulin content, and pancreatic β-cell mass compared to diabetic rats [73].

Similarly, in STZ-exposed neonatal Wistar rats (single injection, 100 μg/g), 1 week 

of conophylline treatment (2 mg/kg/day, i.p. injection) improved glucose tolerance and 

decreased plasma glucose measured 8 weeks after STZ injection. Pancreatic insulin content 

and β-cell mass were also increased in the conophylline-treated group compared to the STZ-

only controls, 8 weeks after STZ injection [74]. Additionally, conophylline administration 

(0.9 mg/kg/day, oral gavage) for 4 weeks improved glucose tolerance, increased pancreatic 

insulin, reduced islet fibrosis, and increased the number of MafA-positive β-cells in Goto-

Kakizaki rats, a non-hypertensive model of diabetes [75].

In Vitro Studies

In acinar carcinoma cells (AR42J), a pancreatic progenitor cell line, conophylline treatment 

(0.1 mg/mL for 72 h) promoted 20% of the cells to become insulin-positive, although these 

cells were found to be Nkx6.1-negative [76]. It is postulated that conophylline activates 

p38 MAPK, which in turn stimulates the production of neurogenin3, a transcription factor 

critical for endocrine determination of AR42J cells [72, 76]. Conophylline (0.1 μg/mL for 72 

h), in the presence of nicotinamide, triggered porcine islet-like cell clusters to differentiate 

into β-cells. Nicotinamide plus conophylline increased the expression of insulin, Pdx1, 

neurogenin3, and neuroD/Beta2, all of which play a role in the development and 

differentiation of β-cells [77]. Conophylline also promotes insulin-producing cell formation 

from bone marrow mesenchymal cells when used in combination with betacellulin-delta4 

[78]. Although these cells express mature β-cell transcription factors, their ability to secrete 

insulin under stimulatory glucose concentrations is less than two-fold [78].

In neonatal mouse islets, conophylline treatment (100 ng/mL for 72 h) increased mRNA 

expression of insulin and the number of Pdx1-positive cells, similar to results obtained with 

the use of activin A [73]. Thus, it is possible that conophylline acts similarly to activin 

A, a protein complex that stimulates β-cell differentiation via activation of p38 MAPK. 

Importantly, it has been suggested that activin A induces apoptosis, whereas it appears that 

the concentration of conophylline that successfully promoted differentiation of endocrine 

cells from AR42J cells and porcine islet-like clusters does not decrease cell viability [76, 

77].

Curcumin

Curcumin is a diarylheptanoid and a major component of Curcuma longa, where the spice 

turmeric is derived from drying out the plant and grinding it into powder (Table 1). Turmeric 

is commonly used in cooking and medicine in southern Asia and curcumin is the primary 

compound thought to provide the medicinal properties of the plant [79]. Curcumin was first 

isolated in 1842 but the chemical structure was not reported until 1910 [80]. Curcumin 

has been reported to modulate numerous signaling pathways and has been demonstrated 

to have anti-oxidant, anti-inflammatory, anti-proliferative, and wound healing properties. 
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A very large body of literature exists demonstrating a beneficial role for curcumin in 

animal models of diseases and conditions including inflammatory disorders, e.g., intestinal 

inflammation, neurological disorders, gastrointestinal disorders, and cancer treatment [80]. 

Moreover, curcumin has been shown to exhibit beneficial properties in various animal 

models of obesity and T2DM [81–84], T1DM [85], and in humans with prediabetes [86] and 

T2DM [87].

In Vivo Studies

In high-fructose-fed Wistar rats (60% fructose by weight), 10 weeks of curcumin 

supplementation (200 mg/kg/day, oral gavage) reduced FBG, fasting insulin, HOMA-IR, and 

inflammation as measured by circulating tumor necrosis factor-α (TNFα) and C-reactive 

protein (CRP), compared to chow-fed animals. Glucose intolerance seen in high-fructose-

fed animals was completely ameliorated with curcumin supplementation [81]. In HFD-fed 

(35.9% fat) Wistar rats injected with STZ to induce diabetes (single injection, 39 mg/kg), 

7 weeks of curcumin supplementation (150 or 250 mg/kg/day, oral gavage) reduced FBG, 

improved glucose tolerance, and improved insulin tolerance [82]. In high-fat diet-induced 

obese C57BL/6 J mice (35% fat) compared to chow-fed mice, 8 weeks of curcumin 

supplementation (approximately 60 mg/day, in diet) was effective in reducing HbA1c with 

a concomitant decrease in body weight and fat mass [83]. A similar decrease in HbA1c 

was seen in genetically obese ob/ob mice receiving a 4% fat diet supplemented orally 

with curcumin [83]. In db/db mice, curcumin supplementation (0.2 g/kg diet) for 6 weeks 

reduced FBG and improved glucose tolerance, when compared to the non-curcumin-treated 

db/db group [84]. Long-term curcumin consumption (60 mg/day in diet, for 75 days) also 

improved non-fasting blood glucose, HbA1c, and serum insulin in db/db mice [83].

In STZ-treated diabetic SD rats (65 mg/kg single i.p. injection), curcumin treatment (100 

mg/kg/day, oral gavage) for 7 days reduced FBG, HbA1c, plasma protein oxidation, an 

indicator of oxidative stress, and the plasma inflammatory markers TNFα, interleukin-6 

(IL-6), and monocyte chemoattractant protein-1 (MCP-1) compared to vehicle control 

diabetic rats [85].

In a clinical population of male and female prediabetic patients, treatment with curcumin 

(250 mg/day, oral capsule) for 9 months resulted in reduced FBG, HbA1c, HOMA-IR, and 

plasma C-peptide levels, and increased HOMA-β when compared to placebo. Additionally, 

16% of the placebo group was diagnosed with T2DM at the end of the study, while none 

of the curcumin group progressed beyond prediabetes [86]. Conversely, in a population of 

male and female individuals with T2DM, oral curcumin supplementation (1500 mg/day; oral 

capsules) for 10 weeks reduced FBG, but no significant changes in serum insulin, HbA1c, 

HOMA-IR, or HOMA-β were observed [87].

In Vitro Studies

In isolated mouse islets, pretreatment with curcumin (10 μM for 24 h) before STZ exposure 

(1 mM for 8 h) reduced NO, peroxynitrite, and MDA concentrations. Curcumin also 

decreased activated PARP. These scavenging effects prevented the STZ-associated reduction 

in cellular viability and insulin secretion [88]. In rat INS-1 cells, incubation with curcumin 
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over a concentration response (5, 10, and 15 μM for 24 h) partially restored the loss 

of insulin and Pdx1 expression associated with chronic high glucose exposure (30 mM 

for 48 h). Curcumin also ameliorated the chronic glucose-dependent attenuation of glucose-

stimulated insulin secretion (GSIS). However, higher concentrations of curcumin (20, 40, 

and 60 μM for 24 h) decreased cell viability [89], indicating a narrow range of therapeutic 

potential.

A myriad of possible molecular targets have been identified for curcumin. For example, 

curcumin downregulates phosphodiesterase (PDE) expression and activity in MIN6 cells and 

a pancreatic β-cell line (HP62), influencing the enzymes that catalyze the breakdown of 

cAMP, which leads to the increased intracellular concentration of cAMP and consequently 

an enhancement of insulin secretion at stimulatory glucose concentrations [90]. Additional 

targets of curcumin include the protein kinases JAK, MAPK, and IκKα, reducing 

inflammatory signaling cascades [91, 92].

Epigallocatechin-3-gallate—Epigallocatechin-3-gallate (EGCG, Table 1) is a 

polyphenolic bioactive compound found in green tea (Camellia sinensis) and is purported 

to have beneficial effects for a variety of diseases including obesity, cancer, cardiovascular 

diseases, inflammatory diseases [93], and glutamate neurotoxicity [94]. EGCG has been 

shown to reduce plasma glucose concentrations and improve glucose tolerance in numerous 

models, including obesity and T2DM [95], non-obese T2DM [96], T1DM [97], and in 

STZ-treated rodents [98]. A number of in vitro studies using insulinoma cell lines and 

isolated islets have shown that EGCG mediates a direct anti-inflammatory effect on the 

β-cell [97–100].

