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Background: NRP/B, a family member of the BTB/Kelch repeat proteins, is implicated in neuronal and cancer development, as well as 
the regulation of oxidative stress responses in breast and brain cancer. Our previous studies indicate that the NRP/B-BTB/POZ domain 
is involved in the dimerization of NRP/B and in a complex formation with the tumor suppressor, retinoblastoma protein. Although much 
evidence supports the potential role of NRP/B as a tumor suppressor, the molecular mechanisms of NRP/B action on E2F transcription 
factors have not been elucidated.
Methods: Three-dimensional modeling of NRP/B was used to generate point mutations in the BTB/Kelch domains. Tet-on inducible NRP/B 
expression was established. The NRP/B deficient breast cancer cell line, MDA-MB-231, was generated using lentiviral shNRP/B to evaluate 
the effect of NRP/B on cell proliferation, invasion and migration. Immunoprecipitation was performed to verify the interaction of NRP/B 
with E2F and histone deacetylase (HDAC-1), and the expression level of NRP/B protein was analyzed by Western blot analysis.Changes 
in cell cycle were determined by flow cytometry. Transcriptional activities of E2F transcription factors were measured by chloramphenicol 
acetyltransferase (CAT) activity.
Results: Ectopic overexpression of NRP/B demonstrated that the NRP/B-BTB/POZ domain plays a critical role in E2F-mediated transcriptional 
activity. Point mutations within the BTB/POZ domain restored E2-promoter activity inhibited by NRP/B. Loss of NRP/B enhanced the 
proliferation and migration of breast cancer cells. Endogenous NRP/B interacted with E2F and HDAC1. Treatement with an HDAC inhibitor, 
trichostatin A (TSA), abolished the NRP/B-mediated suppression of E2-promoter activity. Gain or loss of NRP/B in HeLa cells confirmed 
the transcriptional repressive capability of NRP/B on the E2F target genes, Cyclin E and HsORC (Homo sapiens Origin Recognition Complex). 
Conclusions: The present study shows that NRP/B acts as a transcriptional repressor by interacting with the co-repressors, HDAC1, providing 
new insight into the molecular mechanisms of NRP/B on tumor suppression.
(J Cancer Prev 2014;19:187-198)
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INTRODUCTION

Nuclear organization represents the dynamic networks and 

three-dimensional architectures of chromosomes and their 

regulatory components. The nuclear matrix and its associated 

proteins mediate the process of chromosome organization 

through the folding and looping of chromatin. Recent studies 

have demonstrated the role of nuclear matrix proteins in RNA 

processing, stress responses, cell adhesion, survival and tran-

scriptional regulation as either activators or repressors.1-8 The 

nuclear matrix provides the foundation on which transcription 

factors operate.9 Indeed, transcription factors, including tumor 

suppressors such as p53 and pRb are dynamically associated with 

specific nuclear matrix sites which support their functional 

complex formations.10-14 Although aberrant expression or genetic 

mutation of nuclear matrix proteins have been found in many 
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cancers,15-19 very little is known regarding the molecular mecha-

nism by which nuclear matrix proteins are involved in tumo-

rigenesis. 

