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Abstract
Background: Operon structures play an important role in transcriptional regulation in
prokaryotes. However, there have been fewer studies on complicated operon structures in which
the transcriptional units vary with changing environmental conditions. Information about such
complicated operons is helpful for predicting and analyzing operon structures, as well as
understanding gene functions and transcriptional regulation.

Results: We systematically analyzed the experimentally verified transcriptional units (TUs) in
Bacillus subtilis and Escherichia coli obtained from ODB and RegulonDB. To understand the
relationships between TUs and operons, we defined a new classification system for adjacent gene
pairs, divided into three groups according to the level of gene co-regulation: operon pairs (OP)
belong to the same TU, sub-operon pairs (SOP) that are at the transcriptional boundaries within
an operon, and non-operon pairs (NOP) belonging to different operons. Consequently, we found
that the levels of gene co-regulation was correlated to intergenic distances and gene expression
levels. Additional analysis revealed that they were also correlated to the levels of conservation
across about 200 prokaryotic genomes. Most interestingly, we found that functional associations in
SOPs were more observed in the environmental and genetic information processes.

Conclusion: Complicated operon strucutures were correlated with genome organization and
gene expression profiles. Such intricately regulated operons allow functional differences depending
on environmental conditions. These regulatory mechanisms are helpful in accommodating the
variety of changes that happen around the cell. In addition, such differences may play an important
role in the evolution of gene order across genomes.

Background
Genes in prokaryotes are often organized into operon
structures. Each operon is a series of genes transcribed in
a single mRNA, often identified by the presence of pro-

moters and terminators. It has been reported that genes
transcribed in a single operon are functionally related and
make up a part of a metabolic pathway [1-3]. Therefore,
understanding the operon organization of a genome will
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lead to better understanding of the functions of genes and
the genome.

Some computational methods have been developed to
survey and predict operons [2-20]. To predict operons,
gene expression data [5] and co-occurence in functional
categories [3,5] have been used. Furthermore, some
groups [7,14,20] have predicted operons through a com-
parative genomic approach. Except for de Hoon et al.
[10,11,21], which focused on B. subtilis, these methods
were mainly validated using information from E. coli. One
of the reasons is that E. coli is a well-studied model organ-
ism and is characterized by abundant biological knowl-
edge. However, these predictions are not complete and
problems still remain in our understanding of the com-
plete details of operon organization. One of the problems
for operon prediction is caused by possible fluctuations in
an operon's structure, because transcription can occur at
different transcriptional units (TUs) depending on the
environmental conditions that surround the cell [22-25].
Thus, multiple TUs can be in a single operon. In this case,
alternative promoters or terminators are activated by envi-
ronmental stimuli. In addition, other regulatory mecha-
nisms such as readthrough terminators and riboswitches
can also produce alternative TUs in a single operon
[26,27]. Therefore, current prediction methods for operon
structures are not complete and still need improvement.
The terms operon and TU are often confusing because
they have such similar meanings. In this study, we use the
term 'TU' to refer to a series of genes that are transcribed
into one mRNA (an arrow in Figure 1), and 'operon' to
refer to a maximal series of genes in which each adjacent
pair of genes is contained in at least one common TU (a
series of four gray boxes and sixth and seventh gray boxes
in Figure 1). To understand such intricate gene transcrip-
tional systems in prokaryotes, a database storing a large
number of operons is needed. The availability of Regu-
lonDB [28], a well-established database of operons, regu-
lons and other regulatory elements in E. coli, plays a part
in the widespread use of this organism in other studies.
Since B. subtilis also has a long history as a model organ-
ism of Gram-positive bacteria [29], its operon organiza-
tion has also been often analyzed. Information on B.
subtilis operons has been collected in the Operon Data-
Base (ODB), that also stored operons obtained from a
variety of other genomes for comparative genomics [30].
Therefore, the combination of TUs in ODB and Regu-
lonDB enables us to analyze more of the details of com-
plex operon organization.