In Vivo Studies

In db/db mice, 10 weeks of EGCG supplementation (1% w/w of diet) reduced FBG. A 

greater decrease in FBG was seen with dietary supplementation of rosiglitazone, as early 

as 5 weeks into the regimen; however, EGCG did not promote an increase in body weight 

as was seen in rosiglitazone-treated db/db mice. Both EGCG and rosiglitazone improved 

glucose tolerance in db/db mice after 10 weeks of treatment correlating with increased 

insulin output during OGTT. Moreover, EGCG and rosiglitazone promoted an increase in 

pancreatic islet number compared to db/db control animals. However, an improvement in 

insulin sensitivity was only seen in the rosiglitazone-treated mice [95]. Male Goto-Kakizaki 

rats, a non-obese model of T2DM, treated with EGCG (100 mg/kg/day, oral gavage) for 3 

months also displayed improved FBG and glucose tolerance compared to non-supplemented 

GK rats [96].

In female NOD mice, EGCG supplementation (0.05% of drinking water) beginning at 5 

weeks of age for 17 weeks decreased diabetes onset by more than 40% with a significant 

improvement in non-fasting blood glucose levels. This correlated with a dramatic increase in 

the survival rate of NOD mice at 30 weeks of age. EGCG supplementation also improved 

glucose tolerance, lowered HbA1c, and increased plasma insulin concentration. These 

physiological alterations occurred despite no change in pancreatic islet insulitis during 

EGCG treatment [97].
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In STZ-injected C57BL/KsJ mice (40 mg/kg, 5 days, i.p. injection), supplementation of 

EGCG for 10 days both during and after STZ administration (100 mg/kg/day, i.p. injection) 

reduced STZ-induced hyperglycemia and promoted an increase in islet size relative to 

STZ-treated controls, as assessed by hematoxylin/eosin staining of fixed pancreatic tissue 

[98].

In Vitro Studies

In RINm5F cells, EGCG treatment (20–200 μg/mL for 24 h in the presence of cytokines) 

protected against interferon-γ (IFNγ) and interleukin-1β (IL-1β)-mediated cell death. 

Additionally, EGCG treatment inhibited cytokine-induced translocation of NF-κB to the 

nucleus, iNOS expression, and NO production [99]. When RINm5F cells were exposed to 

a combination of inflammatory cytokines IL-1β, TNFα, and IFNγ, EGCG pretreatment (40 

μM for 24 h) reduced both iNOS abundance and NO production, prevented β-cell death, and 

partially reversed the cytokine-dependent decrease in glucose-stimulated insulin secretion 

[100].

In islets isolated from C57BL/KsJ mice, EGCG treatment (20, 50, 100, and 200 μg/mL for 

24 h in the presence of inflammatory cytokines (IL-β and IFNγ) improved cell viability in a 

dose-dependent manner when compared to control cytokine-treated islets [98].

EGCG pretreatment (1 and 10 μM for 12 h) of human islets before exposure to inflammatory 

cytokines (IL-1β and IFNγ for 48 h) dose-dependently increased cell viability and decreased 

caspase-3 activity compared to control (cytokine only treated) islets [97].

Genistein

Genistein is an isoflavone found in several plants, with the most notable being soybeans 

[101, 102] (Table 1). Genistein was first isolated in 1899 from Genista tinctoria from where 

the name genistein is derived [103]. Genistein has been reported to have cardioprotective 

effects, improve menopause symptoms, reduced incidence of some cancers, and have 

anti-depressant abilities [104]. Genistein has been studied in a number of rodent models 

of diabetes (T1DM, T2DM, and β-cell death by STZ) and has shown consistent glucose-

lowering abilities across model systems [105–108]. Beneficial outcomes on plasma glucose 

and insulin sensitivity have also been observed in a human study of non-diabetic individuals 

[109]. These anti-diabetic properties of genistein may be due to its direct action on the 

β-cell, as shown in several in vitro studies using insulinoma cell lines and isolated islets 

[106, 110–114]. However, genistein may only provide beneficial effects below a certain 

concentration threshold [111].

In Vivo Studies

In STZ-injected C57BL/6 mice (45 mg/kg, 5 days), genistein treatment (10 mg/kg, 3 days/

week, i.p. injection) for 10 weeks modestly, yet significantly, reduced FBG. Despite a 

detectable reduction in blood glucose, no improvement was seen in the number of islets or 

plasma insulin concentration, in genistein-treated diabetic animals compared to untreated 

diabetic mice [105]. Administration of genistein at a greater dose (250 mg/kg in diet) for 

4 weeks in STZ-injected C57BL/6J mice (40 mg/kg, 5 days) improved glycemic control, 
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measured as non-fasting blood glucose and glucose tolerance, and was observed relative 

to STZ-injected mice on the control diet. Genistein restored both plasma insulin levels 

and β-cell mass to values similar to the control animals that did not receive any STZ. 

Furthermore, dietary genistein supplementation partially counteracted the STZ-associated 

β-cell loss by stimulating proliferation (measured by BrdU positivity) and reducing TUNEL-

positive β-cells [106].

To generate a model of non-genetic obesity and T2DM, C57BL/6 mice were fed a 

high-fat diet (60% fat) for 4 weeks followed by a single injection of STZ (90 mg/

kg). Supplementation of the HFD with genistein (250 mg/kg/day) improved FBG levels 

compared to obese, T2DM (HFD + STZ) mice receiving no genistein; however, glucose 

levels were still significantly elevated relative to high-fat or chow-fed animals that did 

not receive an injection of STZ. Compared to the chow diet alone (no STZ), plasma 

insulin levels were elevated in the HFD group (no STZ). As expected in HFD+STZ 

mice, circulating levels of insulin were far lower than those in chow mice, yet dietary 

administration of genistein restored plasma insulin to levels in HFD+STZ mice. Islet β-cell 

mass tended to correlate with circulating insulin levels in this study. Furthermore, genistein 

reduced STZ-induced β-cell apoptosis assessed by staining pancreatic sections for active 

caspase-3 [107].

Beginning at 9 weeks of age, dietary supplementation with genistein (0.2 g/kg of diet) 

significantly improved fasting plasma glucose levels compared to untreated NOD mice. This 

intervention also completely prevented the onset of hyperglycemia in female NOD mice 

compared to control animals. Further, genistein supplementation significantly decreased 

serum FFA and TG levels. In agreement with an increase in circulating levels of insulin 

and C-peptide, the number of insulin-positive cells, assessed by immunohistochemistry of 

pancreatic sections, was also increased following 9 weeks of genistein supplementation 

[108]. Moreover, in human studies, 2 years of genistein administration (54 mg/day) reduced 

FBG and insulin levels, and improved insulin sensitivity as assessed by HOMA-IR, when 

compared to the placebo in non-diabetic post-menopausal women [109].

In Vitro Studies

Insulinotropic effects of genistein appear to vary depending on the concentration used and 

the length of incubation time. For example, acute treatment of isolated mouse islets and the 

pancreatic β-cell line INS-1 with lower genistein concentrations (5 μM for 30 m) potentiated 

GSIS [110], and moderate concentrations (50 μM for 1 h) also increased GSIS in isolated 

pancreatic mouse islets [111]. Conversely, high concentrations of genistein (200–500 μM for 

1 h) dose-dependently inhibited GSIS in isolated rat islets [111]. In a time-dependent study, 

100 μM genistein was shown to increase insulin secretion in isolated rat islets at 24 and 48 h 

[112]; however, the observed fold increase gradually decreased at 3 and 4 days of exposure 

to genistein.

Low concentrations of genistein induced proliferation, measured via BrdU incorporation, 

in both INS-1 cells (0.1–10 μM for 24 h) and human islets (1 and 5 μM for 24 h) [106]. 