We have previously characterized a nuclear matrix protein, 

NRP/B, also termed ENC1,20,21 which is highly expressed in 

insoluble nuclear fractions and contains two major structural 

elements: a BTB/POZ domain and 115-amino acid motif in the 

predicted N-terminus and “Kelch” repeats consisting of about 50 

amino acids in the predicted C-terminal domain. NRP/B has been 

implicated in neuronal differentiation,20,22 and malignant 

transformation, including glioblastoma, astrocytoma,16,23,24 and 

colorectal cancer.25,26 Mutations in NRP/B contribute to brain and 

colorectal tumorigenesis by promoting cell proliferation and 

decreasing cellular apoptosis.16,25 In addition, NRP/B has been 

found to be involved in oxidative stress responses, both in 

human breast cancer and primary brain tumors.3,4 The combi-

nation of sequence homology analysis and a three-dimensional 

model indicates several potential protein-protein interaction 

sites for NRP/B, via the BTB/POZ domain. Targeted mutagenesis 

studies have demonstrated that the N-terminus of the BTB/POZ 

domain of NRP/B is important for its dimerization.22

The BTB/POZ domain is found primarily in zinc finger- 

containing transcription factors and mediates both homo- and 

hetero-dimerization in vitro.22,27-29 The BTB/POZ family is im-

plicated in transcriptional repression, tumorigenesis, cell proli-

feration, and maintenance of embryonic stem cell pluripo-

tency.30-33 A new mammalian BTB/POZ domain protein, DP- 

interacting protein, interacts with the DP component of the E2F 

heterodimer and is physically located as speckles in the nuclear 

envelope region.34 In Drosophila melanogaster, transcription 

factors containing the BTB/POZ domain play a key role in a variety 

of developmental events such as photoreceptor development, 

muscle recognition by nerve cells and limb development.35 A new 

human BTB/POZ domain protein, Fanconi Anemia Zinc Finger 

(FAZF), is homologous to the promyelocyte zinc finger protein 

(PLZF), which represses the transcription of specific targets by 

recruiting histone deacetylase (HDAC) through the SMART- 

mSin3-HDAC co-repressor complex. Both FAZF and PLZF are 

localized in nuclear speckles. FAZF is also a transcriptional 

repressor that is able to bind to the same DNA target sequence as 

PLZF36 and forms a heterodimer with PLZF.  

The transcription factor E2F, a key element in the control of cell 

proliferation, regulates several families of genes whose products 

are required for cell cycle progression, such as cyclin E,37 or for 

DNA synthesis,38 such as dihydrofolate reductase.39 E2F, in turn, 

plays an essential role in the G1-S transition.40 pRb and other 

pocket binding proteins suppress E2F-mediated transcription in 

cells when they progress through the early G1 phase.41,42 Further-

more, the pRb-E2F repressive complex functions in association 

with HDAC.43-48 HDACs essentially repress transcription, pro-

bably through the deacetylation of histone tails.49 Ferreira et al. 

(2001) reported that HDAC-1 is stably bound to an E2F target 

promoter during the early G1 phase in proliferating cells and is 

released at the G1-S transition, where pRb is known to be a 

transcriptional co-repressor, playing a key role in regulating cell 

proliferation and differentiation.50  

In this study, we examined the role of NRP/B as a growth 

suppressor through the inhibition of human papillomaviral 

protein E2 promotor activity.51 Immunoprecipitation analysis 

indicated that the association of NRP/B with E2F and HDAC-1 

were cell cycle dependant. Furthermore, NRP/B suppression of E2 

promoter activity was mediated through the BTB/POZ domain but 

not through "Kelch" repeats of NRP/B. The suppressive activity of 

NRP/B on E2F transcription was relieved by amino acid mutations 

(F45A, T46A, D47A, H60A, R61D, L64A) within the BTB/POZ 

domain. Moreover, treatment with the HDAC inhibitor, tricho-

statin A (TSA) restored the E2 promoter activity initially inhibited 

by NRP/B. Thus, NRP/B-mediated growth suppression appears to 

be directly related to the inhibition of E2F-mediated transcrip-

tion through the recruitment of a corepressor complex, including 

HDAC-1.

MATERIALS AND METHODS
1. Materials

The generation of monoclonal antibodies, VD2, against NRP/B 

was described.20 The mouse ascites fluid containing monoclonal 

antibodies was further purified on a protein G-Sepharose co-

lumn. The purified antibodies were quantified using extinction 

coefficient 1.46 for 1 mg/mL antibody solution. Monoclonal 

anti-ENC1/NRP/B and pRb antibodies were purchased from BD 

Bioscience (San Jose, CA, USA). Antibodies, E2F1 and HDAC1 were 

purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA).  

2. Cell culture

PC-12, Neuro2A, HEK 293, HeLa, and MDA-MB-231 cell lines 

were obtained from American Type Culture Collection (Rockville, 

MD, USA). HEK 293, HeLa, Neuro2A, MDA-MB-231 cells were 

grown in DMEM medium, supplemented with 10% fetal bovine 

serum (FBS) (Invitrogen, Carlsbad, CA, USA) and penicillin/ 

streptomycin (Invitrogen). PC-12 cells were grown in RPMI 

medium supplemented with 10% horse serum and 5% FBS. We 
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previously generated PC-12 Tet-on/off cell lines stably expressing 

NRP/B.22 The Tet-on/off PC12 clones were maintained as 

described.

3. Three-dimensional modeling of NRP/B

Both BLAST and AlignMaster programs used the PLZF BTB/POZ 

domain as a three-dimensional template. The structure of the 

human PLZF BTB/POZ domain was obtained from the Protein 

Data Bank (Protein Data Bank code 1BUO and 1CS3A). Superim-

position, model building, construction of insertion regions, 

structure validation and calculation of structural properties was 

carried out using subprograms ProMod v3.5, SPDBV v3.5, Loop 

v2.60, LoopDB v2.60, Parameters v3.5 and Topologies v3.5 which 

are available in the Automated SwissModel Package Program 

(www.expasy.ch/swissmod). The three- dimensional model of the 

NRP/B Kelch domain was generated from residue ranges between 

amino acids 292 through 575 of the conserved region in the Kelch 

domain, based on template 1zgkA by the use of BLAST2 and Cn3D 

program (www.ncbi.nlm.nih.gov, National Institute of Health). 