In this study, we systematically analyzed the characteris-
tics of operon substructures. We used more than 1000 TUs
from these two databases (see Table 1), and we classified
adjacent gene pairs into three groups according to the
complexity of the operon structures: operon pairs (OP),

sub-operon pairs (SOP) and non-operon pairs (NOP)
(Figure 1). OPs are always co-transcribed. SOPs are those
that cross the boundary of the TUs, as the transcription
depends on the presence or absence of internal promoters
and internal terminators. NOPs are not co-transcribed.
We report here that these differences in operon structures
correspond to the distributions of intergenic distances,
gene expression profiles and biological pathways. In addi-
tion, their conservation across multiple prokaryotic
genomes also correlates with the complexity. These results
imply that there can be functional differences within an
operon depending on the actual transcriptional boundary
and that the differences can also influence genome organ-
ization. Our work would be helpful to understand the
diversity of operons and improve operon predictions.

Results
Classification of adjacent gene pairs based on operon 
structures
We classified adjacent gene pairs located on the same
strand into the following three groups (Figure 1): (i)
operon pairs (OPs), (ii) sub-operon pairs (SOPs), and
(iii) non-operon pairs (NOPs). TUs in an operon can
change due to the presence or absence of internal promot-
ers or internal terminators. Therefore, the TUs of an
operon are not always unique and other possible TUs may
exist. We defined a gene pair as a SOP when both genes
belong to the same TU and one of the two genes also
belongs to another TU. For example, in Figure 1 the sec-
ond and third genes from the left, say genes A and B,
respectively, comprise a SOP because they belong to the
same TU (the longest arrow), and gene A also belongs to
another TU (upper arrow) to which gene B does not
belong. In the same manner, the forth and fifth genes are
also regarded as a SOP in Figure 1. OPs are gene pairs in
known operons where both genes belong to the same TU
and no other TU. NOPs are defined as either gene pairs
where the two genes belong to completely different but
known TUs, or where one gene belongs to a known TU
and the other has not been assigned to any TUs. Because
we define a mono-cistronic gene as a type of TU, gene
pairs that include a mono-cistronic gene are always
regarded as SOPs or NOPs. Table 2 shows the number of
these pairs in B. subtilis and E. coli.

Genomic properties of operons
It is already known that the intergenic regions between
genes within an operon are smaller than those in different
operons in the E. coli genome [6]. The B. subtilis genome
also has a similar distribution of intergenic distances [11].
Figure 2 shows the distribution of intergenic distances
(bp) and box plots for the three groups of adjacent gene
pairs in B. subtilis and E. coli; negative distances mean that
the gene pairs partially overlap. It is clear that the dis-
tances in both species show a similar distribution pattern.
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The distances of almost all OPs and SOPs are short. On
the other hand, NOPs have larger intergenic distances (p
< 1E-14 for OP-NOP and SOP-NOP, chi-squared test).
This result is in agreement with past results that showed
that gene pairs within an operon and those between oper-
ons are clearly different in E. coli [6].

Furthermore, we would like to point out that OPs and
SOPs have different distributions (p < 1E-11, chi-squared
test) despite the fact that both gene pairs are contained
within the same TU at least once. These results are more
clearly shown in the median values in Table 2 and in the
box plots in Figure 2. For example, the medians of inter-
genic distances for OPs (17 bp and 9 bp) are smaller than
SOPs (72 bp and 54 bp) in B. subtilis and E. coli, respec-
tively. And both values are much smaller than the values
for NOPs (376 bp and 467 bp) in both species (Table 2).
A schematic view of these contrasts in median values
among OP, SOP and NOP are shown in Figure 2B (B. sub-
tilis) and Figure 2D (E. coli). Since the distributions were
so similar even between distantly related organisms such
as B. subtilis and E. coli, in terms of operon organization,
we expect the differences in the intergenic distances to be
evolutionarily conserved and similar across a broad range
of prokaryotic genomes.