Alternatively, exposure to greater concentrations of genistein (100 μM for 24 h) increased 

β-cell apoptosis in RINm5F at 4 h [113] and 24 h [114], and also following 24h treatment in 
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rat and human islets [114]. The observed increase in apoptosis associated with high genistein 

concentrations may be through inhibition of topoisomerase-II [113], as has been reported in 

mouse lymphoma cells [115]. Topoisomerase-II inhibition can lead to DNA fragmentation, 

apoptosis, and induce G2/M cell cycle arrest [116].

Increases in intracellular cAMP and subsequent activation of protein kinase A (PKA) 

were shown to be responsible for both the proliferative effects of genistein [106] and 

the insulin-secreting activity of pancreatic β-cell lines and mouse islets [110]. Genistein 

also induced the ERK1/2 signaling pathway [106]. Genistein has anti-oxidant and anti-

inflammatory properties. These effects are achieved by scavenging free radicals, decreasing 

lipid peroxidation, and inhibiting the expression of COX and myeloperoxidase (MPO) [117, 

118]; however, this anti-oxidant defense mechanism has not been tested in the context of 

β-cell function.

Gingerol

First isolated in 1879, gingerol is the predominant and most important phenol found 

in the ginger plant (Zingiber officinale), a plant widely used as both a spice and 

traditional medicine [119] (Table 2). Ginger has been reported to have anti-inflammatory, 

cardioprotective, anti-nausea, and neuroprotective effects [120]. Furthermore, gingerol has 

exhibited anti-diabetic properties including an improvement in FBG, increased glucose 

tolerance, improved insulin secretion, and reduced β-cell death in multiple models of 

diabetic rodents [121–123]. However, it is important to note that these effects are not 

consistent from study-to-study, which could be due to the dose of gingerol used or the route 

of administration [121, 122]. Moreover, whether gingerol can mediate beneficial effects in 

rodent models and human subjects with T1DM or individuals with obesity and diabetes has 

not yet been determined.

In Vivo Studies

Four weeks of gingerol supplementation (0.05% in the diet) in db/db mice improved FBG 

concentrations compared to db/db mice fed a control diet but did not return the blood 

glucose to levels observed in non-diabetic control mice. Gingerol supplementation also 

improved insulin sensitivity, blood lipid profile, and reduced serum TNFα concentration 

compared to untreated db/db mice [121].

In a separate study using db/db mice, gingerol administration for 4 weeks (200 mg/kg/day, 

oral gavage) was shown to be as effective as glibenclamide in improving glucose tolerance 

compared to vehicle control mice. Improved glucose tolerance was accompanied by a 

significant increase in insulin secretion in both gingerol- and glibenclamide-treated mice 

during the OGTT. However, unlike glibenclamide treatment, which lowered FBG levels 

as early as 1 week into the 4-week treatment period, gingerol administration showed no 

glucose-lowering effects or alterations in blood insulin levels in either the fed or fasted 

state compared to untreated vehicle controls. Interestingly, following a glucose bolus, the 

gingerol-treated animals displayed increased plasma GLP-1 and reduced plasma dipeptidyl 

peptidase-4 (DPP4) concentrations and activity. The authors conclude that increased GLP-1 

in response to glucose in gingerol-treated mice “mediates the glucose-induced insulin 
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secretion activity” from pancreatic β-cells, as this effect is blocked by the addition of 

the PKA inhibitor H89 [122]. Furthermore, in islets from db/db mice, gingerol was shown 

to enhance mRNA expression and abundance of two factors involved in insulin vesicle 

docking, Rab27 and Slp4-a, suggesting that gingerol may play a role in exocytosis of 

insulin-containing vesicles [122].

In Swiss albino mice made diabetic by arsenic exposure (3 mg/kg/day, oral gavage, 12 

weeks), gingerol treatment for 3 weeks (50 and 75 mg/day, oral gavage) dose-dependently 

reduced pancreatic arsenic deposition and arsenic-induced ROS accumulation. Both 

concentrations of gingerol reduced arsenic-induced hyperglycemia and improved both FBG 

levels and glucose tolerance. Furthermore, treatment with gingerol significantly improved 

plasma insulin concentrations compared to arsenic-induced diabetic control animals [123].

In Vitro Studies

In RIN-5F cells, gingerol treatment (25–100 μM for 4 h) dose-dependently reduced basal 

ROS concentrations as measured by DCFHA-DA. Gingerol (50 μM for 4 h) also reduced 

ROS activity generated by the addition of artificial advanced glycation end-product (AGE)2 

[121]. At present, there are limited in vitro studies published in English language journals. 

Clearly, more research is needed in this important area to determine how gingerol mediates 

its anti-diabetic effects.

Gymnemic Acid

Gymnemic acid is a class of chemical compounds isolated from the leaves of the plant 

Gymnema sylvestre, also known as the Australian cow plant (Table 2). Gymnemic acid 

was first isolated in 1888. These compounds interact with taste receptors on the tongue 

to temporarily suppress the taste of sweetness [124]. Gymnema sylvestre is also known to 

have anti-oxidant, anti-inflammatory, antibiotic, anti-viral, hepatoprotective, anti-cancer, and 

lipid-lowering activities [125]. Gymnemic acid is considered to be the primary compound 

responsible for the anti-diabetic effects of Gymnema sylvestre [126]. Gymnemic acid has 

been extensively studied in models of hyperglycemia including chemical induction models 

(STZ [127] and alloxan [128]), db/db mice [129], and STZ in combination with HFD 

[130]. The most common outcome across these various model systems is the ability of 

gymnemic acid, regardless of route of administration, to reduce plasma glucose levels. These 

glucose-lowering effects may be modulated by increased insulin secretion, as seen in in vitro 

experiments using insulinoma cell lines and islets [131, 132].

In Vivo Studies

A single dose of gymnemic acid (13.4 mg/kg, i.p. injection) significantly lowered plasma 

glucose levels 6 h after administration in STZ-induced diabetic ddY mice (150 mg/kg, single 

injection). By comparison, a single dose of glibenclamide significantly lowered glucose 

levels by 4 h and remained lower by 6 h compared to the STZ control group. Gymnemic 

acid administration to STZ mice also significantly elevated plasma insulin levels compared 

to STZ controls [127]. In alloxan-induced diabetic rats (100 mg/kg, single injection), 30 

days of gymnemic acid treatment (200 mg/kg/day, oral gavage) helped to restore alloxan-
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induced β-cell degeneration as determined by histopathological examination of pancreatic 

sections [128].

In db/db mice, 8 weeks of gymnemic acid treatment (100 mg/kg/day, oral gavage) reduced 

FBG and HbA1c, improved blood lipid profiles, restored glucose tolerance, and improved 

inflammation as measured by reduced circulating levels of TNFα, MCP-1, and IL-6. 

Gymnemic acid treatment increased serum insulin with a concomitant increase in insulin/

glucagon ratios detected by immunofluorescence staining of pancreatic tissue. Gymnemic 

acid also promoted β-cell proliferation as assessed by Ki67 staining of pancreatic sections 

[129].

In SD rats rendered diabetic through a combination of high-fat diet feeding (32% fat and 

44% sugar, estimated based on the table provided) and STZ injection (30 mg/kg, single 

injection), gymnemic acid treatment for 6 weeks (40 and 80 mg/kg/day, oral gavage) 

reduced FBG, glucose intolerance, insulin resistance, and glycated serum protein levels 

compared to T2DM rats. A reduction in fasting serum insulin compared to T2DM animals 

was seen only in high-dose gymnemic acid. However, HOMA-β calculations show a dose-

dependent effect [130].

In Vitro Studies

In several β-cell lines (HIT-15, RINm5F, and MIN6), treatment with an extract of Gymnema 
sylvestre (termed GS4), which contains gymnemic acid, at 0.125, 0.25, and 0.5 mg/mL for 

1 h increased basal insulin secretion in a dose-dependent manner [133]. However, the ability 

of GS4 to trigger insulin release is the result of increased membrane permeability. The high 

saponin glycoside content found in gymnemic acid increases plasma membrane permeability 

resulting in insulin leakage from the cell rather than regulated exocytosis [133].