4. Construction of NRP/B expression vectors

NRP/B-GFP constructs were generated by standard methods. 

Briefly, full-length NRP/B cDNA was subcloned into the BamHI 

and HindIII sites of the pEGFP-N2 vector (Clontech, Palo Alto, CA, 

USA) by polymerase chain reaction (PCR) to generate 3'-end GFP 

ligated to NRP/B cDNA. The pNRP/B-delC2-GFP construct enco-

ding amino acids 296-589 was fused with GFP and was generated 

by PCR using NRP/B-specific oligonucleotides containing a 

restriction site linker and then subcloned into the BamHI and 

HindIII sites. pE2-chloramphenicol acetyltransferase (CAT) con-

structs were obtained from Dr. Mary R. Loeken (Josulin Diebetic 

Center, Boston, MA, USA). pCAG NRP/B was constructed by 

insertion of full-length NRP/B into EcoR1 and Not1 sites of pCAG 

obtained from Dr. Suzanne Topalian (National Cancer Institute, 

Bethesda, MD, USA). Generation of lentiviruses was performed as 

previously described.52 Lentiviral shNRP/B (ENC1) expression 

vectors were purchased from Sigma (St. Louis, MO, USA). Cyclin E 

and HsOrC)-luciferase constructs were purchased from AddGene 

(Cambridge, MA, USA).

5. Immunoprecipitation and western blot analysis

Immunoprecipitation and Western blot analysis were perfor-

med as previously described.20 

6. Flow cytometry analysis

Cells were transiently transfected with NRP/B-GFP wild-type 

(wt) using lipofectamine 2000 (Invitrogen) as described in the 

manufacturer's manual. Cells were harvested 48 h after tran-

sfection. Cell cycle analysis was performed as previously des-

cribed.20 

7. Chloramphenicol acetyltransferase assay and lu-
ciferase reporter assay

CAT assays were performed as previously described.53 Nuclear 

extracts were assayed in a volume of 150 L. All enzyme activities 

were assayed within the linear range. Percent conversion was 

determined by liquid scintillation quantitation of 14C counts/min 

in acetylated and nonacetylated chloramphenicol spots from the 

chromatography plate. For the luciferase reporter assay, HeLa 

cells were split at 5 × 104 cells into 12-well plates and 

co-transfected with luciferase reporter constructs and target 

genes, such as E2F or NRP/B, alone with 5 ng of RL-CMV using 

Effectene Transfection reagent according to the manufacturer’s 

instructions (Qiagen, Gaithersburg, MD, USA). Whenever one of 

the DNA components was eliminated, the total amounts of DNA 

were balanced with a pcDNA3 empty vector. All transfections 

were performed in triplicates. After 24 hours, cells were lysed in 

passive lysis buffer and 20 l were used to measure the activity of 

E2 and Renilla luciferase with dual luciferase reporter assay 

system (Promega, Milwaukee, WI, USA).    

8. Quantitative RT-PCR

Total RNA was purified using Trizol Reagent (Invitrogen) and 1 

g of total RNA was reverse transcribed in a 50 l reaction using 

TaqMan Reverse Transcription reagents (Applied Biosystems, 

Carlsbad, CA, USA). 2 l of the reverse transcribed cDNA was 

subjected to PCR according to Applied Biosystems technical 

recommendations. TaqMan probes for CyclinE and HsOrC were 

purchased from assay-on-Demand (Applied Biosystems). PCR 

primers for NRP/B were forward 5’-CAGTGGTGGCCTGAAA-

GAGA-3’ and reverse 5’-TGCAGACAGTAAGGCTGGCACT-3’. Tripli-

cate reactions were run for each RNA sample.