Conservation of adjacent gene pairs
To investigate the relationships between the levels of gene
co-regulation in OPs, SOPs and NOPs, and their evolu-
tion, we surveyed the conservation of the three groups of

adjacent gene pairs among 185 prokaryotic genomes (Fig.
3). We counted the ratio of the gene pairs in B. subtilis and
E. coli that are conserved adjacently in other genomes. The
conservation ratio for a gene pair represents the fraction of
genomes considered in which the adjacency of the gene
pair is conserved. Figure 3 shows the conservation ratio of
the gene pairs, where the x axis indicates the ratio and y
axis indicates the frequency. When the adjacently located
ortholog pairs are conserved across many genomes, the
conservation ratio is close to one. Therefore, OPs in both
B. subtilis and E. coli were well-conserved across many
genomes, compared to the others. In contrast, conserva-
tion of NOPs drastically decreased along with the increas-
ing conservation ratio. SOPs appear to be intermediate
between OPs and NOPs. All the pairs of them were signif-
icantly different by a chi-squred test (p < 0.01). These
results indicate that gene order is often corrupted at the
regulatory boundary and corruption can occur even
within an operon if some different TUs overlap.

Co-expression levels of adjacent gene pairs
To investigate the differences in the gene expression of
OPs, SOPs and NOPs, we measured the correlation with
co-expression data calculated using several microarray
data sets (see Materials and Methods). Figure 4 shows the
distributions of the correlation coefficients of gene expres-
sion profiles between adjacent gene pairs and the box-
plots for the three groups in B. subtilis and E. coli. The
distribution of OPs shows that they have an obviously
higher correlation than NOPs (the blue line in the parts A

The schematic model of operon structuresFigure 1
The schematic model of operon structures. Arrows indicate the regions transcribed as known TUs. Gray boxes indicate 
genes in a known operon and open boxes indicate the flanking genes. OP indicates a gene pair in a TU and both genes belong 
to the same TUs. SOP indicates a gene pair where both genes belong to the same TU and either one of the genes also belongs 
to a different TU. NOP indicates a gene pair where the genes belong to completely different TUs or, one gene belongs to a 
known TU and another has not been assigned to any known TUs yet.

Table 1: The information of known TUs in B. subtilis and E. coli

B. subtilis E. coli

Number of TUs 688 754
Number of overlapped TUs 334 211
Number of ORFs 1163 1545
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and C of Figure 4). This result agrees with past studies, and
such clear differences have been used to predict operons
[8,10]. Interestingly, SOPs also show high correlation, but
not as clearly as OPs. All pairs of these three groups were
significantly different (p < IE-7 for OP-NOP, SOP-NOP
and OP-SOP, wilcoxon rank sum test). These differences
are also clear in the box plots in Figure 4 and the median
values in Table 2. Both the ranges of quartiles and the
median values show that OPs and SOPs are differently

distributed. In this study, we found that the co-expression
levels of gene pairs within an operon can decrease due to
the presence of regulatory elements in their intergenic
region.

Operons in biological pathways
Co-occurence on biological pathway maps
To determine the functional similarities at the level of bio-
logical pathway maps in the three groups of adjacent gene

Table 2: Statistics of OPs, SOPs and NOPs in B. subtilis and E. coli

B. subtilis E. coli

OP SOP NOP OP SOP NOP

Number of pairs 527 182 663 811 112 1088
Median of intergenic distances (bp) 17 72 368 9 43 457
Median of correlation coefficients of co-expression 0.73 0.48 0.13 0.78 0.62 0.10
Number of co-occurrence on the same pathway maps 192 22 11 367 20 35
Number of co-occurrence on the different pathway maps 113 57 314 201 57 581