In MIN6 cells, treatment with an aqueous extract of Gymnema sylvestre leaves termed OSA 

increased basal- and potentiated glucose-stimulated insulin secretion [131, 132]. Unlike the 

GS4 preparation [133], OSA did not promote increased trypan blue staining in human islets 

[132]. Insulin release was most likely due to the increase in OSA-dependent intracellular 

calcium concentration; accordingly, the calcium channel inhibitor nifedipine abolished this 

response. A similar increase in basal and potentiation of glucose-stimulated insulin secretion 

was seen in human islets treated with OSA [132]. In a separate study, MIN6 cells exposed 

to gymnemic acid (5 μg/mL for 36 h) decreased high glucose-induced caspase-3 activity and 

apoptosis and induced autophagy under both normal and high glucose stress by inhibiting 

the activity of mTOR1 [134]. In isolated islets from ICR mice, treatment with OSA 

(0.25 mg/mL for 30 min) substantially increased basal insulin secretion; this response was 

partially attenuated by nifedipine [131].

Kinsenoside

Kinsenoside is a key active component isolated from the genus Anoectochilus, such as A. 
roxburghii, also known as the jewel orchid (Table 2). Kinsenoside has been shown to have 

great therapeutic potential with vascular protective, anti-inflammation, and anti-hyperliposis 

effects among some of its myriad properties [135]. This medicinal plant has been used 
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for centuries in traditional Chinese medicine in the treatment of numerous ailments; 

however, the active compound was not isolated until 1993 [136]. Surprisingly, literature 

is quite limited regarding kinsenoside and diabetes. To date, the only study performed using 

kinsenoside is in the STZ model of acute inflammation and hyperglycemia [137], with no 

reports of its effects in rodent models of T1DM or T2DM, or in patients with diabetes. In 

addition, no in vitro studies using cell lines or isolated islets have been performed to test for 

direct effects of kinsenoside on the β-cell.

In Vivo Studies

In STZ-induced diabetic Wistar rats (50 mg/kg, single injection), kinsenoside treatment (15 

mg/kg/day) for 21 days improved glucose tolerance measured via OGTT. Glucose tolerance 

was also improved in non-diabetic animals. In a side-by-side analysis with metformin, both 

metformin and the highest dose of kinsenoside restored plasma insulin levels in STZ-treated 

rats to those of non-diabetic controls. Histopathological examination of the pancreas showed 

that unlike metformin, treatment with kinsenoside appears to promote a dose-dependent 

alleviation of STZ-induced loss in insulin-positive cells. However, no quantification of 

the insulin-positive area or β-cell mass were shown in this report, and the representative 

pancreatic section shows a single islet for each treatment group [137].

Kinsenoside treatment in STZ-induced diabetic rats increased the activity of both total 

superoxide dismutase and scavenging hydroxyl radical in serum to a similar extent as 

metformin. Although the serum NO content was reduced by kinsenoside, no change was 

seen in NOS or iNOS activity [137].

Nymphayol

Nymphayol is a sterol present in Nymphaea caerulea also known as the blue lotus (Table 

2). Nymphayol containing plants are widely used in Ayurveda and Siddha medicine for 

the treatment of diabetes, inflammation, liver disorders, and many other ailments [138]. 

Nymphayol has been shown to have anti-diabetic properties in rats rendered diabetic using 

the drug STZ [139–141]. These effects may be mediated, at least in part, through its ability 

to increase insulin secretion, as demonstrated in an insulinoma cell line [140].

In Vivo Studies

Using Wistar rats made diabetic by STZ (40 mg/kg, single injection), an oral gavage of 

nymphayol (50 mg/kg/day, for 25 days) was shown to be as effective as the FDA-approved 

drug pioglitazone in reducing glucose intolerance and improving serum lipid profiles [139]. 

In addition, nymphayol administration (20 mg/kg/day, oral gavage) for 45 days, given 7 days 

after onset of diabetes in STZ-injected Wistar rats (45 mg/kg, single injection), was able to 

reduce fasting plasma glucose and HbA1c compared to diabetic rats. Moreover, the effect 

of nymphayol was similar to animals administered glibenclamide. Likewise, nymphayol 

administration was as successful as glibenclamide at restoring plasma insulin concentrations 

that were depleted by STZ exposure [140, 141].
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In Vitro Studies

In RIN5 cells, nymphayol treatment (20 or 40 μM for 3 h) dose-dependently increased 

insulin secretion when compared to the control; this was observed under both low glucose 

(5.5 mM) and high glucose (25 mM) concentrations [140]. As a possible mechanism for 

these effects, nymphayol may increase the expression and/or activity of PPARγ which has 

been shown in adipose tissue [139]. Although no studies to date have tested the ability 

of nymphayol to regulate PPARγ abundance or activity in the β-cell, enhancing PPARγ 
activity in the insulin-producing cell leads to increased intracellular Ca2+ concentration and 

consequently increased insulin secretion [142]. Further studies are required to directly test 

this possibility.

Paeoniflorin

Paeoniflorin, first isolated in 1963, is a glycoside and major component of Paeonia lactiflora 
[143] (Table 2). Paeoniflorin has been demonstrated to have anti-inflammatory and immune 

regulatory effects beneficial for several autoimmune diseases, such as rheumatoid arthritis, 

allergic contact dermatitis (ACD), psoriasis, and ulcerative colitis. This molecule is also 

reported to have cardioprotective, neuroprotective, and hepatoprotective effects [144]. 

Paeoniflorin has shown promising results in models of hyperglycemia [145] and insulin 

resistance [146]; however, it remains to be determined whether paeoniflorin can improve 

diabetic parameters in rodents and humans with T1DM and T2DM.

In Vivo Studies

In Wistar rats exposed to STZ (60 mg/kg, single injection), a single i.v. injection of 

paeoniflorin (1, 5, or 10 mg/kg) reduced plasma glucose in a dose-dependent manner when 

compared to the non-treatment diabetic group. The non-diabetic Wistar rats also experienced 

reduced plasma glucose, but no dose-dependent effects were observed [145]. In Sprague 

Dawley rats given a 20% fructose drink, which provides a model of hyperinsulinemia 

and insulin resistance, but not hyperglycemia, 8 weeks of paeoniflorin treatment (10, 

20, 40 mg/kg/day, oral gavage) improved glucose tolerance to a similar extent as the 

insulin sensitizer pioglitazone. In fructose-fed rats, paeoniflorin decreased serum levels of 

TG, insulin, and glucagon. All three doses of paeoniflorin improved insulin sensitivity, 

represented by the HOMA-IR index; however, in this study, pioglitazone was the superior 

insulin-sensitizing intervention. Similar improvements in these biochemical markers were 

also seen with pioglitazone treatment [146].

In Vitro Studies

In INS-1 cells, paeoniflorin pretreatment (20, 40, 80 μM for 2 h) before STZ exposure 

(3 mM for 24 h) dose-dependently restored the STZ-induced loss in insulin content, SOD 

activity, and BCL-2 expression. Paeoniflorin treatment also reduced STZ-induced caspase-3 

activity, Bax expression, ROS production, and MDA concentrations, as well as suppressed 

STZ-induced activation of p38 MAPK and JNK pathways, all in a dose-dependent manner. 

The ability of paeoniflorin to inhibit these pathways promoted β-cell survival [147].
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Quercetin

Quercetin is a natural polyphenolic pigment flavonoid found in a wide variety of plants, 

including fruits and vegetables such as buckwheat, apples, berries, and red onions (Table 

3). The therapeutic potential of quercetin has been continually investigated in many distinct 

experimental paradigms. It has been reported to have anti-oxidant, anti-diabetic, anti-tumor, 

anti-microbial, anti-inflammatory, immune-regulatory, and cardioprotective properties [148]. 