9. Wound healing migration assay

Wound healing migration assay was performed using a 35 

mm -Dish (ibidi GmbH, Munich, Germany). 70 l of DMEM 

containing 35,000 cells was seeded into each chamber of the cell 

culture insert. After 24 hours, the cell culture insert was gently 

removed with sterile tweezers, and 1 ml of fresh medium was 

added to the 35 mm -Dish. The cell migration toward the gap 

region was observed under an inverted light microscope 

(Olympus IX51, Olympus America lnc., Melville, NY, USA), and 
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Figure 1. Generation of NRP/B BTB and Kelch mutants based on three-dimensional modeling. (A) Schematic presentation of NRP/B protein 
and deletion mutants. IVS, intervening sequence. Numbers indicate amino acid residues. (B) Three-dimensional modeling and mutation in 
the BTB and Kelch domains. BTB mutants are as follows; mutant 1(mt1): Asp (D) 47 to Ala (A), Thr (T) 46 to Ala (A) and Phe (F) 45 to 
Ala (A); BTB mt2: His (H) 60 to Ala (A), Arg (R) 61 to Asp (D) and Leu (L) 64 to Ala (A); BTB mt3: mutations in mt1+ mt2. Red colors 
indicate a-helices and yellow colors indicate b-sheet structures. Mutation sites are shown as white balls. The Kelch domain of IZAGK was 
used as a template. The NRP/B Kelch mutant includes Try (W) 518 to Ala (A). Thick arrows with green, yellow, blue, red, sky blue and orange 
colors indicate b-sheet of the Kelch repeat domain. Mutation sites are shown as sky-blue spheres. ΔC2, C-terminal deletion mutant; ΔN2, 
N-terminal deletion mutant. 

the images of each -Dish were taken after 0, 3, 5, 9, and 24 

hours.

 10. MTT assay

Cell viability was assessed by MTT assay. MDA-MB-231 cells 

were seeded at a concentration of 1×104 cells/ml in 96-well 

plates. The cells were incubated for 48 hours in medium 

supplemented with 10% FBS before the experiments. MTT 

solution (5 mg/ml) was added to each well after 24, 48, and 72 

hours and incubated at 37oC to allow the formation of formazan 

crystal. After 2 hours, the media was carefully aspirated from the 

wells, and 200 l of DMSO (dimethyl sulfoxide) was added to 

dissolve the crystals. The absorbance at 570 nm was measured by 

spectrophotometry. All MTT assays were performed in quadru-

plicate.

11. Chamber cell-migration assay

8.0 m pore size PET (polyethylene terephthalate) track- 

etched membrane with Falcon cell culture insert (Becton 

Dickinson, Bedford, MA, USA) was used for chamber cell 

migration assay. A total number of 5 × 104 cells (500 ul) were 

added to the upper chamber, and 700 ul of fresh medium was 

added to the lower chamber. The chambers were incubated for 

24 hours at 37oC, and the remaining cells on the upper surface 
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Figure 2. NRP/B regulated cell proliferation and migration. (A) Mouse neuroblastoma Neuro2A cells transfected with vectors expressing pEGFP
and NRP/B-GFP, were sorted out separately from the non-transfected population. Control cells were non-trasnfected cells. The parameters are 
averages of triplicate samples. (B) NRP/B Tet-off PC12 clones (SC10, SC11, SC13) were grown in the presence or absence of tetracycline for 
24 hours supplemented with 10% Tet system approved FBS (Clontech, Palo Alto, CA, USA). Cells were then analyzed by Flow cytomery as 
indicated in “Experimental procedures”. The results are mean values of triplicate samples from NRP/B PC12 clones. P-values were obtained 
by paired t-tests as shown. (C) Expression of NRP/B in MDA-MB-231 cells infected with lentiviral shNRP/B. (D) Loss of NRP/B enhanced cell 
proliferation. Cell viability was measured in shNRP/B clones of MDA MB-231 cell by MTT assay after 24, 48, and 72 hours. shSC stands for 
shScramble Control. (E) Cell migration toward the gap area was photographed at 0 and 24 hours. Perpendicular lines indicate the borders 
between gaps, and horizontal lines represent the width of gaps. The percentage of cell migration was calculated as follows: (W-w)/W x 100%: 
Width of gap (W at T = 0 hour) and width (w at T = 24 hours). The quantitative results of wound healing migration assay are presented 
on the right panel. (F) Representative images of the chamber cell migration assay show the effect of NRP/B on cell migration after toluidine 
blue staining of migrated cells. For quantification, cells were counted in three randomly determined fields. The data on the graph are the 
average number of migrated cells in the indicated cell lines.

of the membrane were removed with cotton swabs and gently 

washed with 500 ul of PBS. Cells that migrated through the 

membrane and attached to the lower surface of the membrane 

were fixed and stained with 70% ethanol and 1% toluidine 

blue solution. Stained cells were counted under microscopic 

observation to measure the average number of cells that had 

migrated.  