Distributions of frequency of intergenic distances between adjacent genesFigure 2
Distributions of frequency of intergenic distances between adjacent genes. The upper figures are the distributions of 
intergenic distances (bp) between adjacent genes at 20 bp intervals in B. subtilis (A) and in E. coli (C), and the bottom figures are 
their box plots (B and D). The leftmost, rightmost and middle vertical lines of the boxes represent the first and third quartiles 
and median value, respectively. The intergenic distances more than 1000 bps are not shown. Blue, red and green lines indicate 
OPs, SOPs and NOPs, respectively.
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pairs, we measured the frequency of co-occurrence on
pathway maps in KEGG, which contains information
about metabolic and regulatory pathways and molecular
complexes. KEGG has about 300 diagrams of molecular
interactions or reactions. The number of times that both
genes in an adjacent gene pair in B. subtilis and E. coli
appear on the same and different KEGG pathway maps is
shown in Table 2. If either gene of an adjacent gene pair
was not mapped to a KEGG pathway, it was counted as
being assigned to different maps. If both genes were not
assigned to any maps, we ignored them. In particular,
NOPs were dominated by gene pairs occurring in different
pathway maps. Adjacent gene pairs in OPs frequently
appeared on the same pathway maps, in contrast with
NOPs (p < 1E-15, Fisher's exact test). Additionally,
although only a small number of gene pairs in SOPs and
NOPs co-occurred on the same pathways, SOPs signifi-
cantly co-occured more often (p < 1E-6 for Fisher's exact
test). Furthermore, OPs are co-occured less than expected
in different pathway maps (p < 1E-7, Fisher's exact test).
On the other hand, SOPs are not significantly different
from NOPs using Fisher's exact test.

Co-occurence in functional categories
To get a broader point of view than only the co-occurence
on biological pathway maps, we measured the co-occur-
ing frequency of these three groups of adjacent gene pairs

on hierarchical categories of gene functions. We counted
the number of gene pairs that shared the same category at
the second level of the hierarchy (e.g. Carbohydrate
metabolism). We used 22 categories that are related to
prokaryotes. In Figure 5, each box represents the propor-
tion of gene pairs that have the functional categories given
on the x and y axis in B. subtilis (top) and E. coli (bottom).
The deeper color indicates increasing frequency of gene
pairs with the given functional categories. Additional file
1 includes the statistical analysis of these functional shar-
ings using chi-square values. In OPs, the diagonal boxes
are clearly represented by the deep red color. Statistical
analysis reveals significant diagonal factors in functional
sharing of OPs, even compared to Figure 5. Thus, gene
pairs in OPs tend to have related functions. On the other
hand, it was clear that almost all of the boxes as well as the
diagonals in NOPs did not show high values. Particularly
in statistical analysis they were almost similar as expected,
so they did not share the related functions and can be ran-
domly distributed. More gene pairs in SOPs were in
related functional categories, compared to NOPs. In addi-
tion, gene pairs in the 'Genetic information processing'
and 'Environmental information processing' groups were
more likely to share functions in SOPs, compared to the
other two groups. This trend was clearly shown in statisti-
cal analysis in Additional file 1. 'Transcription', 'Transla-
tion', 'Folding, Sorting and Degradation' and 'Replication

Conservation of adajcent gene pairs across genomesFigure 3
Conservation of adajcent gene pairs across genomes. The left figure indicates the conservation ratio based on the gene 
pairs from B. subtilis, and the right figure is from E. coli. The ratios of adjacently conserved gene pairs for OPs, SOPs and NOPs 
are shown in blue, red and green, respectively.
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and Repair' in 'Genetic information processing', and
'Membrane Transport', 'Signal Transduction' and 'Cell
Growth and Death' in 'Environmental information
processing' showed significant correlations. It seems to be
an inherent property of SOPs that the degree of sharing
between such categories and 'Metabolism' is also rela-
tively frequent. We speculate that the functional bias of
SOPs to these categories relates to the regulation of gene
expression because SOPs are located on the boundary of
the regulatory elements.