Quercetin has been extensively studied in rodent models of diabetes, including STZ-induced 

diabetes in Wistar rats and genetically obese db/db mice. Regardless of the route of 

administration, quercetin has been shown to have a glucose-lowering ability that is often, 

but not always, accompanied by an alteration in circulating insulin levels [149–153]. In 

vitro studies using insulinoma cell lines and isolated islets reveal that quercetin can enhance 

insulin secretion as well as provide anti-inflammatory and anti-oxidant actions directly in the 

β-cell [154–160]. Furthermore, quercetin is or has been investigated in phase II clinical trials 

for the treatment of T2DM (NCT00065676 and NCT01839344).

In Vivo Studies

In Wistar rats exposed to STZ (50 mg/kg, single injection), 4 weeks of quercetin 

supplementation (15 mg/kg/day, i.p.), 3 days prior to STZ injection, showed significant anti-

hyperglycemic effects relative to STZ controls. Circulating insulin were partially restored 

after quercetin supplementation in STZ-exposed rats. This increase in serum insulin was 

accompanied by a ten-fold increase in immunoreactive insulin in islet β-cells, yet remained 

50% lower than control animals. A decrease in pancreatic abundance of MDA as well as an 

increase in pancreatic SOD, GSH-Px, and CAT accompanied these metabolic changes [149].

In a study from a separate group, quercetin administration (25 mg/kg/day, i.p.) for 33 

days beginning 3 days prior to STZ induction in Wistar rats (75 mg/kg, single injection) 

prevented the onset of hyperglycemia and restored plasma insulin concentrations to control 

values. Quercetin pretreatment reduced losses in β-cell mass, shown via histological 

examination of pancreatic tissue. Quercetin administration to STZ-exposed rats also reduced 

serum NO and improved anti-oxidant defense as measured by increased abundance of 

pancreatic CAT, SOD, GSH-Px, and a reduction in MDA concentration [150].

In Wistar rats exposed to STZ (50 mg/kg, single injection) treatment with the glycosidic 

form of quercetin known as rutin (25, 50, and 100 mg/kg/day, oral gavage) for 45 days 

dose-dependently decreased plasma concentrations of glucose [151]. Using the highest dose 

from this study, these authors confirmed this anti-hyperglycemic effect and further showed 

that rutin increased plasma insulin levels compared to diabetic controls. Rutin administration 

in STZ rats increased pancreatic concentrations of GSH, SOD, catalase, and GSH-Px [152].

In STZ-exposed Sprague Dawley rats (50 mg/kg, single injection), administration of 

quercetin-containing (100 mg/kg) soluble starch via gastric intubation following an 

overnight fast significantly reduced post-prandial hyperglycemia compared to control rats 

administered starch only [153]. In a hypertriglyceridemia HFD-fed model (20% lard and 

3% cholesterol) SD rats that underwent acute pancreatitis induction, quercetin (100, 150, 

200 mg/kg, i.p. injection; 30, 60, 120, 180 min following acute pancreatitis induction) 
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dose-dependently reduced pancreatic damage and suppressed pancreatic inflammation by 

reducing mRNA expression of inflammatory markers including NF-κB, IL-1β, IL-6, and 

TNFα [161].

In db/db mice, quercetin supplementation (0.08% diet) for 7 weeks lowered fasting glucose 

concentrations and HbA1c without altering plasma insulin levels [153].

In Vitro Studies

In INS-1 cells, 1 h of quercetin treatment (20 μM) increased insulin secretion 1.5-fold under 

non-stimulated conditions, and when the cells were exposed to glucose (8.3 mM) or other 

secretagogues (glibenclamide), quercetin potentiated insulin secretion [154]. Quercetin had 

no effect on basal insulin secretion, but potentiated glucose-stimulated insulin secretion in 

isolated Wistar rat islets [154]. Similarly, INS-1 cells treated with quercetin (20 μM for 1 h) 

more than doubled basal insulin secretion when compared to the non-treated control. In the 

same study, isolated rat islets treated with quercetin (10 and 20 μM for 30 m) experienced 

a dose-dependent increase in insulin secretion [155]. Both basal and glucose-stimulated 

insulin secretion were enhanced 1.7- and 2.7-fold, respectively, in the presence of 50 μM 

quercetin in INS-1 cells [156]. Quercetin also potentiated GSIS in INS-1E cells. This was 

associated with a corresponding increase in the expression of Glut2, Gck, and Ins1 at 

stimulatory glucose conditions [157].

The ERK1/2 signaling pathway also plays a role in the regulation of glucose-stimulated 

insulin secretion in vitro [162]. Interestingly, quercetin, in the presence of stimulatory 

concentrations of glucose, robustly induces phosphorylation of ERK1/2; a modest activation 

of ERK was seen in the presence of glucose or quercetin alone. This effect was decreased in 

the presence of the ERK inhibitor U0126, but was independent of PKA. Given that quercetin 

potentiated the KCl-induced increase in intracellular Ca2+, it was postulated that quercetin 

activates ERK1/2 through increased intracellular calcium, which sensitizes β-cells to insulin 

secretagogues and thereby potentiates insulin secretion [154].

Increased insulin release stimulated by quercetin is thought to be mediated through 

transient inward rectifying KATP channel inhibition and stimulation of voltage-gated Ca2+ 

channels. It is unclear how quercetin inhibits inward rectifying KATP channels. However, 

in β-cells, quercetin can directly activate L-type Ca2+ channels without altering membrane 

depolarization, leading to increased intracellular calcium (Ca2+
i) which positively influences 

insulin secretion [155, 156].

Treatment with quercetin protected INS-1 cells against H2O2-induced cell death and 

attenuated the H2O2-associated insulin secretion loss [154]. In RINm5F cells exposed 

to IL-1β, quercetin pretreatment (10 μM for 1 h) reduced nitrite production and 

iNOS expression, as well as inhibited IκBα phosphorylation. The reduction in insulin 

secretion observed by overnight exposure to IL-1β was also mitigated [158]. Similarly, a 

concentration response of quercetin (5, 10, and 20 μM for 2 h) tested in RINm5F cells 

partially restored the cytokine-mediated decrease in GSIS (IL-1β, TNFα, IFNγ for 24 

h) [159]. Quercetin pretreatment protected against cytokine-induced loss in viability and 

reduced cytokine-mediated ROS and NO production. The higher dose of quercetin (20 μM) 
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also inhibited the loss of IκBα and ameliorated the cytokine-associated increase in iNOS, 

caspase activity, NF-κB nuclear expression, and Bax expression [159].

Co-treatment of RINm5 cells in the presence of 25 and 50 μM quercetin, and the cytokines 

IL-1β and IFNγ, partially protected against cytokine-induced losses in viability. Quercetin 

co-treatment also decreased cytokine-dependent production of nitrite and iNOS expression, 

translocation of NF-κB to the nucleus, and IκBα phosphorylation and degradation. 

Cytokine-mediated impairment in insulin secretion in rat islets was also prevented by 

treatment with quercetin [160].

Long-term application of high-dose quercetin (50 μM for 48 h) in INS-1 cells can produce 

negative outcomes, such as inhibiting cell proliferation and promoting apoptosis; this is 

likely via inhibition of PI3K/Akt signaling [156].

Resveratrol

Resveratrol is a stilbenoid polyphenol produced by plants in response to injury (Table 3). 

This polyphenol, first isolated in 1939, is found in many berries as well as the skin of grapes 

[163]. In clinical trials, resveratrol has been demonstrated to improve cancer, Alzheimer’s 

disease, cardiovascular disorders, and non-alcoholic fatty liver disorder [164]. Anti-diabetic 

effects of resveratrol (lowering of FBG, elevated GSIS, and improvements in circulating 

insulin levels) have been noted in rodent models of hyperglycemia, glucose intolerance, and 

T2DM [165–167]. Beneficial outcomes of resveratrol supplementation have been noted in 

rhesus monkeys [168], as well as in humans with T2DM [169, 170]. Resveratrol enhances 

insulin secretion in vitro with effects in cultured β-cell lines and isolated islets [90, 171, 

172]. Furthermore, resveratrol has been shown to have potent anti-inflammatory properties 

in the β-cell [173]. In addition, resveratrol is or has been used in various clinical trials for 

the treatment of obesity, insulin resistance, and/or T2DM (NCT01677611, NCT01158417, 

NCT02216552, and NCT01354977).