RESULTS
1. Three-dimensional modeling of NRP/B and the 

generation of point mutations in NRP/B domains

NRP/B contains both an -helical BTB/POZ domain and a - 

sheet Kelch repeats structure (Fig. 1A). We designed several 

mutants based on previously generated three-dimensional 

models of the NRP/B BTB/POZ domain (amino acid residues 

13-146)22 and six Kelch repeat domains (amino acid residues 

294-533). For the modeling of the Kelch domain, we used a crystal 
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structure of ZGK Kelch as a template.54 Loops were generated 

between Pro376-Ala380, Leu389-Leu393 and Ala401-Ser411 

within NRP/B Kelch repeats domain. The final total energy was 

–2339.067 KJ/mol. The calculated high energy level indicated that 

the Kelch domain needs to be stabilized by binding partners such 

as actin and suggests a possible critical site for actin binding in the 

Kelch domain of NRP/B. The final three-dimensional models of 

NRP/B and its mutants are shown in Figure 1B. The sites for point 

mutations are as follows; BTB mutant (mt) 1 (F45A, T46A, D47A), 

BTB mt2 (H60A, R61D, L64A), BTB mt3 (F45A, T46A, D47A, H60A, 

R61D, L64A) and Kelch mt1 (W518A). All the mutants contained at 

least one conserved residue of either BTB/POZ or "Kelch" repeats. 

The three-dimensional analysis of the NRP/B BTB/POZ domain 

indicated a potential pocket-formed structure that can be used as 

protein-protein interaction sites. Therefore, mutations in the 

BTB domain may change the ability of NRP/B to interact with 

other proteins via this domain. Moreover, this pocket site con-

tains highly conserved amino acids, indicative of its evolutionary 

conserved function. 

The “Kelch” model shows critical sites for actin binding. W518 

is located outside of the superbarrel structure to maintain the 

three-dimensional structure of the Kelch domain. W518 is also a 

highly conserved amino acid in the Kelch superfamily, and its 

charges, location and solvent accessibility strongly suggests its 

significance in the actin binding properties of the Kelch domain. 

2. The NRP/B played an important role in the regu-
lation of cell proliferation and migration

 Our previous studies demonstrated that NRP/B is involved in 

neuronal differentiation and proliferation.20,22 However, the 

molecular mechanisms of NRP/B involvement in these cellular 

functions have not been elucidated yet. To examine the effect of 

NRP/B on cell proliferation, GFP-tagged full-length NRP/B wt was 

transfected into mouse neuroblastoma Neuro2A cells (Fig. 2A). 

GFP positive cells were sorted and analyzed for cell cycle profiles. 

FACS analysis showed that cells transfected with NRP/B wt were 

increased by 18-22% in the G0/G1 phase cell population (P = 

0.001) and decreased by 10-15% in the S phase cell population in 

comparison to the control and GFP-transfected cells. We further 

examined the growth suppressive effect of NRP/B using Tet-on/ 

off PC12 clones. Induction of NRP/B in the absence (Tet-off) or 

presence (Tet-on, data not shown) of tetracycline or doxycycline 

significantly (P = 0.002) enhanced the G1/G0 population by 

15-20%, depending on the Tet-off PC12 clones used (Fig. 2B). 

Similar data was obtained from Tet-on PC12 clones (data not 

shown). Furthermore, to examine the loss of NRP/B function on 

cell proliferation and migration, shNRP/B MDA MB-231 cell lines 

were generated using lentiviral shNRP/B expression vector. 

Expression of NRP/B was confirmed by RT-PCR (Fig. 2C). The cell 

viability rates of the shNRP/B clone #2 and #5 were gradually 

increased depending on the incubation period for up to three 

days compared to the control shSC cells (Fig. 2D). Wound healing 

migration assay and chamber cell-migration assay proves that the 

loss of NRP/B amplified the migratory properties of MDA-MB-231 

cell lines, suggesting that the NRP/B deficiency in MDA-MB-231 

breast cancer cell line promotes advanced cell proliferation and 

tumorigenesis (Fig. 2E and 2F). 

3. Endogenous interaction of NRP/B with E2F tran-
scription factors and HDAC-1

The BTB domain of NRP/B specifically interacts with the TR 

subdomain within the B pocket of pRb and overexpresssion of 

NRP/B induces hyper-phospholylation of pRb.22 Tumor suppres-

sive effects of pRb are known to mediate the inhibition of E2F 

transcriptional activity via its complex formation with E2F and 

HDACs during cell cycle progression.41-44,55 To analyze if the cell 

cycle inhibitory effect of NRP/B is mediated through pRb-HADC 

transcriptional repressor complexes, we examined the endo-

genous interaction of NRP/B with transcription factor E2F and the 

transcriptional suppressor HDAC-1 in both quiescent and 

proliferating cells. Growth arrested HeLa cells via serum depri-

vation was stimulated with 10% serum for 12 hours and 24 hours 

where cells move from G1 to S phase respectively (Fig. 3A). Immu-

noprecipitation of NRP/B showed that endogenous NRP/B 

interacted with E2F and HDAC1 at late G1/S after 12 hours of 

serum stimulation. As cells entered S phase, HDAC1 was disso-

ciated from NRP/B-E2F complex (Fig. 3B). Co-transfection of 

NRP/B with other HDACs demonstrated that NRP/B also inte-

racted with HDAC2 and 5 (data not shown). Hence, the interac-

tion between NRP/B with E2F and/or HDAC-1 provides new 

partners for NRP/B in transcriptional regulation.