Discussion
Properties of operons from a genomic perspective
The intergenic regions were clearly shorter in OPs and
SOPs than in NOPs (Figure 2). Genes co-transcribed as an
operon are likely to be compactly arranged on the
genome. It is suggested that short intergenic regions
would help to allow efficient transcription. Interestingly,
we found that the distributions of the intergenic regions
of OPs and SOPs also appear to have different shapes (Fig-
ure 2). This observation suggests the possibility of the
presence of regulatory elements such as internal promot-

ers and internal terminators in the intergenic regions of
SOPs. Actually, there are known cases where such regula-
tory elements cause variations in the length of transcrip-
tional units. For example, the sigB and resABCDE operons
in B. subtilis have upstream and internal promoters, result-
ing in two TUs [22,23], and transcriptional terminations
of operons such as the bmr and bio operons are also exper-
imentally verified to be transcribed from the upstream
promoter to the internal and external terminators, result-
ing in two different sizes of TUs [24,25]. The sigB operon
consists of eight genes, rsbR-S-T-U-V-W-sigB-rsbX, and is
transcribed from an upstream sigma A dependent pro-
moter and from an internal heat-inducible sigma B
dependent promoter [22]. The eight genes are usually co-
transcribed by sigma A. When sigma B is activated in
response to heat stress, it promotes transcription of the
sigB regulon from the internal promoter, resulting in a
shorter TU, rsbV-W-sigB-rsbX. The intergenic distance at
the internal transcriptional boundary between rsbU and
rsbV is 64 bp, whereas those of the others are 7, 6, 14, -1,
-38 and 2, and their average is -1.7. Thus, the presence of
regulatory elements seems to correspond to expanded

Distributions of frequency of correlation coefficients of gene expression profiles between adjacent gene pairsFigure 4
Distributions of frequency of correlation coefficients of gene expression profiles between adjacent gene pairs. 
The upper figures are the distribution of correlation coefficients (A and C) and the bottom figures are their box plots (B and 
D). Blue, red and green lines indicate OPs, SOPs and NOPs, respectively.
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intergenic regions. When the alternative transcripts are
produced, most of them are caused by transcriptional reg-
ulatory elements located in the intergenic region at the
boundary of the TU. Therefore, the longer intergenic
regions of SOPs compared to OPs imply the presence of
regulatory elements such as internal promoters and inter-
nal terminators. In addition, transcription can also be reg-
ulated by the presence of readthrough terminators which
void specific termination signals, or by regulatory mecha-
nisms such as riboswitches. Even if the specific promoters
or terminators in a SOP region have not been identified,
other transcriptional mechanisms may have an effect on
the transcription.

Properties of operons from transcriptomic perspective
According to our microarray expression analysis, OPs
clearly showed high correlation in contrast to NOPs (Fig-
ure 4). It is quite reasonable that gene pairs within a TU
are highly correlated. In addition, the correlations of OPs
and SOPs also appear to be differently distributed accord-
ing to the range of the quartiles (Figure 4). Hence, the
gene expressions of these groups showed similar relation-
ships to the intergenic distances. As shown in our results,
the three groups differed in both genome organization
and transcriptomic profiles. The differences would suggest
different regulatory mechanisms of transcription and the
functions of these genes in cellular processes.

Functional associations between adjacent gene pairsFigure 5
Functional associations between adjacent gene pairs. The upper figures indicate the functional associations in B. subtilis 
and the lower represent E. coli. The proportion of gene pairs that have the functional categories shown on the x and y axis is 
represented by a box with red color. When the color is deeper, it indicates the proportion is increasing.

OP SOP NOP

OP SOP NOP

Metabolism Genetic information processing Environmental information processing
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Complicated operon structures
Figure 6 illustrates the levels of co-expression of genes
comprising an operon with possible overlapped TUs.
Boxes colored from blue to red, corresponding to increas-
ing values of the correlation coefficients, indicate the lev-
els of co-expression. They are arranged in the order of
genes on the genome. As a simple case, suppose that there
is an operon with two different sized TUs (Figure 6A). The
longer TU has an additional two genes compared to the
shorter one but both start from the same gene. In this case,
the gene pairs crossing the boundary between the shorter
and longer TUs will be correlated, but the other gene pairs
should be more strongly correlated (Figure 6A).