In Vivo Studies

In STZ-exposed Wistar rats (50 mg/kg, single injection) also given nicotinamide (110 

mg/kg, single injection), 30 days of resveratrol supplementation (5 mg/kg/day, oral aqueous 

solution) lowered FBG and HbA1c. Rats receiving resveratrol demonstrated greater plasma 

insulin concentrations compared to the diabetic control and insulin levels were similar 

when compared with the oral hypoglycemic agent gliclazide. Resveratrol supplementation 

decreased plasma levels of NO and inflammatory cytokines (TNFα, IL-1 β, and IL-6). In 

pancreatic tissue, resveratrol increased the activity of a number of enzyme anti-oxidants 

including SOD, catalase, GPx, and GST compared to diabetic control rats. Improved islet 

architecture and β-cell survival was also observed via TEM [165].

In high-fat-fed C57BL/6 J mice (59% fat), resveratrol supplementation (400 mg/kg/day) for 

16 weeks reduced FBG and plasma insulin. Resveratrol intake improved glucose tolerance 

beyond even the chow control. Additionally, resveratrol improved glucose-stimulated 

insulin secretion and decreased pancreatic TG content relative to the high-fat-fed animals. 

Decreased markers of apoptosis were also present in resveratrol-treated animals [166].
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Following 8 weeks of high-fat high-sucrose feeding (60% common chow, 10% lard, 

10% egg yolk powder, and 20% sucrose), SD rats were injected with a single dose of 

STZ (40 mg/kg) to promote diabetes onset. Diabetic rats were administered a single 

dose of resveratrol (30 mg/kg, i.g.) and monitored for an additional 8 weeks. Significant 

improvements in post-prandial glucose concentration were seen by 4 weeks compared 

to diabetic animals and maintained through the rest of the 8-week study. A substantial 

lowering in FBG was also observed at the end of the 8-week period. Although the single 

injection of resveratrol did not completely mitigate the development of diabetes, it slowed 

the progression of diabetes, though post-prandial glucose levels remained twice as high as 

non-diabetic controls. Modest improvements in circulating insulin levels in both the fasting 

and post-prandial states were also observed in the resveratrol-treated mice when compared 

to diabetic controls [167].

Intraperitoneal injection of resveratrol lowered plasma glucose and increased insulin in 

normoglycemic Wistar rats; however, no glucose-lowering effect was observed in STZ-

induced diabetes [172]. Similarly, in adult male rhesus monkeys fed a high-fat high-sucrose 

diet (42% fat, 27% sucrose), 2 years of resveratrol supplementation (80 mg/day for 12 

months, then 240 mg/day for 12 months) did not improve fasting glucose or insulin levels 

compared to high-fat high-sucrose (HFHS) control monkeys. Despite this observation, 

resveratrol supplementation increased insulin positive β-cell mass and decreased the α-

cell/β-cell ratio compared to the HFHS group, without an overall change in islet size. The 

authors suggest that the alteration in the α-cell/β-cell ratio is due to the de-differentiation 

of β-cells into α-cells, as no changes in apoptosis or proliferation were detected. Expression 

of a number of essential β-cell transcription factors were decreased in the islet of HFHS 

monkeys including Pdx1, Nkx6.1, Nkx2.2, and Foxo1. Resveratrol protected against this 

deleterious phenotype. These changes were accompanied with increased insulin secretion in 

resveratrol-treated animals relative to HFHS controls [168].

In human studies, resveratrol has shown beneficial effects. Treatment of male and female 

patients with T2DM with resveratrol (250 mg/day, oral capsule) for 3 months in combination 

with their current anti-hypoglycemic regimen (metformin and/or glibenclamide) experienced 

reduced FBG and HbA1c compared to the placebo group [169]. When male and female 

patients with T2DM were given resveratrol (1 g/day, oral capsule) in conjunction with their 

current medication (oral hypoglycemic agent and/or insulin) for 45 days, FBG, HbA1c, 

fasting serum insulin, and insulin resistance were all significantly reduced compared to the 

placebo group [170].

In Vitro Studies

In INS-1E cells, treatment with resveratrol (1, 5, and 25 μM for 24 h) dose-dependently 

potentiated GSIS but did not alter basal insulin secretion or insulin content. The highest 

dose of resveratrol (25 μM) tested also increased glucose-stimulated ATP production and O2 

consumption in INS-1E cells [171]. When three different β-cell lines (MIN6, HIT-T15, and 

RIN-m5F) were treated with resveratrol at varying concentrations (3, 10, 30, and 100 μM 

for 1 h), the moderate resveratrol concentrations (10 and 30 μM for 1 h) increased GSIS 

in all cell lines. In MIN6 cells, resveratrol (10 and 30 μM) increased GSIS; however, 100 
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μM showed no effect. Unlike MIN6 cells, in HIT-T15 cells, resveratrol potentiated GSIS at 

the three highest concentrations tested. RIN-m5F cells demonstrated potentiated GSIS by 

resveratrol at all concentrations tested [172].

In a separate study, resveratrol treatment (0.1, 1, 10 μM for 2 h) in MIN6 cells potentiated 

GSIS at all doses tested, while non-stimulated insulin secretion only increased at the 

lower concentrations (0.1 and 1 μM), but not the higher concentration (10 μM) tested 

[90]. Conversely, preincubation of INS-1 cells with varying doses of resveratrol (0.2, 2, 

20, and 200 μM for 1 h) did not potentiate GSIS and only a modest increase in basal 

insulin secretion was observed at the highest dose tested [154]. In human islets treated 

with the same concentrations of resveratrol (0.1, 1, and 10 μM for 2 h), both basal and 

glucose-stimulated insulin secretion were increased at 1 and 10 μM [90]. When human islets 

were treated with higher concentrations of resveratrol (25 μM for 24 h) and for longer 

exposures, GSIS more than doubled, but basal insulin secretion was not altered [171]. It is 

noteworthy that resveratrol increased GLUT2, GK, Pdx1 (aka IPF-1), TFAM, and HNF-1a 

expression in human islets.

In RIN-m5F cells, resveratrol pretreatment (50 μM for 3 h) effectively inhibited pro-

inflammatory cytokine (IL-1β and IFNγ for 24 h)-induced activation of the NF-κB pathway 

as measured by iNOS expression and NO production. In addition, NF-κB transcriptional 

activity and acetylation of p65 at K310 were all decreased in the presence of resveratrol. 

Furthermore, in isolated islets from SD rats, pretreatment with resveratrol restored the 

cytokine-mediated decrease in GSIS and islet viability. These results were consistent with a 

resveratrol-dependent decrease in NF-κB pathway activation [173].

Resveratrol has been proposed to alter β-cell function in multiple ways. For example, 

the inhibition of both KATP and KV channels in MIN6 cells, resulting in membrane 

depolarization, helps to explain enhanced insulin secretion [172]. Resveratrol also directly 

decreases the expression of PDE genes and inhibits PDE activity in MIN6 β-cells. 

Consequently, a concomitant increase in intracellular cAMP levels was observed [90].

Resveratrol is a known activator of Sirtuin 1 (SIRT1) [174], and the SIRT1 pathway 

is assumed to be a major target of resveratrol in the β-cell [171]. Resveratrol activates 

SIRT1, upregulating key transcription factors, which in turn promotes the expression of 

glucose transporter 2 (GLUT2) and various metabolic enzymes, ultimately increasing 

stimulus-secretion coupling. Activation of SIRT1 also upregulates the expression of Pdx1 

and hepatocyte nuclear factor 1 homeobox A (HNF-1α), both of which are molecular targets 

linked with GLUT2 expression. Moreover, SIRT1 positively regulates glucose-stimulated 

insulin secretion in β-cells via downregulation of uncoupling protein 2 (UCP2) and 

increased ATP production [171].