4. NRP/B inhibited E2F-mediated transcriptional acti-
vity

 To examine the effect of NRP/B on E2F-mediated gene tran-

scription, E2 promoter/enhancers were used (Fig. 3C). E2-CAT wt 

and deletion mutant constructs were co-transfected with 

plasmids expressing NRP/B into HeLa cells. NRP/B suppressed wt 

E2 and E2-80/70 promoter activity by 20-25%, and E2-80/70/  

–45/36 promoter activities by -30%. There was no significant 

change in E2-64/60, –45/36 (Fig. 3D and 3E). The effect of NRP/B 

on these E2 mutant CAT activities indicated that NRP/B 
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Figure 3. NRP/B inhibits E2-promoter activity. (A) Immunoassociation of NRP/B with transcription factor E2F and with HDAC-1. Growth-arrested
HeLa cells via serum deprivation (T = 0 hour) were stimulated with 10% fetal bovine serum for 12 and 24 hours. Total cell extracts (500 
g) were subjected to immunoprecipitation with monoclonal anti-NRP/B antibody and mouse IgG. Blot was probed with anti-E2F antibody 
and reprobed with anti-HDAC1 antibody. (B) Flow cytometry analysis. Cells in the same condition as above (A) were subjected to cell cycle 
analysis as described in “Experimental procedures”. Graph in the bottom panel indicates the quantification of the cell cycle profile. (C) 
Schematic diagram of the E2 promoter/enhancer. The position of the ATF binding site (from –82 to -66) is indicated by an empty box over 
the wild-type (wt) sequence. (D) Inhibition of specific E2 promoter activity by NRP/B in CAT assay. HeLa cells were co-transfected with E2-CAT
wt or E2-CAT mutant constructs in the presence or absence of NRP/B, together with a -galactosidase expression vector. p3M-E2, which contains
EIIA promoter sequences (–30 to +40), was used as a control. Extracts were prepared 48 hours after transfection and assayed for CAT activity 
as well as -galactosidase activity. (E) CAT activity is expressed as a percentage conversion of acetylated chloramphenicol, normalized to -gal-
actosidase activity in the above samples. IB, Immunoblot; IP, Immunoprecipitation; p3ME2, control vector; TATA, TATA box. 

specifically inhibited E2 promoter sites, but does not affect ATF 

sites (Fig. 3C-3E). To identify the specific inhibitory site, pre-

viously described NRP/B deletion and BTB point mutation con-

structs were co-transfected with the E2-CAT construct. E2 pro-

moter activity was inhibited by 65-78% with NRP/B wt and delC2 

mutant (Fig. 4A and 4B). However, NRP/B delN2 consisting of the 

Kelch motif did not show any significant effect on E2 promoter 

activity. Co-transfection of BTB mt 1 (F45A, T46A, D47A), mt 2 

(H60A, R61D, L64A) or mt 3 (F45A, T46A, D47A, H60A, R61D, 

L64A) with the E2-wt promoter construct showed that mutations 

in 45FTD47 and 60HR61D64 (BTB mt 3) dramatically abolished the 

suppression of E2F transcriptional activity, while mt 1 and 2 

showed partial inhibition (40-50%) (Fig. 4A and 4B). Therefore, E2 

promoter activity is mediated through the BTB domain of NRP/B, 

specifically within the regions of amino acids, 45FTD47 and 

60HR61L64.