From a practical viewpoint, various situations may occur:
(i) all genes within an operon have strong correlation with
each other; (ii) there are internal terminators within an
operon; (iii) there are internal promoters within an
operon; (iv) there are other regulatory mechanisms such
as readthrough terminators. For example, Figure 6B is the
correlation matrix for the sigB operon described in the pre-
vious section (rsbV in this operon was not measured in the
microarray experiments, so the region of this gene is not
colored), and shows a similar pattern in the schematic
model in Figure 6A. The image correctly suggests two dif-
ferent sized transcripts in the operon.

Figure 6C shows another example. The clpC operon in B.
subtilis is transcribed as a six gene operon including ctsR,
yacH, yacI, clpC, sms and yacK [31]. This operon is related

to the control of competence and survival under various
stress conditions. Two promoters are mapped upstream of
this operon. One is a sigma A-like promoter and the other
is dependent on sigma B [22,32]. In addition, it was
reported that the last two genes of this operon might be
also a part of operons regulated by sigma M [22,33]. As
suggested by the image, these reports imply that there are
longer transcripts comprised of six genes and another
transcript including just the last two genes.

Functional relationships of operon structures
Gene clusters obtained by comparative genomics are
likely to be operons, and they also tend to cluster on met-
abolic pathways [1-3]. We measured the relationship
between OPs, SOPs and NOPs with KEGG biological
pathway maps. As shown in Table 2, gene pairs in OPs
tend to appear in the same KEGG pathway maps. There-
fore, genes within an operon are more often closely
located on metabolic pathways. On the other hand,
almost all gene pairs in NOPs occurred on different path-
way maps (Table 2). This suggests that the boundaries
between operons are clearly split according to functional
relations. 11 NOPs in B. subtilis were, however, mapped to
the same pathways. For example, rocA constitutes an
operon with rocB and rocC, among four consecutively
located genes: genes rocG, rocA, rocB and rocC. This operon
is not coregulated with rocG due to the presence of a spe-
cific enhancer located between rocG and rocA. So the gene
pair, rocG-rocA, is regarded as a NOP, while both genes
belong to glutamate metabolism. This gene pair is also

Co-expression profile of operons: the schematic model of the operon diversity and its examplesFigure 6
Co-expression profile of operons: the schematic model of the operon diversity and its examples. (A) Schematic 
model of a diverse operon. In this model, we assume that there is a longer TU and a shorter TU. Arrows indicate the region 
transcribed as a TU. Open boxes to the side and above the grid indicate genes. Each box in the grid indicates the level of cor-
relation of gene expression as colors from blue to red correspond to the correlation coefficients. The gene pairs without the 
TU boundary should show strong correlation with vivid red color. On the other hand, gene pairs across the boundary should 
show a slightly weaker correlation with orange color. (B) The sigB operon. There are two promoters in the sigB operon. The 
first one is located in the upstream of the first gene of the operon, and second one is located in between fourth and fifth genes. 
Therefore, two different transcripts cause this pattern. (rsbV in this operon was not measured in the microarray experiments, 
so the region of this gene is not colored.) (C) The clpC operon. The transcription of this operon is basically promoted by sigma 
B, while the last two genes (sms and yacK) were reported to be also transcribed by sigma M.
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assigned to other pathways: nitrogen metabolism (rocG)
and arginine and proline metabolism (rocA). The other
NOPs that appear on the same map and also appear on
alternative pathway maps are, hisC-trpA (phenylalanine,
tyrosine and tryptophan biosynthesis), spoVD-murE (pep-
tidoglycan biosynthesis), trpE-aroH (phenylalanine, tyro-
sine and tryptophan biosynthesis), and menC-menE
(ubiquinone biosynthesis). On the other hand, the
remaining six pairs, hxlA-hxlB (pentose and glucuronate
interconversions), yflS-yflR (two-component system),
pucE-pucH (purine metabolism), ylyB-pyrR (pyrimidine
metabolism), pbpB-spoVD (peptidoglycan biosynthesis),
and yvrP-fhuC (ABC transporters), are assigned to only the
same pathway map. In E. coli, 35 NOPs were mapped to
the same pathways. Of these pairs, 18 NOPs are assigned
to the same map and the rest of them are assigned to mul-
tiple maps. These functionally related NOPs can be
regarded as gene pairs similar to SOPs in the sense that the
gene order indicates their operon structure, but they are
not directly co-regulated. In addition, from the compara-
tive analysis, NOPs were either not adjacently conserved
or lost in the other genomes. If an adjacent gene pair is not
co-regulated in the same manner even if they are related
to the same process, their gene order would be less con-
served. Thus, a small fraction of NOPs are very similar to
SOPs. Furthermore, the fact that SOPs occur more on dif-
ferent pathway maps is a similar tendency to NOPs, com-
pared with those of OPs. Therefore, SOPs and NOPs may
be relatively close in functional relationships. This implies
that SOPs as well as NOPs may also play a role in the func-
tional boundaries that produce a suitable set of proteins
in a certain environment by alternative promoters or ter-
minators, although such functional differences of SOPs
are not as clear as those of NOPs.