The activation of SIRT1 by resveratrol also interferes with the NF-κB signaling pathway 

through the deacetylation of p65, resulting in inhibited iNOS expression, anti-inflammatory 

function, and protection from cytokine-induced β-cell death and loss of GSIS [173].
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Silymarin

Silymarin (Table 3), first isolated in 1960, is the active flavonoid derived from the seeds 

of milk thistle (Silybum marianum) and is most well-known for its use with liver disorders 

[175]. To our knowledge, silymarin has only been studied in rodent models of β-cell ablation 

and consequent hyperglycemia (STZ, alloxan, and partial pancreatectomy). The results from 

these studies showed significant improvements in glucose control and circulating insulin 

levels in animals treated with silymarin compared to controls [176–179]. These outcomes 

are promising and suggest that silymarin may elicit beneficial effects in other rodent models 

of T1DM and T2DM. Silymarin as a co-therapy in a small cohort of individuals with T2DM 

showed promising results [180], and these findings should be expanded to a larger cohort to 

determine if silymarin could be used as a potential adjuvant therapy in T2DM.

In Vivo Studies

In alloxan-exposed Wistar rats (150 mg/kg, single injection), silymarin treatment (200 

mg/kg/day, oral gavage) for 9 weeks after onset of diabetes completely attenuated 

the alloxan-dependent hyperglycemia within 1 week of administration. Consistent with 

these results, the alloxan-dependent decrease in serum insulin levels was also prevented. 

Furthermore, assessment of pancreatic tissue showed that silymarin protected against 

alloxan-induced morphological damage to pancreatic islets and β-cells [176]. Silymarin 

supplementation (50 mg/kg/day, oral gavage) for 28 days in Wistar rats exposed to STZ 

(50 mg/kg, single injection) significantly decreased hyperglycemia compared to diabetic 

controls. Silymarin administration to diabetic rats increased insulin production, and although 

β-cell number improved in the silymarin group compared to diabetic animals, there still 

remained a 50% decrease when compared to non-diabetic controls [179].

In partially pancreatectomized Wistar rats (60%) treated with silymarin (200 mg/kg/day, oral 

gavage) for 9 weeks, serum concentrations of glucose were improved relative to untreated 

pancreatectomized animals. Serum insulin levels were also increased in silymarin-treated 

animals, and by day 42 of the study, insulin was more than twice the level of control 

animals prior to beginning intervention [178]. Similarly, 9 weeks of silymarin treatment (200 

mg/kg/day) in partially (60%) pancreatectomized rats improved fasting serum glucose to 

concentrations seen in control animals, increased serum insulin concentrations beyond the 

normal control animals, and significantly increased β-cell proliferation compared to control 

pancreatectomized rats [177].

Although studies are limited, silymarin use has the potential to confer beneficial effects in 

humans. In male and female Iranian patients with T2DM, silymarin treatment (600 mg/day) 

for 4 months, in combination with conventional therapy (metformin and glibenclamide), 

significantly decreased FBG and HbA1c, when compared to the placebo group. However, 

there was no observable difference in fasting insulin levels [180].

In Vitro Studies

In MIN6N8a cells, an SV40 T-transformed insulinoma cell line derived from NOD mice, 

silymarin treatment (50 μg/mL for 48 h) in the presence of inflammatory cytokines 
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(TNFα, IFNγ, and IL-1β) ameliorated cytokine-induced cell death, suppressed NO 

production, inhibited iNOS expression, inhibited ERK1/2 phosphorylation, and attenuated 

NF-κB activation [181]. In HIT-T15 cells treated with silymarin (25–500 μM for 2 h), 

the lower concentrations (25–100 μM) increased GSIS. However, GSIS was diminished 

with concentrations above 100 μM due to decreased cellular viability. Incubation of 

HIT-T15 cells with silymarin did not alter basal insulin secretion or insulin content. 

Additionally, in the silymarin-treated HIT-T15 cells, lower concentrations of silymarin 

(1–50 μM) were ineffective at suppressing the endogenous peroxide concentrations, 

while higher concentrations (100–500 μM) dose-dependently suppressed endogenous 

peroxide concentrations. However, the higher concentrations needed to suppress peroxide 

concentrations also induced apoptosis [182].

Silymarin increased the expression of insulin and Pdx1 in the pancreas of partially 

pancreatectomized rats [177]. Additionally, silymarin upregulates the expression and 

immunolabeling of Nkx6.1 in the pancreas of male Wistar rats following a partial 

pancreatectomy [178], a gene that plays a critical role in differentiating and maintaining 

β-cells, as well as maintaining insulin transcription levels. Currently, how silymarin 

upregulates Nkx6.1 is debated. Silymarin-dependent upregulation of Nkx6.1 may be due to 

increased expression of Pdx1 [177]. However, Soto et al. suggest that silymarin can increase 

Nkx6.1 expression directly and independently of Pdx1 [178]. For now, further evidence is 

needed to fully elucidate this mechanism. Silymarin also inhibits PDE-mediated breakdown 

of cAMP in HIT-T15 insulinoma cells, suggesting that increased and prolonged intracellular 

concentration of cAMP may enhance insulin exocytosis [182].

Ursolic Acid

Ursolic acid, a pentacyclic triterpene first discovered in 1920, is found in several plants 

including apples, basil, cranberries, thyme, and many more, and is the major component of 

some traditional medicinal herbs [183] (Table 3). Ursolic acid has been shown to have anti-

inflammatory properties, lungs, kidneys, liver, and brain protective effects, skeletal muscle 

anabolic effects, ability to reduce osteoporosis, and have anti-microbial properties [184]. 

To our knowledge, ursolic acid has not been studied in genetic rodent models of T1DM 

and T2DM. However, in models of induced hyperglycemia (STZ) and glucose intolerance 

(HFD), ursolic acid has been shown to exert positive effects on circulating levels of insulin 

and glucose [185–188]. Furthermore, studies in patients with metabolic syndrome have also 

shown anti-diabetic effects [189].

In Vivo Studies

In ICR mice exposed to STZ (200 mg/kg, single injection), ursolic acid supplementation 

(0.5 g/kg of diet) in a high-fat diet (37% kcal from fat) for 4 weeks showed a significant, 

albeit modest, reduction in FBG concentration at 2 weeks. This phenotype was preserved 

until the end of the 4-week study. Ursolic acid supplementation also showed modest, 

yet significant, improvements in both glucose and insulin tolerance. These physiological 

changes were accompanied by an increase in plasma levels of both insulin and C-peptide 

compared to diabetic mice. Although pancreatic insulin content was enhanced with ursolic 
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acid, it remained three times lower than non-diabetic control levels. Staining for insulin-

positive β-cells followed a similar pattern [185].

In Wistar rats exposed to STZ (50 mg/kg, single injection), 28 days of ursolic acid treatment 

(50 mg/kg/day, oral gavage) reduced blood glucose with similar efficacy as glimepiride. 

Although ursolic acid treatment significantly elevated plasma insulin levels compared to 

diabetic control animals, circulating levels were not completely restored to non-diabetic 

control values as observed with glimepiride [186]. Similarly, in diabetic Wistar rats (STZ 

30 mg/kg, 2 injections), 14 days of ursolic acid treatment (200 mg/kg/day, i.p. injection) 

reduced FBG and enhanced pancreatic β-cell number [187].

Using a glucose overload protocol (4 mg/kg), Wistar rats treated with ursolic acid (1.0 

mg/kg, single oral gavage) 30 min before the overload displayed improved glucose clearance 

compared to control rats. This glucose-lowering effect of ursolic acid was accompanied by 

increased output of insulin 15 min after glucose overload [190]. A significant drop in the 

number of cytoplasmic vesicles was detected in β-cells of the ursolic acid-treated group after 

5, but not 20, min demonstrating that this compound mediates its effect on the first phase of 

insulin secretion [190].

In high-fat-fed (60% fat kcal) C57BL/6 mice, ursolic acid supplementation (0.5 g/kg 

of HFD) for 12 weeks led to complete normalization of HF diet-induced glucose 

intolerance and prevented a high-fat diet-induced loss in insulin content, as assessed by 

immunofluorescence staining of pancreatic tissue sections [188].