Accumulating evidence indicates that pRb represses E2F tran-

scriptional activity by recruiting a HDAC.43-48 HDACs act as 

transcriptional repressors by binding to E2F target promoters 

during the early G1 phase in proliferating cells.50 Therefore, we 

investigated whether the transcriptional suppression of NRP/B is 

mediated through the recruitment of an HDAC repressor. To 

examine this, a specific inhibitor of HDAC-1, TSA, was used. E2F 

transcriptional activity inhibited by NRP/B (1 g) was restored in 
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Figure 4. Mutation in BTB domain and trichostatin-A (TSA) treatment restores E2-promoter activity suppressed by NRP/B. (A) E2 promoter 
activity was measured with extracts obtained from the transient transfection of NRP/B deletion mutants (C2 or N2) and expression vectors 
containing point mutation in the NRP/B-BTB domain (NRP/B mt1, mt2 and mt3). NRP/B C2 contains the BTB/POZ domain whereas N2 contains 
only "Kelch" repeats. Control (Ctl) indicates the transfection of pE2-CAT wild-type alone. Cotransfection of E1A was used as a positive control. 
(B) Percent inhibition of E2-CAT activity was calculated by comparing CAT activities to the activity of the control (depicted as 0%), normalized 
to -galactosidase activity from the same samples of experiment. (C) Effect of TSA on NRP/B-mediated transcriptional repression of E2F tran-
scriptional activity. Cells were transfected with E2-CAT and/or NRP/B (1 g). Transfected cells were then treated with TSA (50, 100 and 200 
nM) for 24 hours. Extracts were prepared 48 hours after transfection. E2-CAT and -galactosidase activities were measured as described in 
“Experimental procedures”. (D) E2 promoter activity was measured following the transfection of pE2-CAT wt, E1A, or NRP/B expression vector
(1, 3, and 5 g), and a -galactosidase expression vector in the presence or absence of TSA (100 nM). Transfected cells were treated with 
TSA for 24 hours and extracts were subjected to CAT assay. Ctl, Control; ΔC2, C-terminal deletion mutant; ΔN2, N-terminal deletion mutant;
p3ME2, E2 control palsmid.

cells treated with TSA (50 nM), with an 80-95% increase in E2 

promoter activity (Fig. 4C and 4D). The inhibitory effect of NRP/B 

on E2 promoter activity showed concentration dependant pro-

perties. With an increase of NRP/B concentration, the E2 pro-

moter activity was significantly inhibited by 70-90% as compared 

to E2-CAT alone (Fig. 4D). TSA (100 nM) alone increased E2F 

promoter activity by 40% and recovered over 90% of the E2 

promoter activity inhibited by NRP/B. However, in the presence of 

high concentration of NRP/B (3-5 g), TSA treatment did not 

inhibit NRP/B-mediated suppression of E2 promoter activity (Fig. 

4D). Taken together, these results indicate that NRP/B served as a 

transcriptional repressor in E2 promoter activity by recruiting 

HDAC-1.

5. Regulation of E2F-target gene promoter activity 
and gene transcription via NRP/B

To determine whether the transcriptional suppressive activity 

of NRP/B correlates to regulation of E2F target genes, we first 

examined the effect of NRP/B on the promoters of Cyclin E and 

HsOrC. As shown previously in Figure 3 and 4, NRP/B inhibited 

E2F-mediated transcriptional activity. E2F enhanced the activity 

of two E2F target gene promoters, HsOrC and Cyclin E by 2 to 6 

folds, respectively (Fig. 5A and 5B). In addition, ectopic over-

expression of NRP/B in HeLa cells significantly inhibited basal 

and E2F-mediated Cyclin E and HsOrC transcriptional activities 

(Fig. 5A and 5B). Furthermore, we used the lentiviral-based NRP/B 

and shNRP/B to examine the gain and loss of NRP/B function on 

E2F target gene expression in HeLa cells. Expression of NRP/B was 



 

Jina Choi, et al: Inhibition of E2F Transcriptional Activity by NRP/B 195

Figure 5. NRP/B inhibits E2F-target gene promoters and gene transcription in HeLa cells. (A and B) Luciferase activity in HeLa cells after 
transfection with Cyclin E (A) and HsOrC. (B) reporter constructs, along with E2F or NRP/B as indicated. pGL, an empty reporter vector was 
used as a control. The experiments were repeated with triplicate samples at least three times and the representative experiment is shown. 
(C and F) Expression of NRP/B protein in HeLa cells infected with increasing amount of lentiviral-pCAG-NRP/B (C) and lentiviral-shNRP/B (F). 
30 g of total cell lysates were subjected to western blot analysis. (D, E, G and H) qRT-PCR of Cyclin E (D and G) and HsOrC (E and H). 
Total mRNA was prepared from cells infected with lentiviral-pCAG-NRP/B and lentiviral-shNRP/B as shown in (C and F). Viral products from 
pCAG-GFP (D and E) and shGFP (G and H) were used as controls. The results are mean values of relative mRNA levels normalized to 18S 
± SEM from triplicate samples. P-values were obtained by paired t-tests as shown. Luc, luciferase.

gradually increased by lentiviral-NRP/B infection and markedly 

decreased by shNRP/B expression (Fig. 5C and 5F). qRT-PCR 

analysis showed that the ectopic expression of NRP/B signifi-

cantly suppressed cyclin E (P < 0.03) and HsOrC (P < 0.02) gene 

transcript (Fig. 5D and 5E). Loss of NRP/B by shNRP/B showed a 

significant increase of Cyclin E (P < 0.01) and HsOrC (P < 0.05) 

gene transcripts (Fig. 5G and 5H). These results further validate 

the role of NRP/B as a transcriptional suppressor in E2F-mediated 
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transcriptional activity. 