Because almost half of all OPs were distributed in differ-
ent biological pathway maps in Table 2, we can speculate
that these genes in the same operon can have diverse func-
tions. However, distribution of broader functional catego-
ries in Figure 5 and Additional file 1 (statistical
distribution based on chi-square value) clearly show that
the functional relationships of OPs are quite significant.
The map-based analysis may be too specific to see the gen-
eral trends in functional relationships of OPs. It is also
interesting that gene pairs in SOPs share more functions
related to genetic information and environmental
responses such as transcription, translation and signal
transduction, compared to the other two groups, OPs, and
NOPs (Figure 5 and Additional file 1). This suggests that
such functions are associated with the regulatory changes
causing the transcription of alternative transcriptional
units. As described in the previous section, it has been
observed that some environmental factors trigger tran-
scriptional unit changes. Therefore, it is understandable
that some SOPs have a bias to these functions.

In addition, we have shown that SOPs are less conserved
than OPs from the comparison of about 200 prokaryotes
(Figure 3). Although it has been reported that operon
structures are not stable throughout the evolutionary
process [34], our result suggests that the collapse of
operon structures has occurred frequently at the region of
regulatory boundaries including SOPs and, in particular,
NOPs. Recently, Price et al. have reported that, during
operon evolution, a new gene is more likely to append to
the end of a pre-existing operon and it is often a function-
ally unrelated gene [35]. The facts found by them suggest
that these appending genes may be the origin of SOPs.
Therefore, these SOPs and functionally related NOPs
described above would play an important role in the evo-
lution of operons. Moreover, it has been observed that
even if genes found in an operon in a given genome are
split in another genome, they can be co-regulated by a sin-
gle regulon in the given genome [17,36]. Therefore, we
suggest that complicated operon structure and regulon
structures in different organisms, although they have dif-
ferent regulatory mechanisms, are evolutionary associated
with each other. To clarify these relationships, highly reli-
able operon and regulon predictions are required. How-
ever, the intricate transcriptional regulation we have
shown here makes this difficult. Our on-going project is to
improve such predictions using the operon features that
we have shown here and to uncover gene regulatory
mechanisms across a variety of genomes. In this study, we
found that there are the interesting differences among
OPs, SOPs and NOPs. However, it still remain that higher
statistical analysis could solve the inter-dependence
among genomic, transcriptomic and functional features
of gene pairs.