From a clinical perspective, male and female individuals diagnosed with metabolic 

syndrome given oral ursolic acid for 12 weeks (150 mg/day, oral capsule) showed a 

reduction in FBG and improved insulin sensitivity, assessed by the Matsuda Index, when 

compared to the individuals on the placebo regimen [189].

In Vitro Studies

From a mechanistic viewpoint, ursolic acid upregulates SIRT1 abundance in pancreatic 

tissue of diabetic Wistar rats [187]. Increased SIRT1 abundance may mediate the effects 

of ursolic acid through numerous pathways. In INS-1 and MIN6 cells, SIRT1 has been 

shown to be a positive regulator of insulin secretion by repressing UCP-2 and elevating ATP 

concentrations [191]. Adenoviral overexpression of SIRT1 in RIN cells has been shown to 

dampen β-cell inflammation via suppression of NF-κB signaling [173].

Wedelolactone

Wedelolactone, an organic chemical compound classified as a coumestan, was first isolated 

in 1956 from Eclipta alba, also known as a false daisy [192] (Table 3). Wedelolactone 

has been shown to reduce FBG and HbA1c levels in two chemically induced models of 

diabetes, STZ and alloxan [193, 194]. Furthermore, wedelolactone has been shown to have 

anti-inflammatory actions in the islet in vivo and in vitro [195].
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In Vivo Studies

Wedelolactone treatment (25 mg/kg/day, oral gavage) for 15 days in diabetic Wistar 

rats (STZ given at 70 mg/kg, single injection) reduced FBG and HbA1c, and improved 

circulating insulin and C-peptide levels. This intervention also attenuated the decline in 

plasma anti-oxidants GPx and CAT seen in diabetic control animals [193]. Wedelolactone 

also dampens the generation of AGEs [193], which are known to reduce insulin secretion 

and cause mitochondrial dysfunction and β-cell damage [196].

Alloxan-induced diabetic Wistar rats (150 mg/kg, single injection) treated with a suspension 

of powdered Eclipta alba leaves (2 or 4 g/kg/day, oral gavage) for 60 days was shown to 

be as effective as glibenclamide in lowering blood glucose and HbA1c levels compared 

to the diabetic control group [194]. Additionally, in an IL-1β-driven transgenic model of 

chronic islet inflammation in zebrafish, wedelolactone treatment (30 μM, in their embryonic 

water) significantly improved FBG, reduced immune cell infiltration, and reduced NF-κB 

activation [195].

In Vitro Studies

In isolated islets from CD1 mice, high-dose wedelolactone treatment (1, 5, and 10 μM 

for 48 h) reduced inflammatory cytokine (IFNγ, TNFα, IL-1β, 20 h) induced caspase-3/7 

activation. Wedelolactone also partially attenuated cytokine-induced NO production and 

iNOS expression. In human islets, wedelolactone treatment also reduced cytokine-induced 

caspase-3/7 activity [195].

Conclusion

Herein we have provided a comprehensive review on the use of various botanicals, extracts, 

and purified compounds and their impact on islet beta-cell mass and function, a topic highly 

relevant to metabolic disease. With increasing rates of obesity and diabetes worldwide, 

it is important to investigate all possible therapeutic options and opportunities. The wide 

variety of plant-derived natural products is one such possibility that, after rigorous research 

is conducted, may lead to novel first-line and/or adjuvant pharmacologic options to combat 

these major public health problems.

Indeed, plant extracts have been used for centuries for medicinal benefit, including 

for treatment of diabetes mellitus [197]. Remarkably, many therapies, including insulin 

injection, were originally administered to diabetic patients without a complete understanding 

of their physiological mechanism(s) of action. Likewise, the investigation into the endocrine 

and biochemical actions of herbal-based approaches has led to discoveries of specific small 

molecules, including the biguanide compounds (now used as the diabetes drug metformin). 

These extensively prescribed drugs arose from studies showing that these natural products 

elicit robust ability to control blood glucose, tissue sensitivity to insulin, and thus after 

synthetic chemical refinement have developed into current use in modern medical practice.

In summary, the field of botanicals offers opportunities for further investigation, such as 

purification of compounds from complex botanical extracts with the goal of isolating 

specific activities that have direct medical benefits (e.g., glucose-lowering or hormone-
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sensitizing properties). Further, whether herbal blends will provide synergistic benefit over 

an individual single plant extract still requires more rigorous studies [198]. These and other 

possibilities provide options for future experimental avenues to address therapeutic potential 

while also investigating the quantity of extract (e.g., micromolar to nanomolar efficacy) 

needed for a salutary outcome.
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Abbreviations

AGEs Advanced glycation end-products

AMPK AMP-activated protein kinase

ATP Adenosine triphosphate

BCL-2 B-cell lymphoma 2

BrdU Bromodeoxyuridine

Ca2+ Calcium

cAMP Cyclic AMP

CAT Catalase

CK20 Keratin 20

COX Cyclooxygenase

COX-2 Cyclooxygenase-2

CRP C-reactive protein

DCFHA-DA Dichlorodihydrofluorescein diacetate

DPP4 Dipeptidyl peptidase-4

EGCG Epigallocatechin gallate

ERK Extracellular signal-regulated kinases

FBG Fasting blood glucose

FFA Free fatty acid

Foxo1 Forkhead box protein O1
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Gck Glucokinase

GDM Gestational diabetes mellitus

GLP-1 Glucagon-like peptide-1

GLUT2 Glucose transporter 2

GLUT4 Glucose transporter 4

GPx Glutathione peroxidase

GSH Glutathione

GSH-Px Glutathione peroxidase

GSIS Glucose-stimulated insulin secretion

GSP Glycosylated serum protein

GST Glutathione S-transferase

GTT Glucose tolerance test

HbA1c Glycated hemoglobin

HFD High-fat diet

HFHS High-fat high-sucrose

HNF-1a Hepatic nuclear factor homeobox A

HOMA-IR Homeostatic model assessment for insulin resistance

HOMA-β Homeostatic model assessment of β-cell function

i.g. Intragastric

i.p. Intraperitoneal

iCa2+ Intracellular calcium

IFNγ Interferon-γ

IL-10 Interleukin-10

IL-1β Interleukin-1β

IL-6 Interleukin-6

iNOS Inducible nitric oxide

ipGTT Intraperitoneal glucose tolerance test

IRS2 Insulin receptor substrate 2

IV Intravenous
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IκB Inhibitor of nuclear factor kappa B

IκBα Nuclear factor of kappa light polypeptide gene enhancer in B cells 

inhibitor-α

JAK Janus kinase

JNK C-Jun N-terminal kinases

KATP ATP-sensitive potassium channel

KV Voltage-gated potassium channel

MAPK Mitogen-activated protein kinase

MCP-1 Monocyte chemoattractant protein-1

MDA Malondialdehyde

MPO Myeloperoxidase

mTOR1 Mechanistic target of rapamycin complex 1

NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells

Nkx2.2 Homeobox protein Nkx-2.2

Nkx6.1 Homeobox protein Nkx-6.1

NO Nitric oxide

OGTT Oral glucose tolerance test

PARP Poly (ADP-ribose) polymerase

PBG Post-prandial blood glucose

PDE Phosphodiesterase

Pdx1 Pancreatic and duodenal homeobox 1

PGE2 Prostaglandin E2

PI3K Phosphoinositide 3-kinase

PKA Protein kinase A

PPARγ Peroxisome proliferator-activated receptor gamma

ROS Reactive oxygen species

SIRT1 Sirtuin 1

SOD Superoxide dismutase

SQ Subcutaneous
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STZ Streptozotocin

T1DM Type 1 diabetes mellitus

T2DM Type 2 diabetes mellitus

TEM Transmission electron microscopy

TFAM Mitochondrial transcription factor A

TG Triglyceride

TNFα Tumor necrosis factor-α

TRPA1 Transient receptor potential ankyrin 1

TRPV1 Transient receptor potential vanilloid 1

UCP2 Uncoupling protein 2

ZDF Zucker diabetic fatty rat
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