DISCUSSION

NRP/B is known to exert its effect on neuronal differentiation 

and proliferation through its association with the key molecules 

in cell cycle, such as pRb.20 We have shown previously that the 

NRP/B-BTB/POZ domain mediated the association of NRP/B with 

pRb through the TR subdomain within the B pocket of the pRb 

protein.22 Mutations in the BTB domain significantly reduced the 

NRP/B-pRb interaction and dimerization of NRP/B. The present 

study indicates that the NRP/B had significant growth inhibitory 

properties (Fig. 2A and 2B). After transfection of NRP/B-GFP into 

Neuro2A and HEK 293 cells, the population of G0/G1 was 

increased by 15-20% in comparison to non-transfected and mock 

(GFP only) transfected cells. The growth regulatory effect of 

NRP/B was also verified in several Tet-on/off PC12 clones (Fig. 2B). 

We found that the induction of NRP/B in Tet-on/off cell lines 

significantly delayed the kinetics of cell cycle progression in 

comparison to control cells (unpublished data). Interestingly, 

long-term (two to four days) ectopic overexpression of NRP/B in 

Tet-on/off PC12 clones induced the neuronal differentiation of 

PC12 in which pRb became hyper-phosphorylated.22 On the other 

hand, the loss of NRP/B in MDA-MB-231 cells showed a marked 

increase in cell proliferation and migration, which validates the 

growth inhibitory function of NRP/B, suggesting that NRP/B may 

have tumor suppressive properties. Regulation of E2F-mediated 

transcription may lead to a better understanding of the molecular 

mechanisms of cellular progression. The activity of the E2F 

transcription factor in cells is tightly regulated, partly through 

complex formations with a number of key regulators of cellular 

proliferation and cell cycle control. Interaction of pRb with E2F in 

the G0/G1 phase is known to inhibit cell proliferation.20,22,23 Since 

NRP/B interacts with E2F, HDAC1 and pRb depending on cell cycle 

progression, it is crucial to understand the molecular mechanism 

of NRP/B action on these growth regulatory proteins. Our studies 

showed that NRP/B suppressed E2 promoter activity, which was 

mediated by the BTB domain but not by the Kelch motif. Within 

the NRP/B-BTB domain, amino acids (45FTD47, and 60HR61L64) were 

important in regulating E2 promoter/E2F binding activities. 

Among these amino acids, 46TD47 are known to be conserved and 

essential for the transcriptional suppression of PLZF. Further-

more, the inhibition of HDAC1 activity via treatment of TSA 

restored E2F transcriptional activity initially suppressed by 

NRP/B, suggesting that the complex formation of NRP/B-E2F- 

HDAC1 in the late G1/S phase (Fig. 3A and 3B) may lead to 

transcriptional suppression. It is conceivable that the recruit-

ment of HDAC1 and/or the hypophosphorylated form of pRb20 

could engage the E2F-transcriptinal machinery. Indeed, NRP/B 

seems to be involved in E2F transcriptional suppression, by 

interacting with HDAC1-E2F. Earlier studies have shown that the 

cell cycle-dependant recruitment of HDAC-1 is correlated with the 

deacetylation of histone H4 on a pRb-E2F target promoter.50 The 

histone methylase SUV39H1 and the methylase-lysine binding 

protein HP1 are involved in the repressive functions of pRb.56 

Thus, the pRb functions, at least partly, as a repressor through the 

recruitment of HDAC activity.40,46,47 Regulation of the E2F- 

mediated transcriptional activity via NRP/B was further examined 

in both E2F target gene promoters (Cyclin E and HsOrC) and gene 

transcription, indicating that ectopic overexpression of NRP/B 

significantly inhibited not only the promoter activities but also 

the gene transcription of the E2F target genes, Cyclin E and HsOrC 

(Fig. 5). However, loss of NRP/B by infection of lentiviral shNRP/B 

enhanced E2F target gene transcription respectively. NRP/B could 

possibly impair the formation of E2F complex in order to 

interrupt the activation of E2F-mediated transcription. NRP/B 

could indirectly bind to E2F sites through the formation of a 

DNA-protein complex that contains E2F1, pRb and HDACs.  

Taken together, NRP/B acts as a transcriptional suppressor. 

Inhibition of E2F-mediated transcription through NRP/B interac-

tion with co-repressors may significantly impact cell proliferation 

and tumorigenesis. 
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