Conclusion
We classified adjacent gene pairs into three groups (OP,
SOP and NOP) according to the levels of gene co-regula-
tion in operon structures including substructures such as
alternative TUs. Consequently, we found that the levels of
gene co-regulation are correlated with genome organiza-
tion, gene expression profiles and conservation across
genomes. Interestingly, we found that functional associa-
tions of SOPs are often observed in the environmental
and genetic information processing functional classes in
KEGG. This is the first report of these relationships
between operon organization and transcriptional units
including substructures in operons, and we suggest that
the strength of gene associations in an operon play an
important role in environmental accommodation and in
evolution of gene order across genomes.

Methods
Genomic data
The genome information for B. subtilis and E. coli was pre-
pared from the KEGG GENES database [37,38]. By using
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the information of the positions of genes, we classified
adjacent gene pairs into the following three groups (Fig-
ure 1): OPs, SOPs and NOPs. We also calculated the inter-
genic distances between all the gene pairs. The distance
was defined as the number of bases separating adjacent
gene pairs on the same strand on the genome. If they have
an overlapped region, the distance is negative.

Operon data
We have obtained the information on TUs from ODB and
RegulonDB. A summary of the known TUs in B. subtilis
and E. coli is shown in Table 1. ORFs in Table 1 mean the
total number of genes organizing the known TUs in ODB
and RegulonDB. We obtained 688 TUs in B. subtilis and
396 TUs in E. coli from ODB and 693 TUs in E. coli from
RegulonDB. If two TUs overlap but contain different sets
of genes, we regarded these units as different TUs. These
overlapped TUs share same genes with different TUs.

Evaluation of conservation of adjacent gene pairs
We obtained the genomic data of 185 prokaryotic organ-
isms from KEGG [37,38]. We summarize the organisms
used in this comparative analysis in Additional file 2. To
identify orthologs, we used OC [37,38], which is an
ortholog clustering using the results of homology searches
done by the Smith-Waterman algorithm [39,40]. In each
adjacent gene pair, we counted the number of the gene
pairs that the orthologs to both genes are on the other
genomes. When both genes in a gene pair in a given
genome are conserved in other genomes, the ratio is
defined by dividing the number of genomes in which they
are adjacently conserved by the number of total genomes
in which they are conserved. In each measurement, we
removed organisms closely related to B. subtilis and E. coli
in the same taxonomic group, which are defined in KEGG.

Similarity of gene expression profiles
We used 150 microarray experiments for B. subtilis per-
formed under 10 different experimental growth condi-
tions in BSORF [41] (Additional file 3). Gene expression
intensities were obtained by subtracting background
intensities [42-45]. If the intensity was less than the stand-
ard deviation of the backgrounds, it was treated as a miss-
ing value. A ratio of expression intensity was obtained by
dividing the target intensity by the control intensity [42-
45], which was transformed into a logarithm of base 2.
Normalization was carried out by subtracting the median
value in each experiment [45,46]. In addition, 140 micro-
array experiments for E. coli from Gene Expression Omni-
bus [47] (Additional file 4) with lowess normalization
were collected. We then calculated the Pearson's correla-
tion coefficients between all gene expression profiles.

Evaluation of adjacent gene pairs in biological pathways
We obtained the KEGG PATHWAY information from the
GenomeNet database [37,38]. KEGG PATHWAY is a
knowledge base for molecular interaction networks,
including metabolic pathways, regulatory pathways and
molecular complexes. KEGG has about 300 diagrams of
molecular interactions or reactions. In this study, 127 bio-
logical pathway maps for B. subtilis and 121 maps for E.
coli were used. We extracted the set of the genes that
belong to each pathway. We counted the genes that
matched with those in OPs, SOPs and NOPs. In each
group, we counted the number of genes that appeared in
the same and different pathway maps. In addition, these
maps are classified into hierarchical categories. We used
22 categories at the second level of the hierarchy (e.g. Car-
bohydrate metabolism) that are related to prokaryotes, in
which 12 are included in metabolisms, 4 in genetic infor-
mation processing and 6 in environmental information
processing. We counted the number of the corresponding
gene pairs for each category pair.
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